Fatty Acid Biosynthesis in Chromerids
Abstract
:1. Introduction
2. Materials and Methods
2.1. Growth Experiments
2.2. Genomic Search
2.3. Fatty Acids—Gas Chromatography Coupled with a Flame Ionization Detector (GC/FID)
2.4. Transmission Electron Microscopy
3. Results
3.1. De novo Fatty Acid Synthesis
3.2. Elongation
3.3. Desaturation
3.4. Fatty Acid Profile
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Moore, R.B.; Oborník, M.; Janouškovec, J.; Chrudimský, T.; Vancová, M.; Green, D.H.; Wright, S.W.; Davies, N.W.; Bolch, C.J.S.; Heimann, K.; et al. A photosynthetic alveolate closely related to apicomplexan parasites. Nature 2008, 451, 959–963. [Google Scholar] [CrossRef] [PubMed]
- Oborník, M.; Modrý, D.; Lukeš, M.; Černotiková-Střibrná, E.; Cihlář, J.; Tesařová, M.; Kotabová, E.; Vancová, M.; Prášil, O.; Lukeš, J. Morphology, Ultrastructure and Life Cycle of Vitrella brassicaformis n. sp., n. gen., a Novel Chromerid from the Great Barrier Reef. Protist 2012, 163, 306–323. [Google Scholar] [CrossRef] [PubMed]
- Oborník, M.; Janouškovec, J.; Chrudimský, T.; Lukeš, J. Evolution of the apicoplast and its hosts: From heterotrophy to autotrophy and back again. Int. J. Parasitol. 2009, 39, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Füssy, Z.; Oborník, M. Chromerids and Their Plastids. In Secondary Endosymbioses; Hirakawa, Y., Ed.; Academic Press Ltd-Elsevier Science Ltd.: London, UK, 2017; Volume 84, pp. 187–218. [Google Scholar]
- Cumbo, V.R.; Baird, A.H.; Moore, R.B.; Negri, A.P.; Neilan, B.A.; Salih, A.; van Oppen, M.J.H.; Wang, Y.; Marquis, C.P. Chromera velia is Endosymbiotic in Larvae of the Reef Corals Acropora digitifera and A. tenuis. Protist 2013, 164, 237–244. [Google Scholar] [CrossRef]
- Janouškovec, J.; Sobotka, R.; Lai, D.; Flegontov, P.; Koník, P.; Komenda, J.; Ali, S.; Prášil, O.; Pain, A.; Oborník, M.; et al. Split Photosystem Protein, Linear-Mapping Topology, and Growth of Structural Complexity in the Plastid Genome of Chromera velia. Mol. Biol. Evol. 2013, 30, 2447–2462. [Google Scholar] [CrossRef] [Green Version]
- Okamoto, N.; McFadden, G.I. The mother of all parasites. Future Microbiol. 2008, 3, 391–395. [Google Scholar] [CrossRef] [Green Version]
- Mohamed, A.R.; Cumbo, V.R.; Harii, S.; Shinzato, C.; Chan, C.X.; Ragan, M.A.; Satoh, N.; Ball, E.E.; Miller, D.J. Deciphering the nature of the coral-Chromera association. ISME J. 2018, 12, 776–790. [Google Scholar] [CrossRef]
- Mathur, V.; del Campo, J.; Kolisko, M.; Keeling, P.J. Global diversity and distribution of close relatives of apicomplexan parasites. Environ. Microbiol. 2018, 20, 2824–2833. [Google Scholar] [CrossRef]
- Janouškovec, J.; Tikhonenkov, D.V.; Burki, F.; Howe, A.T.; Kolisko, M.; Mylnikov, A.P.; Keeling, P.J. Factors mediating plastid dependency and the origins of parasitism in apicomplexans and their close relatives. Proc. Natl. Acad. Sci. USA 2015, 112, 10200–10207. [Google Scholar] [CrossRef] [Green Version]
- Janouškovec, J.; Horák, A.; Oborník, M.; Lukeš, J.; Keeling, P.J. A common red algal origin of the apicomplexan, dinoflagellate, and heterokont plastids. Proc. Natl. Acad. Sci. USA 2010, 107, 10949–10954. [Google Scholar] [CrossRef] [Green Version]
- Kořený, L.; Sobotka, R.; Janouškovec, J.; Keeling, P.J.; Oborník, M. Tetrapyrrole Synthesis of Photosynthetic Chromerids Is Likely Homologous to the Unusual Pathway of Apicomplexan Parasites. Plant Cell 2011, 23, 3454–3462. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Woo, Y.H.; Ansari, H.; Otto, T.D.; Klinger, C.M.; Kolisko, M.; Michálek, J.; Saxena, A.; Shanmugam, D.; Tayyrov, A.; Veluchamy, A.; et al. Chromerid genomes reveal the evolutionary path from photosynthetic algae to obligate intracellular parasites. Elife 2015, 4. [Google Scholar] [CrossRef] [Green Version]
