Distinct Approaches of Raloxifene: Its Far-Reaching Beneficial Effects Implicating the HO-System
Abstract
:1. Introduction
2. Mechanism of Action of Raloxifene
3. Importance of the HO System
4. Cardiometabolic Effects of RAL
5. Effects of RAL in Neuroprotection
6. Conclusions
Acknowledgments
Conflicts of Interest
References
- Araujo, J.A.; Zhang, M.; Yin, F. Heme oxygenase-1, oxidation, inflammation, and atherosclerosis. Front. Pharmacol. 2012, 3, 119. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Choi, A.M.; Alam, J. Heme oxygenase-1: Function, regulation, and implication of a novel stress-inducible protein in oxidant-induced lung injury. Am. J. Respir Cell Mol Biol. 1996, 15, 9–19. [Google Scholar] [CrossRef]
- Posa, A.; Szabo, R.; Csonka, A.; Veszelka, M.; Berko, A.M.; Barath, Z.; Menesi, R.; Pavo, I.; Gyongyosi, M.; Laszlo, F.; et al. Endogenous Estrogen-Mediated Heme Oxygenase Regulation in Experimental Menopause. Oxid. Med. Cell Longev. 2015, 2015, 429713. [Google Scholar] [CrossRef]
- Posa, A.; Szabo, R.; Kupai, K.; Berko, A.M.; Veszelka, M.; Szucs, G.; Borzsei, D.; Gyongyosi, M.; Pavo, I.; Deim, Z.; et al. Cardioprotective Effect of Selective Estrogen Receptor Modulator Raloxifene Are Mediated by Heme Oxygenase in Estrogen-Deficient Rat. Oxid. Med. Cell Longev. 2017, 2017, 2176749. [Google Scholar] [CrossRef] [Green Version]
- Li, T.; Xiao, X.; Zhang, J.; Zhu, Y.; Hu, Y.; Zang, J.; Lu, K.; Yang, T.; Ge, H.; Peng, X.; et al. Age and sex differences in vascular responsiveness in healthy and trauma patients: Contribution of estrogen receptor-mediated Rho kinase and PKC pathways. Am. J. Physiol. Heart Circ. Physiol. 2014, 306, H1105–H1115. [Google Scholar] [CrossRef] [Green Version]
- Martinkovich, S.; Shah, D.; Planey, S.L.; Arnott, J.A. Selective estrogen receptor modulators: Tissue specificity and clinical utility. Clin. Interv. Aging. 2014, 9, 1437–1452. [Google Scholar] [PubMed] [Green Version]
- Raloxifene (Evista) for breast cancer prevention in postmenopausal women. Med. Lett. Drugs Ther. 2006, 48, 37. [PubMed]
- Bjarnason, N.H.; Haarbo, J.; Byrjalsen, I.; Kauffman, R.F.; Christiansen, C. Raloxifene inhibits aortic accumulation of cholesterol in ovariectomized, cholesterol-fed rabbits. Circulation 1997, 96, 1964–1969. [Google Scholar] [CrossRef]
- Mauvais-Jarvis, F. Estrogen and androgen receptors: Regulators of fuel homeostasis and emerging targets for diabetes and obesity. Trends Endocrinol. Metab. 2011, 22, 24–33. [Google Scholar] [CrossRef] [Green Version]
- McDonnell, D.P. The molecular pharmacology of estrogen receptor modulators: Implications for the treatment of breast cancer. Clin. Cancer Res. 2005, 11, 871s–877s. [Google Scholar]
- Hadji, P. The evolution of selective estrogen receptor modulators in osteoporosis therapy. Climacteric 2012, 15, 513–523. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Messalli, E.M.; Scaffa, C. Long-term safety and efficacy of raloxifene in the prevention and treatment of postmenopausal osteoporosis: An update. Int. J. Womens Health 2010, 1, 11–20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abraham, N.G.; Kappas, A. Pharmacological and clinical aspects of heme oxygenase. Pharmacol. Rev. 2008, 60, 79–127. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brouard, S.; Otterbein, L.E.; Anrather, J.; Tobiasch, E.; Bach, F.H.; Choi, A.M.; Soares, M.P. Carbon monoxide generated by heme oxygenase 1 suppresses endothelial cell apoptosis. J. Exp. Med. 2000, 192, 1015–1026. [Google Scholar] [CrossRef] [PubMed]
