Bioactive Natural Compounds and Antioxidant Activity of Essential Oils from Spice Plants: New Findings and Potential Applications
Abstract
:1. Historical Importance and Traditional Uses of Spice Plants
2. Methods Applied in Determining Antioxidant Activity
2.1. Chemical-Based Assays
2.1.1. Radical Scavenging Assays
2.1.2. Lipid Peroxidation Assays
2.1.3. Reduction Power Assays
2.2. Cell- and Enzyme-Based Assays
3. Bioactive Compounds from EOs of Spice Plants
3.1. Cinnamomum Zeylanicum (True Cinnamon)
3.2. Mentha Piperita (Peppermint)
3.3. Ocimum Basilicum (Basil)
3.4. Origanum Vulgare (Oregano)
3.5. Piper Nigrum (Black Pepper)
3.6. Rosmarinus Officinalis (Rosemary)
3.7. Thymus Vulgaris (Thyme)
4. Final Considerations
Author Contributions
Funding
Conflicts of Interest
Abbreviations
ABTS | 2:2’-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) |
AAPH | 2,2-azobis (2-methylpropionamidine) hydrochloride |
BHT | butylhydroxytoluene |
CUPRAC | cupric ion reducing antioxidant capacity assay |
DMSO | dimethylsulfoxide |
DCFH2 | dihydrodichlorofluorescein |
DCF | dichlorofluorescein |
DPPH | 1,1-diphenyl-2-picrylhydrazyl |
EO | essential oil |
FRAP | ferric antioxidant power reduction assay |
GR | glutathione reductase |
GSH | reduced glutathione |
GSSG | oxidized glutathione |
MDA | malondialdehyde |
NBT | nitro-blue tetrazolium |
ORAC | oxygen radical absorption capacity assay |
PM | phosphomolybdenum assay |
ROS | reactive oxygen species |
TBARS | thiobarbituric acid reactive substances assay |
TEAC | Trolox equivalent antioxidant activity |
TPTZ | 2,4,6-tripyridyl-s-triazine |
UV-Vis | ultraviolet-visible |
References
- Freedman, P. History of Spices. In Handbook of Eating and Drinking; Springer: Nature, Switzerland, 2019; pp. 1–15. [Google Scholar]
- Raghavan, S. Spices in History. In Handbook of Spices, Seasonings, and Flavorings, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2006. [Google Scholar]
- Wiesehofer, J. Spices. In The Encyclopedia of Ancient History; Blackwell Publishing: Hoboken, NJ, USA, 2012. [Google Scholar]
- Özcan, M.M.; Erel, Ö.; Herken, E.E. Antioxidant activity, phenolic content, and peroxide value of essential oil and extracts of some medicinal and aromatic plants used as condiments and herbal teas in Turkey. J. Med. Food 2009, 12, 198–202. [Google Scholar] [CrossRef] [PubMed]
- Kowalski, R.; Kowalska, G.; Pankiewicz, U.; Mazurek, A.; Sujka, M.; Włodarczyk-Stasiak, M.; Kałwa, K. Effect of the method of rapeseed oil aromatisation with rosemary Rosmarinus officinalis L. on the content of volatile fraction. Lwt 2018, 95, 40–46. [Google Scholar] [CrossRef]
- McCormick Science Institute History of Spices—McCormick Science Institute. Available online: http://www.mccormickscienceinstitute.com/resources/history-of-spices (accessed on 3 March 2020).
- Pearson, M.N. Spices in the Indian Ocean World; Taylor & Francis: London, UK, 2017. [Google Scholar]
- Pereira, R.C.A.; Santos, O.G. Plantas Condimentares: Cultivo e Utilização, 1st ed.; Embrapa Agroindústria Tropical: Fortaleza, Brazil, 2013. [Google Scholar]
- McCormick Science Institute Culinary Spices. Available online: https://www.mccormickscienceinstitute.com/resources/culinary-spices (accessed on 3 March 2020).
- Kheroda Devi, M.; Thangjam, I.; Singh, W. Phytochemical screening of selected twelve medicinal plants commonly used as spices and condiments in manipur, north-east India. Int. J. Curr. Res. Life Sci. 2019, 8, 2945–2947. [Google Scholar]
- Raj Singh, L.; Author, C. Golden Shower: A Wonder Medicinal Plant and Its Processing Technology. Indian J. Appl. Res. 2019, 9, 66–67. [Google Scholar]
- Bianchi, A. The Mediterranean aromatic plants and their culinary use. Nat. Prod. Res. 2015, 29, 201–206. [Google Scholar] [CrossRef] [PubMed]
- Bower, A.; Marquez, S.; de Mejia, E.G. The Health Benefits of Selected Culinary Herbs and Spices Found in the Traditional Mediterranean Diet. Crit. Rev. Food Sci. Nutr. 2016, 56, 2728–2746. [Google Scholar] [CrossRef] [PubMed]
- Hamidpour, R. Rosmarinus Officinalis (Rosemary): A Novel Therapeutic Agent for Antioxidant, Antimicrobial, Anticancer, Antidiabetic, Antidepressant, Neuroprotective, Anti-Inflammatory, and Anti-Obesity Treatment. Biomed. J. Sci. Tech. Res. 2017, 1. [Google Scholar] [CrossRef]
- Zhang, H.-Y. Structure-Activity Relationships and Rational Design Strategies for Radical- Scavenging Antioxidants. Curr. Comput. Aided-Drug Des. 2005, 1, 257–273. [Google Scholar] [CrossRef]
- Oliveira, G.L.S. Determination in vitro of the antioxidant capacity of natural products by the DPPH method: Review study. Rev. Bras. Plantas Med. 2015, 17, 36–44. [Google Scholar] [CrossRef]
- Amorati, R.; Valgimigli, L. Advantages and limitations of common testing methods for antioxidants. Free Radic. Res. 2015, 49, 633–649. [Google Scholar] [CrossRef]
- Pérez-Burillo, S.; Rufián-Henares, J.A.; Pastoriza, S. Towards an improved global antioxidant response method (GAR+): Physiological-resembling in vitro digestion-fermentation method. Food Chem. 2018, 239, 1253–1262. [Google Scholar] [CrossRef] [PubMed]
- Kellett, M.E.; Greenspan, P.; Pegg, R.B. Modification of the cellular antioxidant activity (CAA) assay to study phenolic antioxidants in a Caco-2 cell line. Food Chem. 2018, 244, 359–363. [Google Scholar] [CrossRef] [PubMed]
- López-Alarcón, C.; Denicola, A. Evaluating the antioxidant capacity of natural products: A review on chemical and cellular-based assays. Anal. Chim. Acta 2013, 763, 1–10. [Google Scholar] [CrossRef]
- Granato, D.; Shahidi, F.; Wrolstad, R.; Kilmartin, P.; Melton, L.D.; Hidalgo, F.J.; Miyashita, K.; van Camp, J.; Alasalvar, C.; Ismail, A.B.; et al. Antioxidant activity, total phenolics and flavonoids contents: Should we ban in vitro screening methods? Food Chem. 2018, 264, 471–475. [Google Scholar] [CrossRef] [PubMed]
- Cheli, F.; Baldi, A. Nutrition-Based Health: Cell-Based Bioassays for Food Antioxidant Activity Evaluation. J. Food Sci. 2011, 76, R197–R205. [Google Scholar] [CrossRef]
- Alam, M.N.; Bristi, N.J.; Rafiquzzaman, M. Review on in vivo and in vitro methods evaluation of antioxidant activity. Saudi Pharm. J. 2013, 21, 143–152. [Google Scholar] [CrossRef] [Green Version]
- Kulisic, T.; Radonic, A.; Katalinic, V.; Milos, M. Use of different methods for testing antioxidative activity of oregano essential oil. Food Chem. 2004, 85, 633–640. [Google Scholar] [CrossRef]
- Zhen, J.; Villani, T.S.; Guo, Y.; Qi, Y.; Chin, K.; Pan, M.-H.; Ho, C.-T.; Simon, J.E.; Wu, Q. Phytochemistry, antioxidant capacity, total phenolic content and anti-inflammatory activity of Hibiscus sabdariffa leaves. Food Chem. 2016, 190, 673–680. [Google Scholar] [CrossRef]
- Kanner, J.; Mendel, H.; Budowski, P. Prooxidant and Antioxidant Effects of Ascorbic Acid and Metal Salts in a Β-Carotene-Linoleate Model System. J. Food Sci. 1977, 42, 60–64. [Google Scholar] [CrossRef]
- Barros, L.; Ferreira, M.J.; Queirós, B.; Ferreira, I.C.F.R.; Baptista, P. Total phenols, ascorbic acid, β-carotene and lycopene in Portuguese wild edible mushrooms and their antioxidant activities. Food Chem. 2007, 103, 413–419. [Google Scholar] [CrossRef]
- Falowo, A.B.; Mukumbo, F.E.; Idamokoro, E.M.; Afolayan, A.J.; Muchenje, V. Phytochemical Constituents and Antioxidant Activity of Sweet Basil (Ocimum basilicum L.) Essential Oil on Ground Beef from Boran and Nguni Cattle. Int. J. Food Sci. 2019, 2019, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Porres-Martínez, M.; González-Burgos, E.; Carretero, M.E.; Gómez-Serranillos, M.P. Major selected monoterpenes -pinene and 1,8-cineole found in Salvia lavandulifolia (Spanish sage) essential oil as regulators of cellular redox balance. Pharm. Biol. 2015, 53, 921–929. [Google Scholar] [CrossRef] [PubMed]
- Cerretani, L.; Bendini, A. Rapid Assays to Evaluate the Antioxidant Capacity of Phenols in Virgin Olive Oil. In Olives and Olive Oil in Health and Disease Prevention; Elsevier: London, UK, 2010; pp. 625–635. ISBN 9780123744203. [Google Scholar]
- Seo, S.M.; Jung, C.S.; Kang, J.; Lee, H.R.; Kim, S.W.; Hyun, J.; Park, I.K. Larvicidal and Acetylcholinesterase Inhibitory Activities of Apiaceae Plant Essential Oils and Their Constituents against Aedes albopictus and Formulation Development. J. Agric. Food Chem. 2015, 63, 9977–9986. [Google Scholar] [CrossRef]
- Özyürek, M.; Güçlü, K.; Tütem, E.; Bakan, K.S.; Erçaǧ, E.; Esin Çelik, S.; Baki, S.; Yildiz, L.; Karaman, Ş.; Apak, R. A comprehensive review of CUPRAC methodology. Anal. Methods 2011, 3, 2439–2453. [Google Scholar] [CrossRef]
- Khan, R.A.; Khan, M.R.; Sahreen, S.; Ahmed, M. Assessment of flavonoids contents and in vitro antioxidant activity of Launaea procumbens. Chem. Cent. J. 2012, 6, 43. [Google Scholar] [CrossRef] [Green Version]
- Pérez-Rosés, R.; Risco, E.; Vila, R.; Peñalver, P.; Cañigueral, S. Biological and Nonbiological Antioxidant Activity of Some Essential Oils. J. Agric. Food Chem. 2016, 64, 4716–4724. [Google Scholar] [CrossRef]