- Oborník, M. Endosymbiotic Evolution of Algae, Secondary Heterotrophy and Parasitism. Biomolecules 2019, 9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Flegontov, P.; Michálek, J.; Janouškovec, J.; Lai, D.H.; Jirků, M.; Hajdůšková, E.; Tomčala, A.; Otto, T.D.; Keeling, P.J.; Pain, A.; et al. Divergent Mitochondrial Respiratory Chains in Phototrophic Relatives of Apicomplexan Parasites. Mol. Biol. Evol. 2015, 32, 1115–1131. [Google Scholar] [CrossRef] [PubMed]
- Oborník, M.; Vancová, M.; Lai, D.-H.; Janouškovec, J.; Keeling, P.J.; Lukeš, J. Morphology and Ultrastructure of Multiple Life Cycle Stages of the Photosynthetic Relative of Apicomplexa, Chromera velia. Protist 2011, 162, 115–130. [Google Scholar] [CrossRef] [PubMed]
- Füssy, Z.; Masařova, P.; Kručinská, J.; Esson, H.J.; Oborník, M. Budding of the Alveolate Alga Vitrella brassicaformis Resembles Sexual and Asexual Processes in Apicomplexan Parasites. Protist 2017, 168, 80–91. [Google Scholar] [CrossRef] [PubMed]
- Cavalier-Smith, T. Kingdom Chromista and its eight phyla: A new synthesis emphasising periplastid protein targeting, cyto-skeletal and periplastid evolution, and ancient divergences. Protoplasma 2018, 255, 297–357. [Google Scholar] [CrossRef] [Green Version]
- Fahy, E.; Subramaniam, S.; Brown, H.A.; Glass, C.K.; Merrill, A.H.; Murphy, R.C.; Raetz, C.R.H.; Russell, D.W.; Seyama, Y.; Shaw, W.; et al. A comprehensive classification system for lipids. J. Lipid Res. 2005, 46, 839–861. [Google Scholar] [CrossRef] [Green Version]
- Goodman, C.D.; McFadden, G.I. Fatty acid biosynthesis as a drug target in apicomplexan parasites. Curr. Drug Targets 2007, 8, 15–30. [Google Scholar] [CrossRef] [Green Version]
- Chirala, S.S.; Wakil, S.J. Structure and function of animal fatty acid synthase. Lipids 2004, 39, 1045–1053. [Google Scholar] [CrossRef]
- Ramakrishnan, S.; Serricchio, M.; Striepen, B.; Butikofer, P. Lipid synthesis in protozoan parasites: A comparison between kinetoplastids and apicomplexans. Prog. Lipid Res. 2013, 52, 488–512. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ryall, K.; Harper, J.T.; Keeling, P.J. Plastid-derived Type II fatty acid biosynthetic enzymes in chromists. Gene 2003, 313, 139–148. [Google Scholar] [CrossRef]
- Schmid, K.M. Biochemistry of Lipids, Lipoproteins and Membranes; Elsevier B.V.: Amsterdam, The Netherlands, 2016; pp. 113–147. [Google Scholar]
- Shelest, E.; Heimerl, N.; Fichtner, M.; Sasso, S. Multimodular type I polyketide synthases in algae evolve by module duplications and displacement of AT domains in trans. BMC Genom. 2015, 16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McFadden, G.I. Plastids and protein targeting. J. Eukaryot. Microbiol. 1999, 46, 339–346. [Google Scholar] [CrossRef]
- Wilson, R.J.M. Plastid functions in the Apicomplexa. Protist 2004, 155, 11–12. [Google Scholar] [CrossRef]
- Zhu, G. Current progress in the fatty acid metabolism in Cryptosporidium parvum. J. Eukaryot. Microbiol. 2004, 51, 381–388. [Google Scholar] [CrossRef]
- Lu, J.Z.; Muench, S.P.; Allary, M.; Campbell, S.; Roberts, C.W.; Mui, E.; McLeod, R.L.; Rice, D.W.; Prigge, S.T. Type I and type II fatty acid biosynthesis in Eimeria tenella: Enoyl reductase activity and structure. Parasitology 2007, 134, 1949–1962. [Google Scholar] [CrossRef] [Green Version]
- Mazumdar, J.; Striepen, B. Make it or take it: Fatty acid metabolism of Apicomplexan parasites. Eukaryot. Cell 2007, 6, 1727–1735. [Google Scholar] [CrossRef] [Green Version]
- Sonda, S.; Hehl, A.B. Lipid biology of Apicomplexa: Perspectives for new drug targets, particularly for Toxoplasma gondii. Trends Parasitol. 2006, 22, 41–47. [Google Scholar] [CrossRef]