- Motterlini, R.; Otterbein, L.E. The therapeutic potential of carbon monoxide. Nat. Rev. Drug Discov. 2010, 9, 728–743. [Google Scholar] [CrossRef]
- Otterbein, L.E.; Bach, F.H.; Alam, J.; Soares, M.; Lu, H.T.; Wysk, M.; Davis, R.J.; Flavell, R.A.; Choi, A.M. Carbon monoxide has anti-inflammatory effects involving the mitogen-activated protein kinase pathway. Nat. Med. 2000, 6, 422–428. [Google Scholar] [CrossRef]
- Morse, D.; Choi, A.M. Heme oxygenase 1: From bench to bedside. Am. J. Respir. Crit. Care Med. 2005, 172, 660–670. [Google Scholar] [CrossRef] [Green Version]
- Ryter, S.W.; Alam, J.; Choi, A.M. Heme oxygenase 1/carbon monoxide: From basic science to therapeutic applications. Physiol. Rev. 2006, 86, 583–650. [Google Scholar] [CrossRef]
- Fredenburgh, L.E.; Merz, A.A.; Cheng, S. Haeme oxygenase signalling pathway: Implications for cardiovascular disease. Eur. Heart J. 2015, 36, 1512–1518. [Google Scholar] [CrossRef] [Green Version]
- Balla, G.; Jacob, H.S.; Balla, J.; Rosenberg, M.; Nath, K.; Apple, F.; Eaton, J.W.; Vercellotti, G.M. Ferritin: A cytoprotective antioxidant strategem of endothelium. J. Biol. Chem. 1992, 267, 18148–18153. [Google Scholar]
- Yachie, A.; Niida, Y.; Wada, T.; Igarashi, N.; Kaneda, H.; Toma, T.; Ohta, K.; Kasahara, Y.; Koizumi, S. Oxidative stress causes enhanced endothelial cell injury in human heme oxygenase-1 deficiency. J. Clin. Investig. 1999, 103, 129–135. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, J.; Zhang, Z.; Cai, L. Diabetic cardiomyopathy and its prevention by nrf2: Current status. Diabetes Metab. J. 2014, 38, 337–345. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kondo, K.; Ishigaki, Y.; Gao, J.; Yamada, T.; Imai, J.; Sawada, S.; Muto, A.; Oka, Y.; Igarashi, K.; Katagiri, H. Bach1 deficiency protects pancreatic beta-cells from oxidative stress injury. Am. J. Physiol. Endocrinol. Metab. 2013, 305, E641–E648. [Google Scholar] [CrossRef] [PubMed]
- Song, J.; Sumiyoshi, S.; Nakashima, Y.; Doi, Y.; Iida, M.; Kiyohara, Y.; Sueishi, K. Overexpression of heme oxygenase-1 in coronary atherosclerosis of Japanese autopsies with diabetes mellitus: Hisayama study. Atherosclerosis 2009, 202, 573–581. [Google Scholar] [CrossRef]
- Mozzini, C.; Pasini, A.F.; Garbin, U.; Stranieri, C.; Pasini, A.; Vallerio, P.; Cominacini, L. Increased endoplasmic reticulum stress and Nrf2 repression in peripheral blood mononuclear cells of patients with stable coronary artery disease. Free Radic. Biol. Med. 2014, 68, 178–185. [Google Scholar] [CrossRef]
- Jeney, V.; Balla, J.; Yachie, A.; Varga, Z.; Vercellotti, G.M.; Eaton, J.W.; Balla, G. Pro-oxidant and cytotoxic effects of circulating heme. Blood 2002, 100, 879–887. [Google Scholar] [CrossRef] [Green Version]