- Blasa, M.; Angelino, D.; Gennari, L.; Ninfali, P. The cellular antioxidant activity in red blood cells (CAA-RBC): A new approach to bioavailability and synergy of phytochemicals and botanical extracts. Food Chem. 2011, 125, 685–691. [Google Scholar] [CrossRef]
- Wan, H.; Liu, D.; Yu, X.; Sun, H.; Li, Y. A Caco-2 cell-based quantitative antioxidant activity assay for antioxidants. Food Chem. 2015, 175, 601–608. [Google Scholar] [CrossRef]
- Wu, Z.; Tan, B.; Liu, Y.; Dunn, J.; Martorell Guerola, P.; Tortajada, M.; Cao, Z.; Ji, P. Chemical Composition and Antioxidant Properties of Essential Oils from Peppermint, Native Spearmint and Scotch Spearmint. Molecules 2019, 24, 2825. [Google Scholar] [CrossRef] [Green Version]
- Nascimento da Silva, L.C.; Bezerra Filho, C.M.; de Paula, R.A.; Silva e Silva, C.S.; Oliveira de Souza, L.I.; da Silva, M.V.; Correia, M.T.D.S.; de Figueiredo, R.C.B.Q. In vitro cell-based assays for evaluation of antioxidant potential of plant-derived products. Free Radic. Res. 2016, 50, 801–812. [Google Scholar] [CrossRef]
- Chung, S.; Rico, C.; Kang, M. Comparative Study on the Hypoglycemic and Antioxidative Effects of Fermented Paste (Doenjang) Prepared from Soybean and Brown Rice Mixed with Rice Bran or Red Ginseng Marc in Mice Fed with High Fat Diet. Nutrients 2014, 6, 4610–4624. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Couto, N.; Wood, J.; Barber, J. The role of glutathione reductase and related enzymes on cellular redox homoeostasis network. Free Radic. Biol. Med. 2016, 95, 27–42. [Google Scholar] [CrossRef] [PubMed]
- Zengin, G.; Senkardes, I.; Mollica, A.; Picot-Allain, C.M.N.; Bulut, G.; Dogan, A.; Mahomoodally, M.F. New insights into the in vitro biological effects, in silico docking and chemical profile of clary sage – Salvia sclarea L. Comput. Biol. Chem. 2018, 75, 111–119. [Google Scholar] [CrossRef] [PubMed]
- Dhara, L.; Tripathi, A. Antimicrobial activity of eugenol and cinnamaldehyde against extended spectrum beta lactamase producing enterobacteriaceae by in vitro and molecular docking analysis. Eur. J. Integr. Med. 2013, 5, 527–536. [Google Scholar] [CrossRef]
- Vasireddy, L.; Bingle, L.E.H.; Davies, M.S. Antimicrobial activity of essential oils against multidrug-resistant clinical isolates of the burkholderia cepacia complex. PLoS ONE 2018, 13, e0201835. [Google Scholar] [CrossRef] [Green Version]
- Khorshidian, N.; Yousefi, M.; Khanniri, E.; Mortazavian, A.M. Potential application of essential oils as antimicrobial preservatives in cheese. Innov. Food Sci. Emerg. Technol. 2018, 45, 62–72. [Google Scholar] [CrossRef]
- Nazzaro, F.; Fratianni, F.; Coppola, R.; De Feo, V. Essential oils and antifungal activity. Pharmaceuticals 2017, 10, 86. [Google Scholar] [CrossRef] [Green Version]
- Miguel, M.G. Antioxidant activity of medicinal and aromatic plants. A review. Flavour Fragr. J. 2010, 25, 291–312. [Google Scholar] [CrossRef]
- Han, X.; Parker, T.L. Anti-inflammatory, tissue remodeling, immunomodulatory, and anticancer activities of oregano (Origanum vulgare) essential oil in a human skin disease model. Biochim. Open 2017, 4, 73–77. [Google Scholar] [CrossRef]
- Bajalan, I.; Rouzbahani, R.; Pirbalouti, A.G.; Maggi, F. Antioxidant and antibacterial activities of the essential oils obtained from seven Iranian populations of Rosmarinus officinalis. Ind. Crops Prod. 2017, 107, 305–311. [Google Scholar] [CrossRef]
- Freires, I.D.A.; Murata, R.M.; Furletti, V.F.; Sartoratto, A.; De Alencar, S.M.; Figueira, G.M.; Rodrigues, J.A.D.O.; Duarte, M.C.T.; Rosalen, P.L. Coriandrum sativum L. (Coriander) essential oil: Antifungal activity and mode of action on Candida spp., and molecular targets affected in human whole-genome expression. PLoS ONE 2014, 9, e99086. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, J.E.; Lee, J.E.; Huh, M.J.; Lee, S.C.; Seo, S.M.; Kwon, J.H.; Park, I.K. Fumigant Antifungal Activity via Reactive Oxygen Species of Thymus vulgaris and Satureja hortensis Essential Oils and Constituents Against Raffaelea quercus-mongolicae and Rhizoctonia solani. Biomolecules 2019, 9, 561. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- da Costa, K.S.; Galúcio, J.M.; da Costa, C.H.S.; Santana, A.R.; dos Santos Carvalho, V.; do Nascimento, L.D.; Lima e Lima, A.H.; Neves Cruz, J.; Alves, C.N.; Lameira, J. Exploring the Potentiality of Natural Products from Essential Oils as Inhibitors of Odorant-Binding Proteins: A Structure- and Ligand-Based Virtual Screening Approach To Find Novel Mosquito Repellents. ACS Omega 2019, 4, 22475–22486. [Google Scholar] [CrossRef] [Green Version]
- Liang, J.Y.; Guo, S.S.; Zhang, W.J.; Geng, Z.F.; Deng, Z.W.; Du, S.S.; Zhang, J. Fumigant and repellent activities of essential oil extracted from Artemisia dubia and its main compounds against two stored product pests. Nat. Prod. Res. 2018, 32, 1234–1238. [Google Scholar] [CrossRef]
- Benzaid, C.; Tichati, L.; Djeribi, R.; Rouabhia, M. Evaluation of the chemical composition, the antioxidant and antimicrobial activities of mentha × piperita essential oil against microbial growth and biofilm formation. J. Essent. Oil-Bearing Plants 2019, 22, 335–346. [Google Scholar] [CrossRef]
- Shahwar, M.K.; El-Ghorab, A.H.; Anjum, F.M.; Butt, M.S.; Hussain, S.; Nadeem, M. Characterization of coriander (Coriandrum sativum L.) seeds and leaves: Volatile and non volatile extracts. Int. J. Food Prop. 2012, 15, 736–747. [Google Scholar] [CrossRef] [Green Version]
- Pintatum, A.; Laphookhieo, S.; Logie, E.; Berghe, W.V.; Maneerat, W. Chemical Composition of Essential Oils from Different Parts of Zingiber kerrii Craib and Their Antibacterial, Antioxidant, and Tyrosinase Inhibitory Activities. Biomolecules 2020, 10, 228. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ayaz, M.; Sadiq, A.; Junaid, M.; Ullah, F.; Subhan, F.; Ahmed, J. Neuroprotective and anti-aging potentials of essential oils from aromatic and medicinal plants. Front. Aging Neurosci. 2017, 9, 168. [Google Scholar] [CrossRef] [Green Version]
- Sun, Z.; Wang, H.; Wang, J.; Zhou, L.; Yang, P. Chemical composition and anti-inflammatory, cytotoxic and antioxidant activities of essential oil from leaves of Mentha piperita grown in China. PLoS ONE 2014, 9, e114767. [Google Scholar] [CrossRef] [Green Version]
- Athamneh, K.; Alneyadi, A.; Alsamri, H.; Alrashedi, A.; Palakott, A.; El-Tarabily, K.A.; Eid, A.H.; Al Dhaheri, Y.; Iratni, R. Origanum majorana Essential Oil Triggers p38 MAPK-Mediated Protective Autophagy, Apoptosis, and Caspase-Dependent Cleavage of P70S6K in Colorectal Cancer Cells. Biomolecules 2020, 10, 412. [Google Scholar] [CrossRef] [Green Version]
- Farias, P.K.S.; Lopes Silva, J.C.R.; de Souza, C.N.; da Fonseca, F.S.A.; Brandi, I.V.; Martins, E.R.; Azevedo, A.M.; de Almeida, A.C. Antioxidant activity of essential oils from condiment plants and their effect on lactic cultures and pathogenic bacteria. Cienc. Rural 2019, 49. [Google Scholar] [CrossRef] [Green Version]
- Vital, A.C.P.; Guerrero, A.; Monteschio, J.D.O.; Valero, M.V.; Carvalho, C.B.; De Abreu Filho, B.A.; Madrona, G.S.; Do Prado, I.N. Effect of edible and active coating (with rosemary and oregano essential oils) on beef characteristics and consumer acceptability. PLoS ONE 2016, 11, e0160535. [Google Scholar] [CrossRef] [Green Version]
- Olmedo, R.H.; Nepote, V.; Grosso, N.R. Preservation of sensory and chemical properties in flavoured cheese prepared with cream cheese base using oregano and rosemary essential oils. LWT Food Sci. Technol. 2013, 53, 409–417. [Google Scholar] [CrossRef]
- Qu, S.; Yang, K.; Chen, L.; Liu, M.; Geng, Q.; He, X.; Li, Y.; Liu, Y.; Tian, J. Cinnamaldehyde, a Promising Natural Preservative Against Aspergillus flavus. Front. Microbiol. 2019, 10, 2895. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Klein, A.H.; Sawyer, C.M.; Carstens, M.I.; Tsagareli, M.G.; Tsiklauri, N.; Carstens, E. Topical application of l-menthol induces heat analgesia, mechanical allodynia, and a biphasic effect on cold sensitivity in rats. Behav. Brain Res. 2010, 212, 179–186. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tsai, K.D.; Liu, Y.H.; Chen, T.W.; Yang, S.M.; Wong, H.Y.; Cherng, J.; Chou, K.S.; Cherng, J.M. Cuminaldehyde from Cinnamomum verum induces cell death through targeting topoisomerase 1 and 2 in human colorectal adenocarcinoma COLO 205 cells. Nutrients 2016, 8, 318. [Google Scholar] [CrossRef] [Green Version]
- Caceres, A.I.; Liu, B.; Jabba, S.V.; Achanta, S.; Morris, J.B.; Jordt, S.E. Transient Receptor Potential Cation Channel Subfamily M Member 8 channels mediate the anti-inflammatory effects of eucalyptol. Br. J. Pharmacol. 2017, 174, 867–879. [Google Scholar] [CrossRef] [PubMed]
- Juergens, U.R.; Dethlefsen, U.; Steinkamp, G.; Gillissen, A.; Repges, R.; Vetter, H. Anti-inflammatory activity of 1.8-cineol (eucalyptol) in bronchial asthma: A double-blind placebo-controlled trial. Respir. Med. 2003, 97, 250–256. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yogalakshmi, B.; Viswanathan, P.; Anuradha, C.V. Investigation of antioxidant, anti-inflammatory and DNA-protective properties of eugenol in thioacetamide-induced liver injury in rats. Toxicology 2010, 268, 204–212. [Google Scholar] [CrossRef] [PubMed]