- Salomaki, E.D.; Kolisko, M. There Is Treasure Everywhere: Reductive Plastid Evolution in Apicomplexa in Light of Their Close Relatives. Biomolecules 2019, 9. [Google Scholar] [CrossRef] [Green Version]
- Zhu, G.; Li, Y.N.; Cai, X.M.; Millership, J.J.; Marchewka, M.J.; Keithly, J.S. Expression and functional characterization of a giant Type I fatty acid synthase (CpFAS1) gene from Cryptosporidium parvum. Mol. Biochem. Parasitol. 2004, 134, 127–135. [Google Scholar] [CrossRef]
- John, U.; Beszteri, B.; Derelle, E.; de Peer, Y.V.; Read, B.; Moreau, H.; Cembella, A. Novel insights into evolution of protistan polyketide synthases through phylogenomic analysis. Protist 2008, 159, 21–30. [Google Scholar] [CrossRef] [PubMed]
- Heath, R.J.; Rubin, J.R.; Holland, D.R.; Zhang, E.L.; Snow, M.E.; Rock, C.O. Mechanism of triclosan inhibition of bacterial fatty acid synthesis. J. Biol. Chem. 1999, 274, 11110–11114. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Katoh, K.; Misawa, K.; Kuma, K.; Miyata, T. MAFFT: A novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res. 2002, 30, 3059–3066. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kearse, M.; Moir, R.; Wilson, A.; Stones-Havas, S.; Cheung, M.; Sturrock, S.; Buxton, S.; Cooper, A.; Markowitz, S.; Duran, C.; et al. Geneious Basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 2012, 28, 1647–1649. [Google Scholar] [CrossRef] [PubMed]
- Stamatakis, A. RAxML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 2014, 30, 1312–1313. [Google Scholar] [CrossRef] [PubMed]
- Huelsenbeck, J.P.; Bollback, J.P. Empirical and hierarchical Bayesian estimation of ancestral states. Syst. Biol. 2001, 50, 351–366. [Google Scholar] [CrossRef]
- Ronquist, F.; Huelsenbeck, J.P. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 2003, 19, 1572–1574. [Google Scholar] [CrossRef] [Green Version]
- Emanuelsson, O.; Nielsen, H.; Brunak, S.; von Heijne, G. Predicting subcellular localization of proteins based on their N-terminal amino acid sequence. J. Mol. Biol. 2000, 300, 1005–1016. [Google Scholar] [CrossRef] [Green Version]
- Nielsen, H.; Engelbrecht, J.; Brunak, S.; von Heijne, G. Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites. Protein Eng. 1997, 10, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Bendtsen, J.D.; Nielsen, H.; von Heijne, G.; Brunak, S. Improved prediction of signal peptides: SignalP 3.0. J. Mol. Biol. 2004, 340, 783–795. [Google Scholar] [CrossRef] [PubMed]
- Gruber, A.; Rocap, G.; Kroth, P.G.; Armbrust, E.V.; Mock, T. Plastid proteome prediction for diatoms and other algae with secondary plastids of the red lineage. Plant J. 2015, 81, 519–528. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miller, M.A.; Pfeiffer, W.; Schwartz, T. Creating the CIPRES Science Gateway for inference of large phylogenetic trees. In Proceedings of the 2010 Gateway Computing Environments Workshop (GCE), New Orleans, LA, USA, 14 November 2010; pp. 1–8. [Google Scholar]
- Folch, J.; Lees, M.; Stanley, G.H.S. A simple method for the isolation and purification of total lipides from animal tissues. J. Biol. Chem. 1957, 226, 497–509. [Google Scholar] [PubMed]
- Košťál, V.; Šimek, P. Changes in fatty acid composition of phospholipids and triacylglycerols after cold-acclimation of an aestivating insect prepupa. J. Comp. Physiol. B Biochem. Syst. Environ. Physiol. 1998, 168, 453–460. [Google Scholar] [CrossRef]
- Tomčala, A.; Kyselová, V.; Schneedorferová, I.; Opekarová, I.; Moos, M.; Urajová, P.; Kručinská, J.; Oborník, M. Separation and identification of lipids in the photosynthetic cousins of Apicomplexa Chromera velia and Vitrella brassicaformis. J. Sep. Sci. 2017, 40, 3402–3413. [Google Scholar] [CrossRef] [PubMed]