- Kato, H.; Amersi, F.; Buelow, R.; Melinek, J.; Coito, A.J.; Ke, B.; Busuttil, R.W.; Kupiec-Weglinski, J.W. Heme oxygenase-1 overexpression protects rat livers from ischemia/reperfusion injury with extended cold preservation. Am. J. Transplant. 2001, 1, 121–128. [Google Scholar] [CrossRef]
- Di Giacomo, C.; Santangelo, R.; Sorrenti, V.; Volti, G.L.; Acquaviva, R. Neuroprotective effects of a glutathione depletor in rat post-ischemic reperfusion brain damage. CNS Neurol. Disord. Drug Targets 2015, 14, 41–48. [Google Scholar] [CrossRef]
- Li Volti, G.; Sorrenti, V.; Murabito, P.; Galvano, F.; Veroux, M.; Gullo, A.; Acquaviva, R.; Stacchiotti, A.; Bonomini, F.; Vanella, L.; et al. Pharmacological induction of heme oxygenase-1 inhibits iNOS and oxidative stress in renal ischemia-reperfusion injury. Transplant. Proc. 2007, 39, 2986–2991. [Google Scholar] [CrossRef]
- Lee, S.A.; Kim, E.Y.; Jeon, W.K.; Woo, C.H.; Choe, J.; Han, S.; Kim, B.C. The inhibitory effect of raloxifene on lipopolysaccharide-induced nitric oxide production in RAW264.7 cells is mediated through a ROS/p38 MAPK/CREB pathway to the up-regulation of heme oxygenase-1 independent of estrogen receptor. Biochimie 2011, 93, 168–174. [Google Scholar]
- Knowlton, A.A.; Lee, A.R. Estrogen and the cardiovascular system. Pharmacol. Ther. 2012, 135, 54–70. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Persky, A.M.; Green, P.S.; Stubley, L.; Howell, C.O.; Zaulyanov, L.; Brazeau, G.A.; Simpkins, J.W. Protective effect of estrogens against oxidative damage to heart and skeletal muscle in vivo and in vitro. Proc. Soc. Exp. Biol Med. 2000, 223, 59–66. [Google Scholar] [CrossRef] [PubMed]
- Polotsky, H.N.; Polotsky, A.J. Metabolic implications of menopause. Semin. Reprod. Med. 2010, 28, 426–434. [Google Scholar] [CrossRef] [PubMed]
- Lizcano, F.; Guzman, G. Estrogen Deficiency and the Origin of Obesity during Menopause. Biomed. Res. Int. 2014, 2014, 757461. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues-Junior, D.M.; Lopes-Costa, P.V.; dos Santos, A.R.; da Silva, B.B. Effects of tamoxifen and raloxifene on body and uterine weights of rats in persistent estrus. Clin. Exp. Obstet. Gynecol. 2012, 39, 362–364. [Google Scholar] [PubMed]
- Tommaselli, G.A.; Di Carlo, C.; Sardo, A.D.S.; Bifulco, G.; Cirillo, D.; Guida, M.; Capasso, R.; Nappi, C. Serum leptin levels and body composition in postmenopausal women treated with tibolone and raloxifene. Menopause 2006, 13, 660–668. [Google Scholar] [CrossRef] [PubMed]
- Bao, A.M.; Swaab, D.F. Sex differences in the brain, behavior, and neuropsychiatric disorders. Neuroscientist 2010, 16, 550–565. [Google Scholar] [CrossRef]
- Martins-Maciel, E.R.; Campos, L.B.; Salgueiro-Pagadigorria, C.L.; Bracht, A.; Ishii-Iwamoto, E.L. Raloxifene affects fatty acid oxidation in livers from ovariectomized rats by acting as a pro-oxidant agent. Toxicol. Lett. 2013, 217, 82–89. [Google Scholar] [CrossRef] [Green Version]
- Dayspring, T.; Qu, Y.; Keech, C. Effects of raloxifene on lipid and lipoprotein levels in postmenopausal osteoporotic women with and without hypertriglyceridemia. Metabolism 2006, 55, 972–979. [Google Scholar] [CrossRef]