- Santos, B.C.S.; Pires, A.S.; Yamamoto, C.H.; Couri, M.R.C.; Taranto, A.G.; Alves, M.S.; Araújo, A.L.D.S.D.M.; de Sousa, O.V. Methyl Chavicol and Its Synthetic Analogue as Possible Antioxidant and Antilipase Agents Based on the In Vitro and In Silico Assays. Oxid. Med. Cell. Longev. 2018, 2018, 2189348. [Google Scholar] [CrossRef]
- Gursul, S.; Karabulut, I.; Durmaz, G. Antioxidant efficacy of thymol and carvacrol in microencapsulated walnut oil triacylglycerols. Food Chem. 2019, 278, 805–810. [Google Scholar] [CrossRef] [PubMed]
- Games, E.; Guerreiro, M.; Santana, F.; Pinheiro, N.; de Oliveira, E.; Lopes, F.; Olivo, C.; Tibério, I.; Martins, M.; Lago, J.; et al. Structurally Related Monoterpenes p-Cymene, Carvacrol and Thymol Isolated from Essential Oil from Leaves of Lippia sidoides Cham. (Verbenaceae) Protect Mice against Elastase-Induced Emphysema. Molecules 2016, 21, 1390. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- El-kady, A.M.; Ahmad, A.A.; Hassan, T.M.; El-Deek, H.E.M.; Fouad, S.S.; Al-Thaqfan, S.S. Eugenol, a potential schistosomicidal agent with anti-inflammatory and antifibrotic effects against Schistosoma mansoni, induced liver pathology. Infect. Drug Resist. 2019, Volume 12, 709–719. [Google Scholar] [CrossRef] [Green Version]
- Machado, M.; Dinis, A.M.; Salgueiro, L.; Custódio, J.B.A.; Cavaleiro, C.; Sousa, M.C. Anti-Giardia activity of Syzygium aromaticum essential oil and eugenol: Effects on growth, viability, adherence and ultrastructure. Exp. Parasitol. 2011, 127, 732–739. [Google Scholar] [CrossRef] [PubMed]
- Poprac, P.; Jomova, K.; Simunkova, M.; Kollar, V.; Rhodes, C.J.; Valko, M. Targeting Free Radicals in Oxidative Stress-Related Human Diseases. Trends Pharmacol. Sci. 2017, 38, 592–607. [Google Scholar] [CrossRef]
- Weidinger, A.; Kozlov, A. Biological Activities of Reactive Oxygen and Nitrogen Species: Oxidative Stress versus Signal Transduction. Biomolecules 2015, 5, 472–484. [Google Scholar] [CrossRef] [Green Version]
- Qasim Barkat, M.; Khalid Mahmood, H. Phytochemical and Antioxidant Screening of Zingiber Officinale, Piper Nigrum, Rutag Raveolanes and Carum Carvi and Their Effect on Gastrointestinal Tract Activity. Matrix Sci. Medica 2018, 2, 09–13. [Google Scholar] [CrossRef]
- Ranasinghe, P.; Pigera, S.; Premakumara, G.S.; Galappaththy, P.; Constantine, G.R.; Katulanda, P. Medicinal properties of “true” cinnamon (Cinnamomum zeylanicum): A systematic review. BMC Complement. Altern. Med. 2013, 13, 275. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liyanage, T.; Madhujith, T.; Wijesinghe, K.G.G. Comparative study on major chemical constituents in volatile oil of true cinnamon (Cinnamomum verum Presl. syn. C. zeylanicum Blum.) and five wild cinnamon species grown in Sri Lanka. Trop. Agric. Res. 2017, 28, 270. [Google Scholar]
- Kumar, S.; Kumari, R.; Mishra, S. Pharmacological properties and their medicinal uses of Cinnamomum: A review. J. Pharm. Pharmacol. 2019, 71, 1735–1761. [Google Scholar] [CrossRef] [Green Version]
- Matusiak, K.; Machnowski, W.; Wrzosek, H.; Polak, J.; Rajkowska, K.; Śmigielski, K.; Kunicka-Styczyńska, A.; Gutarowska, B. Application of Cinnamomum zeylanicum essential oil in vapour phase for heritage textiles disinfection. Int. Biodeterior. Biodegradation 2018, 131, 88–96. [Google Scholar] [CrossRef]
- Mitropoulou, G.; Nikolaou, A.; Santarmaki, V.; Sgouros, G.; Kourkoutas, Y. Citrus medica and Cinnamomum zeylanicum Essential Oils as Potential Biopreservatives against Spoilage in Low Alcohol Wine Products. Foods 2020, 9, 577. [Google Scholar] [CrossRef] [PubMed]
- Jayaprakasha, G.K.; Rao, L.J.M. Chemistry, Biogenesis, and Biological Activities of Cinnamomum zeylanicum. Crit. Rev. Food Sci. Nutr. 2011, 51, 547–562. [Google Scholar] [CrossRef] [PubMed]
- Simić, A.; Soković, M.D.; Ristić, M.; Grujić-Jovanović, S.; Vukojević, J.; Marin, P.D. The chemical composition of some Lauraceae essential oils and their antifungal activities. Phyther. Res. 2004, 18, 713–717. [Google Scholar] [CrossRef]
- Kallel, I.; Hadrich, B.; Gargouri, B.; Chaabane, A.; Lassoued, S.; Gdoura, R.; Bayoudh, A.; Ben Messaoud, E. Optimization of Cinnamon (Cinnamomum zeylanicum Blume) Essential Oil Extraction: Evaluation of Antioxidant and Antiproliferative Effects. Evidence-based Complement. Altern. Med. 2019, 2019, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rangel, M.D.L.; Aquino, S.G.D.; Lima, J.M.D.; Castellano, L.R.; Castro, R.D.D. In Vitro Effect of Cinnamomum zeylanicum Blume Essential Oil on Candida spp. Involved in Oral Infections. Evid. -Based Complement. Altern. Med. 2018, 2018, 4045013. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- El-baky, H.H.A.; Farag, R.S.; Saleh, M. A Characterization of antioxidant and antimicrobial compounds of cinnamon and ginger essential oils. African J. Biochem. Res. 2010, 4, 167–174. [Google Scholar]
- Sieniawska, E.; Sawicki, R.; Golus, J.; Georgiev, M.I. Untargetted Metabolomic Exploration of the Mycobacterium tuberculosis Stress Response to Cinnamon Essential Oil. Biomolecules 2020, 10, 357. [Google Scholar] [CrossRef] [Green Version]
- Sawicki, R.; Golus, J.; Przekora, A.; Ludwiczuk, A.; Sieniawska, E.; Ginalska, G. Antimycobacterial Activity of Cinnamaldehyde in a Mycobacterium tuberculosis(H37Ra) Model. Molecules 2018, 23, 2381. [Google Scholar] [CrossRef] [Green Version]
- Unlu, M.; Ergene, E.; Unlu, G.V.; Zeytinoglu, H.S.; Vural, N. Composition, antimicrobial activity and in vitro cytotoxicity of essential oil from Cinnamomum zeylanicum Blume (Lauraceae). Food Chem. Toxicol. 2010, 48, 3274–3280. [Google Scholar] [CrossRef]
- Abdullah, M.L.; Hafez, M.M.; Al-Hoshani, A.; Al-Shabanah, O. Anti-metastatic and anti-proliferative activity of eugenol against triple negative and HER2 positive breast cancer cells. BMC Complement. Altern. Med. 2018, 18, 321. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hemaiswarya, S.; Doble, M. Combination of phenylpropanoids with 5-fluorouracil as anti-cancer agents against human cervical cancer (HeLa) cell line. Phytomedicine 2013, 20, 151–158. [Google Scholar] [CrossRef]
- Tepe, A.S.; Ozaslan, M. Anti-Alzheimer, anti-diabetic, skin-whitening, and antioxidant activities of the essential oil of Cinnamomum zeylanicum. Ind. Crops Prod. 2020, 145, 112069. [Google Scholar] [CrossRef]
- Gui, Y.; Chen, L.; Duan, S.; Li, G.; Tang, J.; Li, A. Methyl cinnamate alleviated CCI-induced upregualtion of spinal AMPA receptors and pain hypersensitivity by targeting AMPK. Eur. J. Pharmacol. 2018, 833, 183–189. [Google Scholar] [CrossRef] [PubMed]
- Gülçin, İ. Antioxidant Activity of Eugenol: A Structure–Activity Relationship Study. J. Med. Food 2011, 14, 975–985. [Google Scholar] [CrossRef] [PubMed]
- Mahendran, G.; Rahman, L.U. Ethnomedicinal, phytochemical and pharmacological updates on Peppermint (Mentha × piperita L.)—A review. Phyther. Res. 2020. [Google Scholar] [CrossRef] [PubMed]
- McKay, D.L.; Blumberg, J.B. A review of the bioactivity and potential health benefits of peppermint tea (Mentha piperita L.). Phyther. Res. 2006, 20, 619–633. [Google Scholar] [CrossRef]
- Mimica-Dukic, N.; Bozin, B. Mentha L. Species (Lamiaceae) as Promising Sources of Bioactive Secondary Metabolites. Curr. Pharm. Des. 2008, 14, 3141–3150. [Google Scholar] [CrossRef]
- Mimica-Dukić, N.; Božin, B.; Soković, M.; Mihajlović, B.; Matavulj, M. Antimicrobial and antioxidant activities of three Mentha species essential oils. Planta Med. 2003, 69, 413–419. [Google Scholar]
- Behnam, S.; Farzaneh, M.; Ahmadzadeh, M.; Tehrani, A.S. Composition and antifungal activity of essential oils of Mentha piperita and Lavendula angustifolia on post-harvest phytopathogens. Commun. Agric. Appl. Biol. Sci. 2006, 71, 1321–1326. [Google Scholar]
- Modarresi, M.; Farahpour, M.-R.; Baradaran, B. Topical application of Mentha piperita essential oil accelerates wound healing in infected mice model. Inflammopharmacology 2019, 27, 531–537. [Google Scholar] [CrossRef] [PubMed]
- Kamatou, G.P.P.; Vermaak, I.; Viljoen, A.M.; Lawrence, B.M. Menthol: A simple monoterpene with remarkable biological properties. Phytochemistry 2013, 96, 15–25. [Google Scholar] [CrossRef] [PubMed]
- Naganawa, T.; Baad-Hansen, L.; Ando, T.; Svensson, P. Influence of topical application of capsaicin, menthol and local anesthetics on intraoral somatosensory sensitivity in healthy subjects: Temporal and spatial aspects. Exp. Brain Res. 2015, 233, 1189–1199. [Google Scholar] [CrossRef]
- Pan, R.; Tian, Y.; Gao, R.; Li, H.; Zhao, X.; Barrett, J.E.; Hu, H. Central mechanisms of menthol-induced analgesia. J. Pharmacol. Exp. Ther. 2012, 343, 661–672. [Google Scholar] [CrossRef] [Green Version]
- Zaia, M.G.; Cagnazzo, T.D.O.; Feitosa, K.A.; Soares, E.G.; Faccioli, L.H.; Allegretti, S.M.; Afonso, A.; Anibal, F.D.F. Anti-Inflammatory Properties of Menthol and Menthone in Schistosoma mansoni Infection. Front. Pharmacol. 2016, 7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumar, A.; Singh, S.P.; Chhokar, S.S. Antimicrobial Activity of the Major Isolates of Mentha Oil and Derivatives of Menthol. Anal. Chem. Lett. 2011, 1, 70–85. [Google Scholar] [CrossRef]