- Zahradníčková, H.; Tomčala, A.; Berková, P.; Schneedorferová, I.; Okrouhlík, J.; Šimek, P.; Hodková, M. Cost effective, robust, and reliable coupled separation techniques for the identification and quantification of phospholipids in complex biological matrices: Application to insects. J. Sep. Sci. 2014, 37, 2062–2068. [Google Scholar] [CrossRef]
- Dahmen, J.L.; Khadka, M.; Dodson, V.J.; Leblond, J.D. Mono- and digalactosyldiacylglycerol composition of dinoflagellates. VI. Biochemical and genomic comparison of galactolipid biosynthesis between Chromera velia (Chromerida), a photosynthetic alveolate with red algal plastid ancestry, and the dinoflagellate, Lingulodinium polyedrum. Eur. J. Phycol. 2013, 48, 268–277. [Google Scholar] [CrossRef] [Green Version]
- Jenke-Kodama, H.; Sandmann, A.; Muller, R.; Dittmann, E. Evolutionary implications of bacterial polyketide synthases. Mol. Biol. Evol. 2005, 22, 2027–2039. [Google Scholar] [CrossRef] [Green Version]
- Hashimoto, K.; Yoshizawa, A.C.; Okuda, S.; Kuma, K.; Goto, S.; Kanehisa, M. The repertoire of desaturases and elongases reveals fatty acid variations in 56 eukaryotic genomes. J. Lipid Res. 2008, 49, 183–191. [Google Scholar] [CrossRef] [Green Version]
- Gostincar, C.; Turk, M.; Gunde-Cimerman, N. The Evolution of Fatty Acid Desaturases and Cytochrome b5 in Eukaryotes. J. Membr. Biol. 2010, 233, 63–72. [Google Scholar] [CrossRef]
- Ramakrishnan, S.; Docampo, M.D.; MacRae, J.I.; Pujol, F.M.; Brooks, C.F.; van Dooren, G.G.; Hiltunen, J.K.; Kastaniotis, A.J.; McConville, M.J.; Striepen, B. Apicoplast and Endoplasmic Reticulum Cooperate in Fatty Acid Biosynthesis in Apicomplexan Parasite Toxoplasma gondii. J. Biol. Chem. 2012, 287, 4957–4971. [Google Scholar] [CrossRef] [Green Version]
- James, G.O.; Hocart, C.H.; Hillier, W.; Chen, H.C.; Kordbacheh, F.; Price, G.D.; Djordjevic, M.A. Fatty acid profiling of Chlamydomonas reinhardtii under nitrogen deprivation. Bioresour. Technol. 2011, 102, 3343–3351. [Google Scholar] [CrossRef] [PubMed]
- Rawsthorne, S. Carbon flux and fatty acid synthesis in plants. Prog. Lipid Res. 2002, 41, 182–196. [Google Scholar] [CrossRef]
- Ramakrishnan, S.; Docampo, M.D.; MacRae, J.I.; Ralton, J.E.; Rupasinghe, T.; McConville, M.J.; Striepen, B. The intracellular parasite Toxoplasma gondii depends on the synthesis of long-chain and very long-chain unsaturated fatty acids not supplied by the host cell. Mol. Microbiol. 2015, 97, 64–76. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Füssy, Z.; Faitova, T.; Oborník, M. Subcellular Compartments Interplay for Carbon and Nitrogen Allocation in Chromera velia and Vitrella brassicaformis. Genome Biol. Evol. 2019, 11, 1765–1779. [Google Scholar] [CrossRef] [Green Version]
- Weng, L.C.; Pasaribu, B.; Lin, I.P.; Tsai, C.H.; Chen, C.S.; Jiang, P.L. Nitrogen Deprivation Induces Lipid Droplet Accumulation and Alters Fatty Acid Metabolism in Symbiotic Dinoflagellates Isolated from Aiptasia pulchella. Sci. Rep. 2014, 4. [Google Scholar] [CrossRef] [Green Version]
- Siron, R.; Giusti, G.; Berland, B. Changes in the fatty-acid composition of Phaeodactylum tricornutum and Dunaliella tertiolecta during growth and under phosphorus deficiency. Mar. Ecol. Prog. Ser. 1989, 55, 95–100. [Google Scholar] [CrossRef]
- Popko, J.; Herrfurth, C.; Feussner, K.; Ischebeck, T.; Iven, T.; Haslam, R.; Hamilton, M.; Sayanova, O.; Napier, J.; Khozin-Goldberg, I.; et al. Metabolome Analysis Reveals Betaine Lipids as Major Source for Triglyceride Formation, and the Accumulation of Sedoheptulose during Nitrogen-Starvation of Phaeodactylum tricornutum. PLoS ONE 2016, 11. [Google Scholar] [CrossRef] [Green Version]