- Bjarnason, N.H.; Haarbo, J.; Byrjalsen, I.; Kauffman, R.F.; Knadler, M.P.; Christiansen, C. Raloxifene reduces atherosclerosis: Studies of optimized raloxifene doses in ovariectomized, cholesterol-fed rabbits. Clin. Endocrinol. 2000, 52, 225–233. [Google Scholar] [CrossRef]
- Khan, M.M. Neurocognitive, Neuroprotective, and Cardiometabolic Effects of Raloxifene: Potential for Improving Therapeutic Outcomes in Schizophrenia. CNS Drugs 2016, 30, 589–601. [Google Scholar] [CrossRef] [PubMed]
- Gol, M.; Akan, P.; Dogan, E.; Karas, C.; Saygili, U.; Posaci, C. Effects of estrogen, raloxifene, and hormone replacement therapy on serum C-reactive protein and homocysteine levels. Maturitas 2006, 53, 252–259. [Google Scholar] [CrossRef] [PubMed]
- Kawamura, K.; Ishikawa, K.; Wada, Y.; Kimura, S.; Matsumoto, H.; Kohro, T.; Itabe, H.; Kodama, T.; Maruyama, Y. Bilirubin from heme oxygenase-1 attenuates vascular endothelial activation and dysfunction. Arterioscler. Thromb. Vasc. Biol. 2005, 25, 155–160. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zakkar, M.; Van der Heiden, K.; Luong, L.A.; Chaudhury, H.; Cuhlmann, S.; Hamdulay, S.S.; Krams, R.; Edirisinghe, I.; Rahman, I.; Carlsen, H.; et al. Activation of Nrf2 in endothelial cells protects arteries from exhibiting a proinflammatory state. Arterioscler. Thromb. Vasc. Biol. 2009, 29, 1851–1857. [Google Scholar] [CrossRef] [Green Version]
- Kim, M.; Kim, S.; Lim, J.H.; Lee, C.; Choi, H.C.; Woo, C.H. Laminar flow activation of ERK5 protein in vascular endothelium leads to atheroprotective effect via NF-E2-related factor 2 (Nrf2) activation. J. Biol. Chem. 2012, 287, 40722–40731. [Google Scholar]
- Duckers, H.J.; Boehm, M.; True, A.L.; Yet, S.F.; San, H.; Park, J.L.; Webb, R.C.; Lee, M.E.; Nabel, G.J.; Nabel, E.G. Heme oxygenase-1 protects against vascular constriction and proliferation. Nat. Med. 2001, 7, 693–698. [Google Scholar]
- Stojanov, M.; Stefanovic, A.; Dzingalasevic, G.; Ivanisevic, J.; Miljkovic, M.; Mandic-Radic, S.; Prostran, M. Total bilirubin in young men and women: Association with risk markers for cardiovascular diseases. Clin. Biochem. 2013, 46, 1516–1519. [Google Scholar] [CrossRef]
- Nascimento, H.; Alves, A.I.; Coimbra, S.; Catarino, C.; Gomes, D.; Bronze-da-Rocha, E.; Costa, E.; Rocha-Pereira, P.; Aires, L.; Mota, J.; et al. Bilirubin is independently associated with oxidized LDL levels in young obese patients. Diabetol. Metab. Syndr. 2015, 7, 4. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.H.; Yet, S.F.; Perrella, M.A. Role of heme oxygenase-1 in the regulation of blood pressure and cardiac function. Exp. Biol. Med. 2003, 228, 447–453. [Google Scholar] [CrossRef]
- Weber, C.M.; Eke, B.C.; Maines, M.D. Corticosterone regulates heme oxygenase-2 and NO synthase transcription and protein expression in rat brain. J. Neurochem. 1994, 63, 953–962. [Google Scholar] [CrossRef]
- Oge, A.; Sezer, E.D.; Ozgonul, M.; Bayraktar, F.; Sozmen, E.Y. The effects of estrogen and raloxifene treatment on the antioxidant enzymes and nitrite-nitrate levels in brain cortex of ovariectomized rats. Neurosci. Lett. 2003, 338, 217–220. [Google Scholar] [CrossRef]
- Ozgonul, M.; Oge, A.; Sezer, E.D.; Bayraktar, F.; Sozmen, E.Y. The effects of estrogen and raloxifene treatment on antioxidant enzymes in brain and liver of ovarectomized female rats. Endocr. Res. 2003, 29, 183–189. [Google Scholar] [CrossRef] [PubMed]