- Jirovetz, L.; Buchbauer, G.; Bail, S.; Denkova, Z.; Slavchev, A.; Stoyanova, A.; Schmidt, E.; Geissler, M. Antimicrobial activities of essential oils of mint and peppermint as well as some of their main compounds. J. Essent. Oil Res. 2009, 21, 363–366. [Google Scholar] [CrossRef]
- Ashrafi, B.; Rashidipour, M.; Marzban, A.; Soroush, S.; Azadpour, M.; Delfani, S.; Ramak, P. Mentha piperita essential oils loaded in a chitosan nanogel with inhibitory effect on biofilm formation against S. mutans on the dental surface. Carbohydr. Polym. 2019, 212, 142–149. [Google Scholar] [CrossRef]
- Trombetta, D.; Castelli, F.; Sarpietro, M.G.; Venuti, V.; Cristani, M.; Daniele, C.; Saija, A.; Mazzanti, G.; Bisignano, G. Mechanisms of Antibacterial Action of Three Monoterpenes. Antimicrob. Agents Chemother. 2005, 49, 2474–2478. [Google Scholar] [CrossRef] [Green Version]
- Singh, R.; Shushni, M.A.M.; Belkheir, A. Antibacterial and antioxidant activities of Mentha piperita L. Arab. J. Chem. 2015, 8, 322–328. [Google Scholar] [CrossRef] [Green Version]
- Ramos, R.D.S.; Rodrigues, A.B.L.; Farias, A.L.F.; Simões, R.C.; Pinheiro, M.T.; Ferreira, R.M.D.A.; Costa Barbosa, L.M.; Picanço Souto, R.N.; Fernandes, J.B.; Santos, L.D.S.; et al. Chemical Composition and in Vitro Antioxidant, Cytotoxic, Antimicrobial, and Larvicidal Activities of the Essential Oil of Mentha piperita L. (Lamiaceae). Sci. World J. 2017, 2017, 4927214. [Google Scholar]
- Pushpangadan, P.; George, V. Basil. In Handbook of Herbs and Spices: Second Edition; Peter, K.V., Ed.; Elsevier: Boca Raton, FL, USA, 2012; Volume 1, pp. 55–72. ISBN 9780857095671. [Google Scholar]
- Pandey, A.K.; Kumar, P.; Singh, P.; Tripathi, N.N.; Bajpai, V. Essential Oils: Sources of Antimicrobials and Food Preservatives. Front. Microbiol. 2017, 7, 2161. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Q.X.; Chang, C.L. Basil (Ocimum basilicum L.) oils. In Essential Oils in Food Preservation, Flavor and Safety; Preedy, V.R., Ed.; Elsevier Inc.: London, UK, 2016; pp. 231–238. ISBN 9780124166448. [Google Scholar]
- Antora, R.A.; Salleh, R.M. Antihyperglycemic effect of Ocimum plants: A short review. Asian Pac. J. Trop. Biomed. 2017, 7, 755–759. [Google Scholar] [CrossRef]
- Purushothaman, B.; Prasannasrinivasan, R.; Suganthi, P.; Ranganathan, B.; Gimbun, J.; Shanmugam, K. A comprehensive review on Ocimum basilicum. J. Nat. Remedies 2018, 18, 71–85. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, A.F.; Attia, F.A.K.; Liu, Z.; Li, C.; Wei, J.; Kang, W. Antioxidant activity and total phenolic content of essential oils and extracts of sweet basil (Ocimum basilicum L.) plants. Food Sci. Hum. Wellness 2019, 8, 299–305. [Google Scholar] [CrossRef]
- Manaharan, T.; Thirugnanasampandan, R.; Jayakumar, R.; Kanthimathi, M.S.; Ramya, G.; Ramnath, M.G. Purified essential oil from Ocimum sanctum Linn. triggers the apoptotic mechanism in human breast cancer cells. Pharmacogn. Mag. 2016, 12, S327–S331. [Google Scholar]
- Joshi, R. Chemical composition and antimicrobial activity of the essential oil of Ocimum basilicum L. (sweet basil) from Western Ghats of North West Karnataka, India. Anc. Sci. Life 2014, 33, 149. [Google Scholar] [CrossRef]
- Gaio, I.; Saggiorato, A.G.; Treichel, H.; Cichoski, A.J.; Astolfi, V.; Cardoso, R.I.; Toniazzo, G.; Valduga, E.; Paroul, N.; Cansian, R.L. Antibacterial activity of basil essential oil (Ocimum basilicum L.) in Italian-type sausage. J. Fur Verbraucherschutz Und Leb. 2015, 10, 323–329. [Google Scholar] [CrossRef]
- Sundararajan, B.; Moola, A.K.; Vivek, K.; Kumari, B.D.R. Formulation of nanoemulsion from leaves essential oil of Ocimum basilicum L. and its antibacterial, antioxidant and larvicidal activities (Culex quinquefasciatus). Microb. Pathog. 2018, 125, 475–485. [Google Scholar] [CrossRef]
- Kathirvel, P.; Ravi, S. Chemical composition of the essential oil from basil (Ocimum basilicum Linn.) and its in vitro cytotoxicity against HeLa and HEp-2 human cancer cell lines and NIH 3T3 mouse embryonic fibroblasts. Nat. Prod. Res. 2012, 26, 1112–1118. [Google Scholar] [CrossRef]
- Govindarajan, M.; Sivakumar, R.; Rajeswary, M.; Yogalakshmi, K. Chemical composition and larvicidal activity of essential oil from Ocimum basilicum (L.) against Culex tritaeniorhynchus, Aedes albopictus and Anopheles subpictus (Diptera: Culicidae). Exp. Parasitol. 2013, 134, 7–11. [Google Scholar] [CrossRef] [PubMed]
- Fujiwara, G.M.; Annies, V.; de Oliveira, C.F.; Lara, R.A.; Gabriel, M.M.; Betim, F.C.M.; Nadal, J.M.; Farago, P.V.; Dias, J.F.G.; Miguel, O.G.; et al. Evaluation of larvicidal activity and ecotoxicity of linalool, methyl cinnamate and methyl cinnamate/linalool in combination against Aedes aegypti. Ecotoxicol. Environ. Saf. 2017, 139, 238–244. [Google Scholar] [CrossRef] [PubMed]
- Carrasco, H.; Raimondi, M.; Svetaz, L.; Liberto, M.D.; Rodriguez, M.V.; Espinoza, L.; Madrid, A.; Zacchino, S. Antifungal Activity of Eugenol Analogues. Influence of Different Substituents and Studies on Mechanism of Action. Molecules 2012, 17, 1002–1024. [Google Scholar] [CrossRef] [Green Version]
- de Oliveira Pereira, F.; Mendes, J.M.; de Oliveira Lima, E. Investigation on mechanism of antifungal activity of eugenol against Trichophyton rubrum. Med. Mycol. 2013, 51, 507–513. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koroch, A.R.; Simon, J.E.; Juliani, H.R. Essential oil composition of purple basils, their reverted green varieties (Ocimum basilicum) and their associated biological activity. Ind. Crops Prod. 2017, 107, 526–530. [Google Scholar] [CrossRef]
- Baj, T.; Baryluk, A.; Sieniawska, E. Application of mixture design for optimum antioxidant activity of mixtures of essential oils from Ocimum basilicum L., Origanum majorana L. and Rosmarinus officinalis L. Ind. Crops Prod. 2018, 115, 52–61. [Google Scholar] [CrossRef]
- Stanojevic, L.P.; Marjanovic-Balaban, Z.R.; Kalaba, V.D.; Stanojevic, J.S.; Cvetkovic, D.J.; Cakic, M.D. Chemical composition, antioxidant and antimicrobial activity of basil (Ocimum basilicum L.) essential oil. J. Essent. Oil-Bearing Plants 2017, 20, 1557–1569. [Google Scholar] [CrossRef]
- Shiwakoti, S.; Saleh, O.; Poudyal, S.; Barka, A.; Qian, Y.; Zheljazkov, V.D. Yield, Composition and Antioxidant Capacity of the Essential Oil of Sweet Basil and Holy Basil as Influenced by Distillation Methods. Chem. Biodivers. 2017, 14. [Google Scholar] [CrossRef]
- Ferreira, D.D.F.; Nora, F.M.D.; Lucas, B.N.; de Menezes, C.R.; Cichoski, A.J.; Giacomelli, S.R.; Wagner, R.; Barin, J.S. Introdução de oxigênio durante a extração e aumento da atividade antioxidante de óleos essenciais de manjericão, limão e capim-limão. Cienc. Rural 2017, 47, e20170045. [Google Scholar]
- Złotek, U.; Michalak-Majewska, M.; Szymanowska, U. Effect of jasmonic acid elicitation on the yield, chemical composition, and antioxidant and anti-inflammatory properties of essential oil of lettuce leaf basil (Ocimum basilicum L.). Food Chem. 2016, 213, 1–7. [Google Scholar] [CrossRef]
- Leyva-López, N.; Gutiérrez-Grijalva, E.P.; Vazquez-Olivo, G.; Heredia, J.B. Essential oils of oregano: Biological activity beyond their antimicrobial properties. Molecules 2017, 22, 989. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cinbilgel, I.; Kurt, Y. Oregano and/or marjoram: Traditional oil production and ethnomedical utilization of Origanum species in southern Turkey. J. Herb. Med. 2019, 16, 100257. [Google Scholar] [CrossRef]
- Fasseas, M.K.; Mountzouris, K.C.; Tarantilis, P.A.; Polissiou, M.; Zervas, G. Antioxidant activity in meat treated with oregano and sage essential oils. Food Chem. 2008, 106, 1188–1194. [Google Scholar] [CrossRef]
- Passarinho, A.T.P.; Dias, N.F.; Camilloto, G.P.; Cruz, R.S.; Otoni, C.G.; Moraes, A.R.F.; Soares, N.D.F.F. Sliced bread preservation through oregano essential oil-containing sachet. J. Food Process Eng. 2014, 37, 53–62. [Google Scholar] [CrossRef]
- Asensio, C.M.; Grosso, N.R.; Rodolfo Juliani, H. Quality preservation of organic cottage cheese using oregano essential oils. LWT Food Sci. Technol. 2015, 60, 664–671. [Google Scholar] [CrossRef]
- Teixeira, B.; Marques, A.; Ramos, C.; Serrano, C.; Matos, O.; Neng, N.R.; Nogueira, J.M.F.; Saraiva, J.A.; Nunes, M.L. Chemical composition and bioactivity of different oregano (Origanum vulgare) extracts and essential oil. J. Sci. Food Agric. 2013, 93, 2707–2714. [Google Scholar] [CrossRef]
- Faleiro, L.; Miguel, G.; Gomes, S.; Costa, L.; Venâncio, F.; Teixeira, A.; Figueiredo, A.C.; Barroso, J.G.; Pedro, L.G. Antibacterial and antioxidant activities of essential oils isolated from Thymbra capitata L. (Cav.) and Origanum vulgare L. J. Agric. Food Chem. 2005, 53, 8162–8168. [Google Scholar] [CrossRef]