- Lukeš, M.; Giordano, M.; Prasil, O. The effect of environmental factors on fatty acid composition of Chromera velia (Chromeridae). J. Appl. Phycol. 2017, 29, 1791–1799. [Google Scholar] [CrossRef]
- Skiba, M.A.; Sikkema, A.P.; Fiers, W.D.; Gerwick, W.H.; Sherman, D.H.; Aldrich, C.C.; Smith, J.L. Domain Organization and Active Site Architecture of a Polyketide Synthase C-methyltransferase. ACS Chem. Biol. 2016, 11, 3319–3327. [Google Scholar] [CrossRef] [Green Version]
- Huerlimann, R.; Steinig, E.J.; Loxton, H.; Zenger, K.R.; Jerry, D.R.; Heimann, K. The effect of nitrogen limitation on acetyl-CoA carboxylase expression and fatty acid content in Chromera velia and Isochrysis aff. galbana (TISO). Gene 2014, 543, 204–211. [Google Scholar] [CrossRef]
- Dubois, D.; Fernandes, F.; Amiar, S.; Dass, S.; Katris, N.J.; Botté, C.Y.; Yamaryo-Botté, Y. Toxoplasma gondii acetyl-CoA synthetase is involved in fatty acid elongation (of long fatty acid chains) during tachyzoite life stages. J. Lipid Res. 2018, 59, 994–1004. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Simionato, D.; Block, M.A.; La Rocca, N.; Jouhet, J.; Marechal, E.; Finazzi, G.; Morosinotto, T. The Response of Nannochloropsis gaditana to Nitrogen Starvation Includes De Novo Biosynthesis of Triacylglycerols, a Decrease of Chloroplast Galactolipids, and Reorganization of the Photosynthetic Apparatus. Eukaryot. Cell 2013, 12, 665–676. [Google Scholar] [CrossRef] [Green Version]
- Burrows, E.H.; Bennette, N.B.; Carrieri, D.; Dixon, J.L.; Brinker, A.; Frada, M.; Baldassano, S.N.; Falkowski, P.G.; Dismukes, G.C. Dynamics of Lipid Biosynthesis and Redistribution in the Marine Diatom Phaeodactylum tricornutum Under Nitrate Deprivation. Bioenergy Res. 2012, 5, 876–885. [Google Scholar] [CrossRef]
- Stephenson, A.L.; Dennis, J.S.; Howe, C.J.; Scott, S.A.; Smith, A.G. Influence of nitrogen-limitation regime on the production by Chlorella vulgaris of lipids for biodiesel feedstocks. Biofuels 2010, 1, 47–58. [Google Scholar] [CrossRef]
- Yang, D.W.; Song, D.H.; Kind, T.; Ma, Y.; Hoefkens, J.; Fiehn, O. Lipidomic Analysis of Chlamydomonas reinhardtii under Nitrogen and Sulfur Deprivation. PLoS ONE 2015, 10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Puzanskiy, R.K.; Shavarda, A.L.; Tarakhovskaya, E.R.; Shishova, M.F. Analysis of Metabolic Profile of Chlamydomonas reinhardtii Cultivated under Autotrophic Conditions. Appl. Biochem. Microbiol. 2015, 51, 83–94. [Google Scholar] [CrossRef]
- Bisanz, C.; Bastien, O.; Grando, D.; Jouhet, J.; Marechal, E.; Cesbron-Delauw, M.F. Toxoplasma gondii acyl-lipid metabolism: De novo synthesis from apicoplast-generated fatty acids versus scavenging of host cell precursors. Biochem. J. 2006, 394, 197–205. [Google Scholar] [CrossRef] [Green Version]
- Lack, G.; Homberger-Zizzari, E.; Folkers, G.; Scapozza, L.; Perozzo, R. Recombinant expression and biochemical characterization of the unique elongating beta-ketoacyl-acyl carrier protein synthase involved in fatty acid biosynthesis of Plasmodium falciparum using natural and artificial substrates. J. Biol. Chem. 2006, 281, 9538–9546. [Google Scholar] [CrossRef] [Green Version]
- Sharma, S.K.; Kapoor, M.; Ramya, T.N.C.; Kumar, S.; Kumar, G.; Modak, R.; Sharma, S.; Surolia, N.; Surolia, A. Identification, characterization, and inhibition of Plasmodium falciparum beta-hydroxyacyl-acyl carrier protein dehydratase (FabZ). J. Biol. Chem. 2003, 278, 45661–45671. [Google Scholar] [CrossRef] [Green Version]
- Surolia, N.; Surolia, A. Triclosan offers protection against blood stages of malaria by inhibiting enoyl-ACP reductase of Plasmodium falciparum (vol 7, pg 167, 2000). Nat. Med. 2001, 7, 636. [Google Scholar] [CrossRef]