- Bhardwaj, M.; Deshmukh, R.; Kaundal, M.; Reddy, B.K. Pharmacological induction of hemeoxygenase-1 activity attenuates intracerebroventricular streptozotocin induced neurocognitive deficit and oxidative stress in rats. Eur. J. Pharmacol. 2016, 772, 43–50. [Google Scholar] [CrossRef] [PubMed]
- Ishihara, Y.; Itoh, K.; Ishida, A.; Yamazaki, T. Selective estrogen-receptor modulators suppress microglial activation and neuronal cell death via an estrogen receptor-dependent pathway. J. Steroid. Biochem. Mol. Biol. 2015, 145, 85–93. [Google Scholar] [CrossRef] [PubMed]
- Konyalioglu, S.; Durmaz, G.; Yalcin, A. The potential antioxidant effect of raloxifene treatment: A study on heart, liver and brain cortex of ovariectomized female rats. Cell Biochem. Funct. 2007, 25, 259–266. [Google Scholar] [CrossRef] [PubMed]
- Korucuoglu, U.; Ciftci, B.; Gulbahar, O.; Biri, A.; Nas, T.; Gursoy, R.; Aricioglu, A. Assessment of protein oxidation in women using raloxifene. Mol. Cell Biochem. 2006, 290, 97–101. [Google Scholar] [CrossRef]
- Arevalo, M.A.; Diz-Chaves, Y.; Santos-Galindo, M.; Bellini, M.J.; Garcia-Segura, L.M. Selective oestrogen receptor modulators decrease the inflammatory response of glial cells. J. Neuroendocrinol. 2012, 24, 183–190. [Google Scholar] [CrossRef] [Green Version]
- D’Amelio, P.; Isaia, G.C. The use of raloxifene in osteoporosis treatment. Expert Opin. Pharmacother. 2013, 14, 949–956. [Google Scholar] [CrossRef]
- Kastelan, D.; Korsic, M. Raloxifene (Evista) in the treatment of postmenopausal osteoporosis--the profile of the patient. Reumatizam 2005, 52, 67–70. [Google Scholar]
- Kobayashi, H.; Hamaya, E. Raloxifene hydrochloride (Evista Tablet 60 mg) for postmenopausal osteoporosis: Mode of action and clinical efficacy. Nihon. Yakurigaku Zasshi 2005, 125, 37–48. [Google Scholar] [CrossRef] [Green Version]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Börzsei, D.; Szabó, R.; Hoffmann, A.; Veszelka, M.; Pávó, I.; Turcsán, Z.; Viczián, C.; Kupai, K.; Varga, C.; Pósa, A. Distinct Approaches of Raloxifene: Its Far-Reaching Beneficial Effects Implicating the HO-System. Biomolecules 2020, 10, 375. https://doi.org/10.3390/biom10030375
Börzsei D, Szabó R, Hoffmann A, Veszelka M, Pávó I, Turcsán Z, Viczián C, Kupai K, Varga C, Pósa A. Distinct Approaches of Raloxifene: Its Far-Reaching Beneficial Effects Implicating the HO-System. Biomolecules. 2020; 10(3):375. https://doi.org/10.3390/biom10030375
Chicago/Turabian StyleBörzsei, Denise, Renáta Szabó, Alexandra Hoffmann, Médea Veszelka, Imre Pávó, Zsolt Turcsán, Csaba Viczián, Krisztina Kupai, Csaba Varga, and Anikó Pósa. 2020. "Distinct Approaches of Raloxifene: Its Far-Reaching Beneficial Effects Implicating the HO-System" Biomolecules 10, no. 3: 375. https://doi.org/10.3390/biom10030375
APA StyleBörzsei, D., Szabó, R., Hoffmann, A., Veszelka, M., Pávó, I., Turcsán, Z., Viczián, C., Kupai, K., Varga, C., & Pósa, A. (2020). Distinct Approaches of Raloxifene: Its Far-Reaching Beneficial Effects Implicating the HO-System. Biomolecules, 10(3), 375. https://doi.org/10.3390/biom10030375