- De Falco, E.; Mancini, E.; Roscigno, G.; Mignola, E.; Taglialatela-Scafati, O.; Senatore, F. Chemical composition and biological activity of essential oils of origanum vulgare L. subsp. vulgare L. under different growth conditions. Molecules 2013, 18, 14948–14960. [Google Scholar] [CrossRef] [Green Version]
- Tan, C.; Wei, H.; Sun, H.; Ao, J.; Long, G.; Jiang, S.; Peng, J. Effects of Dietary Supplementation of Oregano Essential Oil to Sows on Oxidative Stress Status, Lactation Feed Intake of Sows, and Piglet Performance. Biomed Res. Int. 2015, 2015, 525218. [Google Scholar] [CrossRef] [Green Version]
- de Rostro-Alanis, M.J.; Báez-González, J.; Torres-Alvarez, C.; Parra-Saldívar, R.; Rodriguez-Rodriguez, J.; Castillo, S. Chemical composition and biological activities of oregano essential oil and its fractions obtained by vacuum distillation. Molecules 2019, 24, 1904. [Google Scholar] [CrossRef] [Green Version]
- Figiel, A.; Szumny, A.; Gutiérrez-Ortíz, A.; Carbonell-Barrachina, Á.A. Composition of oregano essential oil (Origanum vulgare) as affected by drying method. J. Food Eng. 2010, 98, 240–247. [Google Scholar] [CrossRef]
- Quiroga, P.R.; Riveros, C.G.; Zygadlo, J.A.; Grosso, N.R.; Nepote, V. Antioxidant activity of essential oil of oregano species from Argentina in relation to their chemical composition. Int. J. Food Sci. Technol. 2011, 46, 2648–2655. [Google Scholar] [CrossRef]
- Mechergui, K.; Coelho, J.A.; Serra, M.C.; Lamine, S.B.; Boukhchina, S.; Khouja, M.L. Essential oils of Origanum vulgare L. subsp. glandulosum (Desf.) Ietswaart from Tunisia: Chemical composition and antioxidant activity. J. Sci. Food Agric. 2010, 90, 1745–1749. [Google Scholar] [CrossRef] [PubMed]
- Bayramoglu, B.; Sahin, S.; Sumnu, G. Solvent-free microwave extraction of essential oil from oregano. J. Food Eng. 2008, 88, 535–540. [Google Scholar] [CrossRef]
- de Oliveira, T.M.; de Carvalho, R.B.F.; da Costa, I.H.F.; de Oliveira, G.A.L.; de Souza, A.A.; de Lima, S.G.; de Freitas, R.M. Evaluation of p-cymene, a natural antioxidant. Pharm. Biol. 2015, 53, 423–428. [Google Scholar] [CrossRef]
- Ramos, M.; Beltrán, A.; Peltzer, M.; Valente, A.J.M.; Garrigós, M.D.C. Release and antioxidant activity of carvacrol and thymol from polypropylene active packaging films. LWT Food Sci. Technol. 2014, 58, 470–477. [Google Scholar] [CrossRef] [Green Version]
- Leyva-López, N.; Nair, V.; Bang, W.Y.; Cisneros-Zevallos, L.; Heredia, J.B. Protective role of terpenes and polyphenols from three species of Oregano (Lippia graveolens, Lippia palmeri and Hedeoma patens) on the suppression of lipopolysaccharide-induced inflammation in RAW 264.7 macrophage cells. J. Ethnopharmacol. 2016, 187, 302–312. [Google Scholar] [CrossRef]
- Shang, X.; Wang, Y.; Zhou, X.; Guo, X.; Dong, S.; Wang, D.; Zhang, J.; Pan, H.; Zhang, Y.; Miao, X. Acaricidal activity of oregano oil and its major component, carvacrol, thymol and p-cymene against Psoroptes cuniculi in vitro and in vivo. Vet. Parasitol. 2016, 226, 93–96. [Google Scholar] [CrossRef]
- Rodriguez-Garcia, I.; Silva-Espinoza, B.A.; Ortega-Ramirez, L.A.; Leyva, J.M.; Siddiqui, M.W.; Cruz-Valenzuela, M.R.; Gonzalez-Aguilar, G.A.; Ayala-Zavala, J.F. Oregano Essential Oil as an Antimicrobial and Antioxidant Additive in Food Products. Crit. Rev. Food Sci. Nutr. 2016, 56, 1717–1727. [Google Scholar] [CrossRef]
- Jayasena, D.D.; Jo, C. Essential oils as potential antimicrobial agents in meat and meat products: A review. Trends Food Sci. Technol. 2013, 34, 96–108. [Google Scholar] [CrossRef]
- Sarikurkcu, C.; Zengin, G.; Oskay, M.; Uysal, S.; Ceylan, R.; Aktumsek, A. Composition, antioxidant, antimicrobial and enzyme inhibition activities of two Origanum vulgare subspecies (subsp. vulgare and subsp. hirtum) essential oils. Ind. Crops Prod. 2015, 70, 178–184. [Google Scholar] [CrossRef]
- Ozdemir, N.; Ozgen, Y.; Kiralan, M.; Bayrak, A.; Arslan, N.; Ramadan, M.F. Effect of different drying methods on the essential oil yield, composition and antioxidant activity of Origanum vulgare L. and Origanum onites L. J. Food Meas. Charact. 2018, 12, 820–825. [Google Scholar] [CrossRef]
- Bhatt, S.; Tewari, G.; Pande, C.; Punetha, D.; Prakash, O. Antioxidative potential and compositional variation among Origanum vulgare L. collected from different districts of Kumaun Himalayas, Uttarakhand. J. Essent. Oil Res. 2020, 32, 121–131. [Google Scholar] [CrossRef]
- Oualili, H.; Nmila, R.; Chibi, F.; Lasky, M.; Mricha, A.; Rchid, H. Chemical composition and antioxidant activity of Origanum elongatum essential oil. Pharmacognosy Res. 2019, 11, 283. [Google Scholar]
- Stanojević, L.; Stanojević, J.; Cvetković, D.; Ilić, D. Antioxidant activity of oregano essential oil (Origanum vulgare L.). Biol. Nyssana 2016, 7, 2016. [Google Scholar]
- Plants of the World Online. Piper nigrum L. Available online: plantsoftheworldonline.org/taxon/urn:lsid:ipni.org:names:682369-1 (accessed on 25 February 2020).
- Andriana, Y.; Xuan, T.D.; Quy, T.N.; Tran, H.D.; Le, Q.T. Biological Activities and Chemical Constituents of Essential Oils from Piper cubeba Bojer and Piper nigrum L. Molecules 2019, 24, 1876. [Google Scholar] [CrossRef] [Green Version]
- Takooree, H.; Aumeeruddy, M.Z.; Rengasamy, K.R.R.; Venugopala, K.N.; Jeewon, R.; Zengin, G.; Mahomoodally, M.F. A systematic review on black pepper (Piper nigrum L.): From folk uses to pharmacological applications. Crit. Rev. Food Sci. Nutr. 2019, 59, S210–S243. [Google Scholar] [CrossRef]
- Shityakov, S.; Bigdelian, E.; Hussein, A.A.; Hussain, M.B.; Tripathi, Y.C.; Khan, M.U.; Shariati, M.A. Phytochemical and pharmacological attributes of piperine: A bioactive ingredient of black pepper. Eur. J. Med. Chem. 2019, 176, 149–161. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.X.; Zhang, C.; Pan, S.; Chen, L.; Liu, M.; Yang, K.; Zeng, X.; Tian, J. Analysis of chemical components and biological activities of essential oils from black and white pepper (Piper nigrum L.) in five provinces of southern China. Lwt 2020, 117, 108644. [Google Scholar] [CrossRef]
- Martinelli, L.; Rosa, J.M.; Ferreira, C.D.S.B.; Nascimento, G.M.D.L.; Freitas, M.S.; Pizato, L.C.; Santos, W.D.O.; Pires, R.F.; Okura, M.H.; Malpass, G.R.P.; et al. Atividade antimicrobiana e constituintes químicos dos óleos essenciais e oleoresinas extraídas. Cienc. Rural 2017, 47, e20160899. [Google Scholar]
- Okmen, G.; Vurkun, M.; Arslan, A.; Ceylan, O. The antibacterial activities of Piper nigrum L. against mastitis pathogens and its antioxidant activities. Indian J. Pharm. Educ. Res. 2017, 51, S170–S175. [Google Scholar] [CrossRef]
- Hu, Y.; Zeng, Z.; Wang, B.; Guo, S. Trans-caryophyllene inhibits amyloid β (Aβ) oligomer-induced neuroinflammation in BV-2 microglial cells. Int. Immunopharmacol. 2017, 51, 91–98. [Google Scholar] [CrossRef] [PubMed]
- Shan, J.; Chen, L.; Lu, K. Protective effects of trans-caryophyllene on maintaining osteoblast function. IUBMB Life 2017, 69, 22–29. [Google Scholar] [CrossRef] [PubMed]
- Yu, X.; Lin, H.; Wang, Y.; Lv, W.; Zhang, S.; Qian, Y.; Deng, X.; Feng, N.; Yu, H.; Qian, B. D-limonene exhibits antitumor activity by inducing autophagy and apoptosis in lung cancer. Onco. Targets. Ther. 2018, 11, 1833–1847. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.-Z.; Wang, L.; Liu, D.-W.; Tang, G.-Y.; Zhang, H.-Y. Synergistic Inhibitory Effect of Berberine and d-Limonene on Human Gastric Carcinoma Cell Line MGC803. J. Med. Food 2014, 17, 955–962. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miller, J.A.; Lang, J.E.; Ley, M.; Nagle, R.; Hsu, C.-H.; Thompson, P.A.; Cordova, C.; Waer, A.; Chow, H.-H.S. Human Breast Tissue Disposition and Bioactivity of Limonene in Women with Early-Stage Breast Cancer. Cancer Prev. Res. 2013, 6, 577–584. [Google Scholar] [CrossRef] [Green Version]
- Baldissera, M.D.; Grando, T.H.; Souza, C.F.; Gressler, L.T.; Stefani, L.M.; da Silva, A.S.; Monteiro, S.G. In vitro and in vivo action of terpinen-4-ol, γ-terpinene, and α-terpinene against Trypanosoma evansi. Exp. Parasitol. 2016, 162, 43–48. [Google Scholar] [CrossRef]
- Rakmai, J.; Cheirsilp, B.; Mejuto, J.C.; Torrado-Agrasar, A.; Simal-Gándara, J. Physico-chemical characterization and evaluation of bio-efficacies of black pepper essential oil encapsulated in hydroxypropyl-beta-cyclodextrin. Food Hydrocoll. 2017, 65, 157–164. [Google Scholar] [CrossRef]
- Jeena, K.; Liju, V.B.; Umadevi, N.P.; Kuttan, R. Antioxidant, Anti-inflammatory and Antinociceptive Properties of Black Pepper Essential Oil (Piper nigrum Linn). J. Essent. Oil-Bearing Plants 2014, 17, 1–12. [Google Scholar] [CrossRef]
- Bagheri, H.; Abdul Manap, M.Y.B.; Solati, Z. Antioxidant activity of Piper nigrum L. essential oil extracted by supercritical CO2 extraction and hydro-distillation. Talanta 2014, 121, 220–228. [Google Scholar] [CrossRef]
- European Medicines Agency. Committee on Herbal Medicinal Products: Assessment Report on Rosmarinus officinalis L. and Rosmarinus officinalis folium. Available online: https://www.ema.europa.eu/en/documents/herbal-report/assessment-report-rosmarinus-officinalis-l-aetheroleum-rosmarinus-officinalis-l-folium_en.pdf (accessed on 2 March 2020).