- Waller, R.F.; Keeling, P.J.; Donald, R.G.K.; Striepen, B.; Handman, E.; Lang-Unnasch, N.; Cowman, A.F.; Besra, G.S.; Roos, D.S.; McFadden, G.I. Nuclear-encoded proteins target to the plastid in Toxoplasma gondii and Plasmodium falciparum. Proc. Natl. Acad. Sci. USA 1998, 95, 12352–12357. [Google Scholar] [CrossRef] [Green Version]
- Botte, C.Y.; Yamaryo-Botte, Y.; Rupasinghe, T.W.T.; Mullin, K.A.; MacRae, J.I.; Spurck, T.P.; Kalanon, M.; Shears, M.J.; Coppel, R.L.; Crellin, P.K.; et al. Atypical lipid composition in the purified relict plastid (apicoplast) of malaria parasites. Proc. Natl. Acad. Sci. USA 2013, 110, 7506–7511. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goodman, C.D.; McFadden, G.I. Fatty acid synthesis in protozoan parasites: Unusual pathways and novel drug targets. Curr. Pharm. Des. 2008, 14, 901–916. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, B.Q.; Wang, Y.Q.; Fillgrove, K.L.; Anderson, V.E. Triclosan inhibits enoyl-reductase of type I fatty acid synthase in vitro and is cytotoxic to MCF-7 and SKBr-3 breast cancer cells. Cancer Chemother. Pharmacol. 2002, 49, 187–193. [Google Scholar] [CrossRef] [PubMed]
- Kruger, N.J.; von Schaewen, A. The oxidative pentose phosphate pathway: Structure and organisation. Curr. Opin. Plant Biol. 2003, 6, 236–246. [Google Scholar] [CrossRef]
- Bigogno, C.; Khozin-Goldberg, I.; Cohen, Z. Accumulation of arachidonic acid-rich triacylglycerols in the microalga Parietochloris incisa (Trebuxiophyceae, Chlorophyta). Phytochemistry 2002, 60, 135–143. [Google Scholar] [CrossRef]
- Guschina, I.A.; Harwood, J.L. Mechanisms of temperature adaptation in poikilotherms. FEBS Lett. 2006, 580, 5477–5483. [Google Scholar] [CrossRef] [Green Version]
- Khozin-Goldberg, I.; Didi-Cohen, S.; Shayakhmetova, I.; Cohen, Z. Biosynthesis of eicosapentaenoic acid (EPA) in the freshwater eustigmatophyte Monodus subterraneus (Eustigmatophyceae). J. Phycol. 2002, 38, 745–756. [Google Scholar] [CrossRef]
- Mitschler, R.R.; Welti, R.; Upton, S.J. A comparative-study of lipid compositions of Cryptosporidium parvum (Apicomplexa) and madin-darby bovine kidney-cells. J. Eukaryot. Microbiol. 1994, 41, 8–12. [Google Scholar] [CrossRef]
- Toso, M.A.; Omoto, C.K. Gregarina niphandrodes may lack both a plastid genome and organelle. J. Eukaryot. Microbiol. 2007, 54, 66–72. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, G.; Marchewka, M.J.; Keithly, J.S. Cryptosporidium parvum appears to lack a plastid genome. Microbiology 2000, 146, 315–321. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Keithly, J.S.; Langreth, S.G.; Buttle, K.F.; Mannella, C.A. Electron tomographic and ultrastructural analysis of the Cryptosporidium parvum relict mitochondrion, its associated membranes, and Organelles. J. Eukaryot. Microbiol. 2005, 52, 132–140. [Google Scholar] [CrossRef] [PubMed]
- Ševčíková, T.; Horák, A.; Klimeš, V.; Zbránková, V.; Demir-Hilton, E.; Sudek, S.; Jenkins, J.; Schmutz, J.; Přibyl, P.; Fousek, J.; et al. Updating algal evolutionary relationships through plastid genome sequencing: Did alveolate plastids emerge through endosymbiosis of an ochrophyte? Sci. Rep. 2015, 5. [Google Scholar] [CrossRef] [PubMed]
- Sobotka, R.; Esson, H.J.; Koník, P.; Trsková, E.; Moravcová, L.; Horák, A.; Dufková, P.; Oborník, M. Extensive gain and loss of photosystem I subunits in chromerid algae, photosynthetic relatives of apicomplexans. Sci. Rep. 2017, 7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Ketoacyl Synthases | Accession | Length (AA) | SignalP 3.0 | TargetP 1.1 | TargetP (trimmed SP) | ASAFind | Pred. Localization |
---|---|---|---|---|---|---|---|