- Habtemariam, S. The Therapeutic Potential of Rosemary (Rosmarinus officinalis) Diterpenes for Alzheimer’s Disease. Evid. -Based Complement. Altern. Med. 2016, 2016, 2680409. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Andrade, J.M.; Faustino, C.; Garcia, C.; Ladeiras, D.; Reis, C.P.; Rijo, P. Rosmarinus officinalis L.: An update review of its phytochemistry and biological activity. Futur. Sci. OA 2018, 4, FSO283. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gezici, S.; Sekeroglu, N.; Kijjoa, A. In vitro anticancer activity and antioxidant properties of essential oils from Populus alba L. and Rosmarinus officinalis L. from South Eastern Anatolia of Turkey. Indian J. Pharm. Educ. Res. 2017, 51, S498–S503. [Google Scholar] [CrossRef] [Green Version]
- Bendif, H.; Boudjeniba, M.; Djamel Miara, M.; Biqiku, L.; Bramucci, M.; Caprioli, G.; Lupidi, G.; Quassinti, L.; Sagratini, G.; Vitali, L.A.; et al. Rosmarinus eriocalyx: An alternative to Rosmarinus officinalis as a source of antioxidant compounds. Food Chem. 2017, 218, 78–88. [Google Scholar] [CrossRef] [PubMed]
- Karadağ, A.E.; Demirci, B.; Çaşkurlu, A.; Demirci, F.; Okur, M.E.; Orak, D.; Sipahi, H.; Başer, K.H.C. In vitro antibacterial, antioxidant, anti-inflammatory and analgesic evaluation of Rosmarinus officinalis L. flower extract fractions. South African J. Bot. 2019, 125, 214–220. [Google Scholar] [CrossRef]
- Pistelli, L.; Giovanelli, S.; D’Angiolillo, F.; Karkleva, K.; Leonardi, M.; Ambryszewska, K.; Cervelli, C.; Pistelli, L. Antioxidant activity of several essential oils from different rosmarinus officinalis cultivars grown in Sanremo (Italy). Nat. Prod. Commun. 2018, 13, 1167–1170. [Google Scholar] [CrossRef] [Green Version]
- Agency, F.S. Approved Additives and E Numbers. Available online: https://www.food.gov.uk/business-guidance/approved-additives-and-e-numbers (accessed on 9 March 2020).
- De Oliveira, J.R.; Camargo, S.E.A.; De Oliveira, L.D. Rosmarinus officinalis L. (rosemary) as therapeutic and prophylactic agent. J. Biomed. Sci. 2019, 26, 5. [Google Scholar] [CrossRef]
- Laura, P.F.; Garzón, M.T.; Vicente, M. Relationship between the antioxidant capacity and effect of rosemary (Rosmarinus officinalis L.) polyphenols on membrane phospholipid order. J. Agric. Food Chem. 2010, 58, 161–171. [Google Scholar]
- Alfieri, A.; Mann, G.E. Bioactive Nutraceuticals and Stroke: Activation of Endogenous Antioxidant Pathways and Molecular Mechanisms Underlying Neurovascular Protection. Bioact. Nutraceuticals Diet. Suppl. Neurol. Brain Dis. Prev. Ther. 2015, 365–379. [Google Scholar]
- Wollinger, A.; Perrin, É.; Chahboun, J.; Jeannot, V.; Touraud, D.; Kunz, W. Antioxidant activity of hydro distillation water residues from Rosmarinus officinalis L. leaves determined by DPPH assays. C. R. Chim. 2016, 19, 754–765. [Google Scholar] [CrossRef]
- Nieto, G.; Ros, G.; Castillo, J. Antioxidant and Antimicrobial Properties of Rosemary (Rosmarinus officinalis, L.): A Review. Medicines 2018, 5, 98. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Melo Júnior, J.D.M.D.A.D.; Damasceno, M.D.B.M.V.; Santos, S.A.A.R.; Barbosa, T.M.; Araújo, J.R.C.; Vieira-Neto, A.E.; Wong, D.V.T.; Lima-Júnior, R.C.P.; Campos, A.R. Acute and neuropathic orofacial antinociceptive effect of eucalyptol. Inflammopharmacology 2017, 25, 247–254. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Juergens, L.J.; Racké, K.; Tuleta, I.; Stoeber, M.; Juergens, U.R. Anti-inflammatory effects of 1,8-cineole (eucalyptol) improve glucocorticoid effects in vitro: A novel approach of steroid-sparing add-on therapy for COPD and asthma? Synergy 2017, 5, 1–8. [Google Scholar] [CrossRef]
- Khan, A.; Vaibhav, K.; Javed, H.; Tabassum, R.; Ahmed, M.E.; Khan, M.M.; Khan, M.B.; Shrivastava, P.; Islam, F.; Siddiqui, M.S.; et al. 1,8-Cineole (Eucalyptol) Mitigates Inflammation in Amyloid Beta Toxicated PC12 Cells: Relevance to Alzheimer’s Disease. Neurochem. Res. 2014, 39, 344–352. [Google Scholar] [CrossRef] [PubMed]
- Mezza, G.N.; Borgarello, A.V.; Grosso, N.R.; Fernandez, H.; Pramparo, M.C.; Gayol, M.F. Antioxidant activity of rosemary essential oil fractions obtained by molecular distillation and their effect on oxidative stability of sunflower oil. Food Chem. 2018, 242, 9–15. [Google Scholar] [CrossRef]
- Bouyahya, A.; Et-Touys, A.; Bakri, Y.; Talbaui, A.; Fellah, H.; Abrini, J.; Dakka, N. Chemical composition of Mentha pulegium and Rosmarinus officinalis essential oils and their antileishmanial, antibacterial and antioxidant activities. Microb. Pathog. 2017, 111, 41–49. [Google Scholar] [CrossRef] [PubMed]
- Conde-Hernández, L.A.; Espinosa-Victoria, J.R.; Trejo, A.; Guerrero-Beltrán, J. CO2-supercritical extraction, hydrodistillation and steam distillation of essential oil of rosemary (Rosmarinus officinalis). J. Food Eng. 2017, 200, 81–86. [Google Scholar] [CrossRef]
- Selmi, S.; Rtibi, K.; Grami, D.; Sebai, H.; Marzouki, L. Rosemary (Rosmarinus officinalis) essential oil components exhibit anti-hyperglycemic, anti-hyperlipidemic and antioxidant effects in experimental diabetes. Pathophysiology 2017, 24, 297–303. [Google Scholar] [CrossRef]
- Wang, B.; Ma, L.; Yin, L.; Chen, J.; Zhang, Y.; Dong, L.; Zhang, X.; Fu, X. Regional variation in the chemical composition and antioxidant activity of Rosmarinus officinalis L. From China and the Mediterranean region. Pak. J. Pharm. Sci. 2018, 31, 221–229. [Google Scholar]
- Dawidowicz, A.L.; Olszowy, M. Does antioxidant properties of the main component of essential oil reflect its antioxidant properties? The comparison of antioxidant properties of essential oils and their main components. Nat. Prod. Res. 2014, 28, 1952–1963. [Google Scholar] [CrossRef]
- Stahl-Biskup, E.; Venskutonis, R.P. Thyme. In Handbook of Herbs and Spices; Elsevier: Boca Raton, FL, USA, 2004; Volume 2, pp. 297–321. ISBN 9781855738355. [Google Scholar]
- Almanea, A.; Abd El-Aziz, G.S.; Ahmed, M.M.M. The potential gastrointestinal health benefits of Thymus vulgaris essential oil: A review. Biomed. Pharmacol. J. 2019, 12, 1793–1799. [Google Scholar] [CrossRef]
- Golkar, P.; Mosavat, N.; Jalali, S.A.H. Essential oils, chemical constituents, antioxidant, antibacterial and in vitro cytotoxic activity of different Thymus species and Zataria multiflora collected from Iran. S. Afr. J. Bot. 2020, 130, 250–258. [Google Scholar] [CrossRef]
- De Lira Mota, K.S.; De Oliveira Pereira, F.; De Oliveira, W.A.; Lima, I.O.; De Oliveira Lima, E. Antifungal activity of thymus vulgaris l. essential oil and its constituent phytochemicals against rhizopus oryzae: Interaction with ergosterol. Molecules 2012, 17, 14418–14433. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Benameur, Q.; Gervasi, T.; Pellizzeri, V.; Pľuchtová, M.; Tali-Maama, H.; Assaous, F.; Guettou, B.; Rahal, K.; Gruľová, D.; Dugo, G.; et al. Antibacterial activity of Thymus vulgaris essential oil alone and in combination with cefotaxime against blaESBL producing multidrug resistant Enterobacteriaceae isolates. Nat. Prod. Res. 2019, 33, 2647–2654. [Google Scholar] [CrossRef]
- Lemos, M.F.; Lemos, M.F.; Pacheco, H.P.; Guimarães, A.C.; Fronza, M.; Endringer, D.C.; Scherer, R. Seasonal variation affects the composition and antibacterial and antioxidant activities of Thymus vulgaris. Ind. Crops Prod. 2017, 95, 543–548. [Google Scholar] [CrossRef]
- Chizzola, R.; Michitsch, H.; Franz, C. Antioxidative properties of Thymus vulgaris leaves: Comparison of different extracts and essential oil chemotypes. J. Agric. Food Chem. 2008, 56, 6897–6904. [Google Scholar] [CrossRef]
- Khalil, N.; Fekry, M.; Bishr, M.; El-Zalabani, S.; Salama, O. Foliar spraying of salicylic acid induced accumulation of phenolics, increased radical scavenging activity and modified the composition of the essential oil of water stressed Thymus vulgaris L. Plant Physiol. Biochem. 2018, 123, 65–74. [Google Scholar] [CrossRef]
- Gedikoğlu, A.; Sökmen, M.; Çivit, A. Evaluation of Thymus vulgaris and Thymbra spicata essential oils and plant extracts for chemical composition, antioxidant, and antimicrobial properties. Food Sci. Nutr. 2019, 7, 1704–1714. [Google Scholar] [CrossRef] [Green Version]
- Kuete, V. Thymus Vulgaris. In Medicinal Spices and Vegetables from Africa; Elsevier Inc.: London, UK, 2017; Volume 1, pp. 599–609. ISBN 9780128092866. [Google Scholar]
- Aprotosoaie, A.C.; Miron, A.; Ciocârlan, N.; Brebu, M.; Roşu, C.M.; Trifan, A.; Vochiţa, G.; Gherghel, D.; Luca, S.V.; Niţă, A.; et al. Essential oils of Moldavian Thymus species: Chemical composition, antioxidant, anti-Aspergillus and antigenotoxic activities. Flavour Fragr. J. 2019, 34, 175–186. [Google Scholar] [CrossRef]