Type I FAS | Cvel_12437.t1 | 11,656 | - | - | - | Cytosol/ER | Cytosol |
Cvel_19857.t1 | 6729 | - | - | - | Cytosol/ER | Cytosol | |
Vbra_3754.t1 | 7413 | - | - | - | Cytosol/ER | Cytosol | |
Vbra_4545.t1 | 9001 | - | - | - | Cytosol/ER | Cytosol | |
Vbra_18624.t1 | 8182 | - | - | - | Cytosol/ER | Cytosol | |
Type II FAS | Cvel_3910.t1 | 463 | SP (1.000, L19) | M (0.579, R5, L38) | M (0.625, R5, L19) | Plastid/mitoch | Plastid |
Vbra_22540.t1 | 504 | SP (0.920, L33) | SP (0.968, R1, L33) | M (0.653, R4, L19) | Plastid | Plastid | |
ACR-B coupled | Cvel_8275.t1 | 4523 | Anch (0.716, L26) | M (0.778, R3, L26) | - | Cytosol/ER | ER/ Microsome memb. |
Cvel_22311.t1 | 4384 | Anch (0.868, L46) | M (0.706, R4, L15) | - | Cytosol/ER | ER/ Microsome memb. | |
Other KSs | Cvel_11706.t1 | 2033 | - | M (0.489, R5, L21) | Cytosol/ER | Cytosol | |
Cvel_12573.t1 | 2656 | - | - | Cytosol/ER | Cytosol | ||
Cvel_15255.t1 | 2854 | SP (0.877, L29) | M (0.333, R5, L17) | M (0.669, R3, L7) | Cytosol/ER | Plastid | |
Cvel_17953.t1 | 1403 | - | - | - | Cytosol/ER | Cytosol | |
Cvel_18613.t1 | 1930 | - | - | - | Cytosol/ER | Cytosol | |
Cvel_19321.t1 | 3353 | - | - | - | Cytosol/ER | Cytosol | |
Cvel_19611.t1 | 6404 | - | - | - | Cytosol/ER | Cytosol | |
Cvel_19874.t1 | 528 | - | - | - | Cytosol/ER | Cytosol | |
Cvel_22375.t1 | 2562 | - | - | - | Cytosol/ER | Cytosol | |
Cvel_23369.t1 | 2489 | - | M (0.494, R5, L50) | - | Mitochondrion | Mitochondrion | |
Cvel_24220.t1 | 1093 | - | - | - | Cytosol/ER | Cytosol | |
Cvel_24323.t1 | 782 | - | - | - | Cytosol/ER | Cytosol | |
Cvel_26639.t1 | 2832 | - | M (0.683, R4, L11) | - | Cytosol/ER | Cytosol/Mitochondrion | |
Cvel_28742.t1 | 2860 | - | SP (0.546, R5, L17) | - | Cytosol/ER | Cytosol | |
Cvel_32860.t1 | 565 | - | - | - | Cytosol/ER | Cytosol | |
Cvel_33368.t1 | 1048 | - | SP (0.447, R5, L24) | - | Cytosol/ER | Cytosol |
Ketoacyl Synthases | Accession | Length (AA) | SignalP 3.0 | TargetP 1.1 | TargetP (trimmed SP) | ASAFind | Pred. Localization |
---|---|---|---|---|---|---|---|
Other KSs | Cvel_33369.t1 | 720 | - | - | - | Cytosol/ER | Cytosol |
Cvel_33747.t1 | 1598 | - | - | - | Cytosol/ER | Cytosol | |
Cvel_3424.t1 | 4498 | - | - | - | Cytosol/ER | Cytosol | |
Cvel_34436.t1 | 1211 | - | - | - | Cytosol/ER | Cytosol | |
Cvel_34654.t1 | 1165 | - | - | - | Cytosol/ER | Cytosol | |
Cvel_34826.t1 | 1174 | - | - | - | Cytosol/ER | Cytosol | |
Cvel_35138.t1 | 1013 | - | - | - | Cytosol/ER | Cytosol | |
Cvel_35394.t1 | 1007 | - | - | - | Cytosol/ER | Cytosol | |
Cvel_35394.t2 | 968 | - | - | - | Cytosol/ER | Cytosol | |
Cvel_36416.t1 | 675 | - | - | - | Cytosol/ER | Cytosol | |
Cvel_36618.t1 | 349 | - | - | - | Cytosol/ER | Cytosol | |
Cvel_3734.t1 | 4498 | - | - | - | Cytosol/ER | Cytosol | |
Cvel_6161.t1 | 6550 | - | - | - | Cytosol/ER | Cytosol | |
Cvel_6212.t1 | 2635 | - | - | - | Cytosol/ER | Cytosol | |
Cvel_678.t1 | 2469 | - | - | - | Cytosol/ER | Cytosol | |
Vbra_1266.t1 | 6691 | - | - | - | Cytosol/ER | Cytosol | |
Vbra_1193.t1 | 1857 | - | - | - | Cytosol/ER | Cytosol | |
Vbra_12045.t1 | 3268 | - | - | - | Cytosol/ER | Cytosol | |
Vbra_12047.t1 | 1204 | - | SP (0.777, R4, L19) | - | Cytosol/ER | Cytosol | |
Vbra_135.t1 | 1603 | - | - | - | Cytosol/ER | Cytosol | |
Vbra_14267.t1 | 1337 | - | - | - | Cytosol/ER | Cytosol | |
Vbra_1496.t1 | 3575 | - | - | - | Cytosol/ER | Cytosol | |
Vbra_16257.t1 | 1220 | - | - | - | Cytosol/ER | Cytosol | |
Vbra_21227.t1 | 6651 | - | - | - | Cytosol/ER | Cytosol | |
Vbra_2242.t1 | 995 | SP (0.959, L16) | M (0.442, R5, L12) | - | Cytosol/ER | ER/Microsome lumen |
Ketoacyl Synthases | Accession | Length (AA) | SignalP 3.0 | TargetP 1.1 | TargetP (trimmed SP) | ASAFind | Pred. Localization |