- Aljabeili, H.S.; Barakat, H.; Abdel-Rahman, H.A. Chemical Composition, Antibacterial and Antioxidant Activities of Thyme Essential Oil (Thymus vulgaris). Food Nutr. Sci. 2018, 09, 433–446. [Google Scholar]
- Guesmi, F.; Saidi, I.; Bouzenna, H.; Hfaiedh, N.; Landoulsi, A. Phytocompound variability, antioxidant and antibacterial activities, anatomical features of glandular and aglandular hairs of Thymus hirtus Willd. Ssp. algeriensis Boiss. and Reut. over developmental stages. South African J. Bot. 2019, 127, 234–243. [Google Scholar] [CrossRef]
- Ali, H.M.; Abo-Shady, A.; Sharaf Eldeen, H.A.; Soror, H.A.; Shousha, W.G.; Abdel-Barry, O.A.; Saleh, A.M. Structural features, kinetics and SAR study of radical scavenging and antioxidant activities of phenolic and anilinic compounds. Chem. Cent. J. 2013, 7, 53. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kröber, T.; Koussis, K.; Bourquin, M.; Tsitoura, P.; Konstantopoulou, M.; Awolola, T.S.; Dani, F.R.; Qiao, H.; Pelosi, P.; Iatrou, K.; et al. Odorant-binding protein-based identification of natural spatial repellents for the African malaria mosquito Anopheles gambiae. Insect Biochem. Mol. Biol. 2018, 96, 36–50. [Google Scholar] [CrossRef] [PubMed]
- Abdelli, W.; Bahri, F.; Romane, A.; Höferl, M.; Wanner, J.; Schmidt, E.; Jirovetz, L. Chemical composition and anti-inflammatory activity of algerian thymus vulgaris essential oil. Nat. Prod. Commun. 2017, 12, 611–614. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Quynh, C.T.T.; Trang, V.T. Volatile composition, antioxidant property and antimicrobial activities against food-borne bacteria of Vietnamese thyme (Thymus vulgaris L.) essential oil. Vietnam J. Sci. Technol. 2019, 57, 127. [Google Scholar] [CrossRef] [Green Version]
Plant Part | Major Compounds (%) | Antioxidant Activity Assay | Investigated Properties | References |
---|---|---|---|---|
bark | (E)-cinnamaldehyde (45.13%), cinnamyl alcohol (8.21%), and eugenol (7.47%). | DPPH β-carotene-linoleic acid | Reported the chemical composition, antioxidant, and antimicrobial activities of the true cinnamon EO. | [85] |
barks | (E)-cinnamaldehyde (81.39%), (E)-cinnamyl acetate (4.20%), and (Z)-cinnamaldehyde (3.42%). | PM CUPRAC FRAP DPPH ABTS | Subjected the C. zeylanicum EO and its major constituents to different assays: anti-Alzheimer, anti-diabetic, skin whitening, and antioxidant activity. | [91] |
barks, leaves | cinnamaldehyde (77.34%), (E)-cinnamyl acetate (4.98%), 1,8-cineole (3.19%), 1,4-benzenedicarboxylic acid (3.55%) | PM DPPH hydrogen peroxide radical scavenging assay | Evaluated the antioxidant activity and antiproliferative effect against cancer cells lines (HeLa and Raji) | [83] |
Plant Part | Major Compounds (%) | Antioxidant Activity Assay | Investigated Properties | References |
---|---|---|---|---|
leaves | menthol (38.45%), menthone (21.8%), eucalyptol (5.62%), and neo-menthol (4.19%). | DPPH TBARS CAA Reducing power cellular-based antioxidant activity | Evaluated the chemical composition and antioxidant properties using different methods. | [37] |
leaves | menthol (30.69%), menthone (14.51%), menthyl acetate (12.86%), and neo-menthol (9.26%) | DPPH Hydroxyl radical scavenging activity | Investigated the chemical composition, anti-inflammatory, and cytotoxic (against different human cancer cell lines) activities of EO from leaves of M. piperita collected in China | [57] |
leaves | linalool (51.8%), epoxyocimene (19.3%), and sesquiphellandrene (9.4%). | DPPH | Evaluated the antioxidant, cytotoxic (Artemia salina), antibacterial (Staphylococcus aureus and Escherichia coli), and larvicidal (Aedes aegypti) activities. | [109] |
leaves | menthol (32.93%), menthone (24.41%), cis-caran (8.08%), and eucalyptol (1,8-cineole, 7.89%) | DPPH | Investigated the chemical composition, the antioxidant and antimicrobial activity of M. piperita EO against bacterial strains and Candida albicans | [53] |
Plant Part | Major Compounds (%) | Antioxidant Activity Assay | Investigated Properties | References |
---|---|---|---|---|
leaves and stems | linalool (27.64–31.66%), methyl chavicol (15.96–17.37%), methyl cinnamate (10.48–15.14%), bicyclo-sesquiphellandrene (6.01–7.01%), and eugenol (2.79–7.34%) | DPPH | Evaluated the chemical composition and antioxidant activity of the EOs obtained from three locations of Egypt (Assiut, Beni Suef, and Minia). They also described the antioxidant properties of sweet basil ethanolic extracts. | [115] |
leaves | methyl chavicol (75.10%), eucalyptol (4.60%), and linalool (4.50%) | DPPH | Demonstrated the usefulness of the simplex-lattice mixture design method to optimize the antioxidant profile of an EO mixture (basil, marjoram, and rosemary). | [126] |
leaves | trans-β-guaiene (16.89%), α-selinene (15.66%), phytol (11.68%), 9-methoxybicyclo[6.1.0]nona-2,4,6-triene (11.36%), and longifolenealdehyde (8.74%). | DPPH Hydroxyl radical scavenging activity Superoxide scavenging activity FRAP | Evaluated the pure O. basilicum EO and its encapsulated form (utilizing Polysorbate 80). Both were described by its antibacterial, antioxidant, and larvicidal (Culex quinquefasciatus) activities. | [119] |
leaves | methyl chavicol (41.40%), 1,6-octadien-3-ol, 3,7-dimethyl (29.49%), and trans-α-bergamotene (5.32%) | TBARS | Reported the preservative effect of basil EO on physicochemical characteristics and lipid oxidation of minced beef during storage. | [28] |
leaves | linalool (22.45–29.41%), camphor (13.70–16.00%), eugenol (11.39–19.54%), eucalyptol (9.06–22.21%), and germacrene D (6.02–6,98%). | ORAC | Described the oxygen introduction during the hydrodistillation and the effect of this modification on the antioxidant activity of basil EO. | [129] |
leaves | linalool (19–57.2%), methyl chavicol (4.5–59.5%), E-methyl cinnamate (45.9%), and methyl eugenol (0.1–74.7%) | ABTS FRAP | They reported the chemical compositions, antioxidant properties, and antimicrobial activities of different O. basilicum varieties. | [125] |
leaves | linalool (23.32–28.10%), methyl chavicol (15.74–20.64%), and methyl cinnamate (19.31–20.20%). | ORAC | Evaluated the effect of steam distillation and hydrodistillation extraction methods on the yield, composition, and antioxidant activity of basil EO. | [128] |
leaves | linalool (31.60%), methyl chavicol (23.80%), β-elemene (6.90%), γ-muurolene (4.10%), and α-guiaene (2.70%). | DPPH | Displayed the antimicrobial, antioxidant activity, and chemical composition of basil EO. | [127] |
leaves | eugenol (15.2924.88%), eucalyptol (16.68–20.34%), methyl eugenol (10.84–40.69%), linalool (4.98–20.88%), and α-humuleno (4.53–9.53%) | DPPH ABTS β-carotene-linoleic acid | Evaluated the effect of elicitation with jasmonic acid on the plant yield and composition of basil EOs. They also described the antioxidant and anti-inflammatory activities of the EOs. | [130] |
Plant Part | Major Compounds (%) | Antioxidant Activity Assay | Investigated Properties | References |
---|---|---|---|---|
aerial parts | O. vulgare vulgare: thymol (58.31%), carvacrol (16.11%), and p-cymene (13.45%) | DPPH ABTS CUPRAC FRAP | Evaluated the antimicrobial activity against bacterial species, chemical composition, antioxidant, and inhibitory enzymatic activities of O. vulgare EO. | [151] |
aerial parts | O. vulgare hirtum: linalool (96.31%), β-caryophyllene (1.27%), and carvacrol (0.33%) | DPPH ABTS CUPRAC FRAP | Evaluated the antimicrobial activity against bacterial species, chemical composition, antioxidant, and inhibitory enzymatic activities of O. vulgare EO. | [151] |
aerial parts | thymol (37.12%), γ-terpinene (9.66%), carvacrol (9.57%), and cis-α-bisabolene (6.80%) | DPPH FRAP | Evaluated the chemical composition and the antioxidant activity of oregano EO. | [154] |
leaves | p-cymene (35.7–46.3%), γ-terpinene (11.7–24.2%), and thymol (18.4–39.1%) | DPPH | Investigated the variation of the chemical composition of O. vulgare L. subsp. glandulosum EO collected from three localities of north Tunisia and their antioxidant activities. | [143] |
aerial parts | thymol (45%) and carvacrol (37.4%) | DPPH TBARS | Reported the chemical composition and the antioxidant activity of O. vulgare EO. | [155] |
leaves, flowers, and branches | carvacrol (45.09–46.71%), thymol (14,67–15.72%), and p-cymene (5.15–5.80%). | DPPH | Evaluated the effect of different drying methods on the EO yield, chemical composition, and antioxidant activity. | [152] |
aerial parts | linalool (4.64–12.50%), caryophyllene oxide (5.00–10.40%), (E)-caryophyllene (3.40–26.41%), germacrene-D (0.00–10.46%), bornyl acetate (0.00–10.40%), thymol (0.00–60.30%), and myrceno (0.00–8.64%) | DPPH FRAP | Investigated the variation in the chemical composition, yield and in vitro antioxidant activity of O. vulgare EO. | [153] |
Plant Part | Major Compounds (%) | Antioxidant Activity Assay | Investigated Properties | References |
---|---|---|---|---|
Fruit | (E)-caryophyllene (51.12%), β-thujene (20.58%), and β-selinene (5.59%) | DPPH ABTS | Evaluated the chemical composition, antihyperuricemic, antioxidant, and herbicidal activities of P. nigrum EO. Black pepper EO has been effective in controlling invasive and problematic weeds in agricultural practice. | [157] |
fruit | caryophyllene (25.58–62.23%), (1R)-2,6,6-trimethylbicyclo[3.1.1]hept-2-ene (8.71–40.85%), 3-carene (6.20–26.84%), and D-limonene (4.39–23.66%) | DPPH ABTS FRAP Scavenging superoxide anion free radical activity | Evaluated the chemical composition, antioxidant, and antifungal activities of P. nigrum EO from different regions. | [160] |
fruit | (E)-caryophyllene | DPPH | Characterized the encapsulated black pepper EO in hydroxypropyl-β-cyclodextrin and described its antioxidant, and antibacterial activities. | [169] |
fruit | caryophyllene (23.98%), limonene (14.36%), and α-terpinene (13.26%) | Superoxide radical scavenging Hydroxyl radical scavenging TBARS DPPH FRAP | Evaluated the antinociceptive, antioxidant, and anti-inflammatory activities of P. nigrum EO. | [170] |
fruit | (E)-caryophyllene (15.64–25.38%), limonene (14.95–15.64%), sabinene (13.19–13.63), and 3-carene (8.56–9.34%) | DPPH | Optimized the supercritical carbon dioxide process to improve the antioxidant activity of P. nigrum. | [171] |
Plant Organ | Major Compounds (%) | Antioxidant Activity Assay | Investigated Properties | References |
---|---|---|---|---|
leaves | eucalyptol (15.2%), c amphor (15.1%), and β-pinene (11.0%) | DPPH | Demonstrated the usefulness of the simplex-lattice mixture design method to optimize the antioxidant profile of an EO mixture (basil, marjoram, and rosemary). | [126] |
leaves | α-pinene (14.69–20.81%), eucalyptol (5.63–26.89%), and camphor (4.02–24.82%) | DPPH | Reported the antioxidant, antibacterial and chemical composition of rosemary EO extracted from plants collected in different regions. | [48] |
aerial parts | eucalyptol (23.67%), camphor (18.74%), and borneol (15.46%) | DPPH FRAP | Evaluated the chemical composition, antileishmanial, antibacterial, and antioxidant activities of rosemary EO. | [189] |
Leaves | γ-cadinene (29.93%), camphor (14.76–28.42%), and eucalyptol (10.60–15.36%) | ABTS | Used three different extraction methods (hydrodistillation, steam distillation, and supercritical CO2) and evaluated their chemical profile and antioxidant activity. | [190] |
Leaves | eucalyptol (35.15–50.28%), camphor (12.71–13.08%), α-pinene (5.60–13.92%), borneol (7.42–9.81%), and α-terpineol (1.76–15.40%) | DPPH | Described a method of rapeseed oil aromatization with rosemary. The EO aromatized was evaluated about the chemical composition and antioxidant activity. | [5] |
Leaves | eucalyptol (11.33–37.29%), camphor (8.81–40.35%), and α-pinene (2.60–28.68%), | DPPH | Evaluated the antioxidant activity of rosemary EO fractions obtained by molecular distillation and their effect on oxidative stability of sunflower oil. | [188] |
aerial parts | camphor (14.80–42.50%), eucalyptol (8.00–26.40%), α-pinene (4.10–13.20%), and myrcene (1.00–30.30%) | DPPH FRAP | Extracted the EO from several cultivars of rosemary and evaluated their antioxidant activity. | [178] |
aerial part | eucalyptol (35.32%), (E)-caryophyllene (14.47%), borneol (9.37%), camphor (8.97%), α-pinene (7.90%), and α-thujone (6.42%) | DPPH CAT SOD | Evaluated the potential of rosemary EO as anti-hyperlipidemic, anti-hyperglycemic, and antioxidant. | [191] |
Leaves | eucalyptol (42.86–46.76%), camphor (16.26–23.42%), α-pinene (6.37–9.19%), camphene (2.27–4.37%), and borneol (4.00–4.33%) | DPPH FRAP TBARS | Compared the chemical profile and antioxidant activity of the EOs of R. officinalis collected from China and Iran regions. | [192] |
Plant Part | Major Compounds (%) | Antioxidant Activity Assay | Investigated Properties | References |
---|---|---|---|---|
leaves | thymol (41.04%), eucalyptol (14.26%), γ-terpinene (12.06%), p-cymene (10.50%), α-terpinene (9.22%), linalool (2.80%), and carvacrol (2.77%) | DPPH ABTS β-Carotene-linoleic acid FRAP | Assessed the antioxidant and antimicrobial efficiency of the thyme EO isolated and combined with chitosan (mixture 1:1). Reported the chemical composition of the EO. | [205] |
aerial parts | thymol (55.44%), m-cymene (11.88%), γ-terpinene (5.74%), and o-cymen-5-ol (5.14%) | DPPH ABTS FRAP | Evaluated the chemical composition, antioxidant properties, and antifungal activities against Aspergillus flavus of the EO obtained from two cultivars of T. vulgaris. | [204] |
whole plant | thymol (50.53–55.30%), p-cymene (11.20–11.79%), carvacrol (6.65–8.70%), and (E)-caryophyllene (4.20–4.88%) | DPPH FRAP | Investigated two different techniques to extract the EO (hydrodistillation and microwave-assisted extraction) to evaluate possible changes in oil yield (%), chemical composition, antioxidant, and antimicrobial activities. They also described the extract’s compositions and activities. | [202] |
leaves | thymol (25.78%), carvacrol (17.47%), thymoquinone (7.11%), eugenol (6.36%), β-pinene (6.31%), β-ocymene (5.80%), and isophytol (5.70%) | DPPH PM | Evaluated the chemical composition, total phenolic, flavonoids, antioxidant, antibacterial and cytotoxic activities of the EO from T. vulgaris cultivated in Iran. | [196] |
aerial parts | thymol (18.11–35.00%), p-cymene (6.61–25.20%), (E)-caryophyllene (5.38–8.47%), thymyl methyl ether (4.28–8.44%), linalool (3.72–4.66%), and γ-terpinene (2.23–6.04%) | DPPH | Reported the use of spraying salicylic acid on drought-stressed plants and its influences on the EO yields, chemical composition, antioxidant, and polyphenolic content. | [201] |
leaves and branches | thymol (38.99–52.92%), o-cymene (14.38–26.58%), γ-terpinene (10.43–19.90%), and linalool (2.39–3.56%) | DPPH ABTS FRAP | Evaluated the seasonal influences on the composition, antibacterial, and antioxidant activities of T. vulgaris EO. | [199] |
leaves | thymol (40.02%), carvacrol (18.31%), p-cymene (16.78%), linalool (4.84%), and γ-terpinen-7-al (4.16%) | DPPH Potassium ferricyanide CUPRAC | Reported the chemical composition and antioxidant activity of thyme EO. | [209] |
leaves | thymol (39.79%), cymene (17.33%), γ-terpinene (13.45%), α-pinene (5.02%), (E)-caryophyllene (4.17%), and linalool (3.87%) | DPPH | Analyzed the EO chemical composition and the antimicrobial activities of a specimen of T. vulgaris from Vietnam. | [210] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Diniz do Nascimento, L.; Moraes, A.A.B.d.; Costa, K.S.d.; Pereira Galúcio, J.M.; Taube, P.S.; Costa, C.M.L.; Neves Cruz, J.; de Aguiar Andrade, E.H.; Faria, L.J.G.d. Bioactive Natural Compounds and Antioxidant Activity of Essential Oils from Spice Plants: New Findings and Potential Applications. Biomolecules 2020, 10, 988. https://doi.org/10.3390/biom10070988
Diniz do Nascimento L, Moraes AABd, Costa KSd, Pereira Galúcio JM, Taube PS, Costa CML, Neves Cruz J, de Aguiar Andrade EH, Faria LJGd. Bioactive Natural Compounds and Antioxidant Activity of Essential Oils from Spice Plants: New Findings and Potential Applications. Biomolecules. 2020; 10(7):988. https://doi.org/10.3390/biom10070988
Chicago/Turabian StyleDiniz do Nascimento, Lidiane, Angelo Antônio Barbosa de Moraes, Kauê Santana da Costa, João Marcos Pereira Galúcio, Paulo Sérgio Taube, Cristiane Maria Leal Costa, Jorddy Neves Cruz, Eloisa Helena de Aguiar Andrade, and Lênio José Guerreiro de Faria. 2020. "Bioactive Natural Compounds and Antioxidant Activity of Essential Oils from Spice Plants: New Findings and Potential Applications" Biomolecules 10, no. 7: 988. https://doi.org/10.3390/biom10070988
APA StyleDiniz do Nascimento, L., Moraes, A. A. B. d., Costa, K. S. d., Pereira Galúcio, J. M., Taube, P. S., Costa, C. M. L., Neves Cruz, J., de Aguiar Andrade, E. H., & Faria, L. J. G. d. (2020). Bioactive Natural Compounds and Antioxidant Activity of Essential Oils from Spice Plants: New Findings and Potential Applications. Biomolecules, 10(7), 988. https://doi.org/10.3390/biom10070988