---|---|---|---|---|---|---|---|
Other KSs | Vbra_22449.t1 | 1668 | - | - | - | Cytosol/ER | Cytosol |
Vbra_23040.t1 | 4167 | - | - | - | Cytosol/ER | Cytosol | |
Vbra_23145.t1 | 480 | - | - | - | Cytosol/ER | Cytosol | |
Vbra_23180.t1 | 2233 | - | - | - | Cytosol/ER | Cytosol | |
Vbra_23216.t1 | 301 | - | - | - | Cytosol/ER | Cytosol | |
Vbra_23250.t1 | 1732 | - | - | - | Cytosol/ER | Cytosol | |
Vbra_23378.t1 | 1092 | - | - | - | Cytosol/ER | Cytosol | |
Vbra_424.t1 | 1469 | - | - | - | Cytosol/ER | Cytosol | |
Vbra_425.t1 | 1098 | - | - | - | Cytosol/ER | Cytosol | |
Vbra_428.t1 | 3041 | - | - | - | Cytosol/ER | Cytosol | |
Vbra_460.t1 | 3015 | - | - | - | Cytosol/ER | Cytosol | |
Vbra_483.t1 | 2820 | - | SP (0.479, R4, L43) | - | Cytosol/ER | Cytosol | |
Vbra_50.t1 | 526 | - | - | - | Cytosol/ER | Cytosol | |
Vbra_502.t1 | 710 | SP (0.871, L20) | SP (0.479, R4, L20) | - | Plastid | Plastid/ER | |
Vbra_51.t1 | 3829 | - | - | - | Cytosol/ER | Cytosol | |
Vbra_6248.t1 | 1297 | - | - | - | Cytosol/ER | Cytosol | |
Vbra_7032.t1 | 2189 | - | - | - | Cytosol/ER | Cytosol | |
Vbra_7414.t1 | 461 | - | - | - | Cytosol/ER | Cytosol | |
Vbra_8741.t1 | 1101 | - | - | - | Cytosol/ER | Cytosol | |
FASII (remaining) parts) | Accession | Length (AA) | SignalP 3.0 | TargetP 1.1 | TargetP (trimmed SP) | ASAFind | Pred. Localization |
Acyl transferase | Cvel_4616.t1 | 349 | SP (0.983, L20) | SP (0.729, L19, R3) | M 0.526 (R5, L19) | Plastid | Plastid |
Vbra_21812.t1 | 362 | SP (0.996, L21) | SP (0.694, L20, R3) | M 0.635 (R4, L15) | Plastid | Plastid | |
Enoyl reductase | Cvel_5563.t1 | 355 | SP (0.958, L20) | SP (0.785, L19, R3) | M 0.912 (R2, L23) | Plastid | Plastid |
Vbra_11747.t1 | 412 | SP (0.996, L22) | SP (0.982, L33, R1) | M 0.919 (R1, L20) | Cytosol/ER | Plastid | |
Ketoacyl reductase (KR) | Cvel_3619.t1 | 392 | SP (0.912, L19) | SP (0.915, L18, R1) | M 0.700 (R3, L17) | Plastid | Plastid |
Vbra_710.t1 | 338 | SP (0.996, L22) | SP (0.943, L21, R1) | M 0.766 (R3, L10) | Plastid | Plastid | |
Dehydrogenase | Cvel_14912.t1 | 213 | SP (0.849, L18) | SP (0.884, L17, R2) | M 0.526 (R5, L19) | Plastid | Plastid |
Vbra_19455.t1 | 225 | SP (0.993, L25) | SP (0.800, L22, R2) | M 0.827 (R2, L43) | Plastid | Plastid |
Elongases | |||||||
---|---|---|---|---|---|---|---|
S/MUFA | Cvel_6334.t1 | 193 | SP (0.960, L16) | SP (0.861, R2, L16) | M (0.689, R3, L5) | Cytosol/ER | Plastid |
Cvel_13090.t1 | 525 | Anch (0.838, L41) | - | - | Cytosol/ER | ER/Microsome memb. | |
Cvel_14249.t1 | 884 | Anch (0.791, L39) | - | - | Cytosol/ER | ER/Microsome memb. | |
Cvel_15641.t1 | 2131 | Anch (0.606, L50) | - | - | Cytosol/ER | ER/Microsome memb. | |
Cvel_12461.t1 | 415 | - | - | - | Cytosol/ER | Cytosol | |
Vbra_3929.t1 | 307 | - | - | - | Cytosol/ER | Cytosol | |
Vbra_9666.t1 | 885 | SP (0.675, L24) | SP (0.622, R3, L40) | S (0.950, R1, L16) | Cytosol/ER | ER/Microsome lumen | |
Vbra_11085.t1 | 281 | Anch (0.560, L16) | - | - | Cytosol/ER | ER/Microsome memb. | |
Vbra_12050.t1 | 330 | Anch (0.600, L41) | - | - | Cytosol/ER | ER/Microsome memb. | |
Vbra_13163.t1 | 363 | - | - | - | Cytosol/ER | Cytosol | |
PUFA | Cvel_1604.t1 | 297 | - | - | - | Cytosol/ER | Cytosol |
Vbra_3441.t1 | 363 | Anch (0.984, L55) | - | - | Cytosol/ER | ER/Microsome memb. | |
Vbra_11843.t1 | 306 | Anch (0.986, L63) | - | - | Cytosol/ER | ER/Microsome memb. | |
Vbra_16961.t1 | 291 | Anch (0.638, L62) | - | - | Cytosol/ER | ER/Microsome memb. |
Desaturases | Accession | Length (AA) | SignalP 3.0 | TargetP 1.1 | TargetP (trimmed SP) | ASAFind | Pred. Localization |
---|---|---|---|---|---|---|---|
Omega | Cvel_2615.t1 | 461 | - | - | - | Cytosol/ER | Cytosol |
Cvel_21003.t1 | 440 | - | - | - | Cytosol/ER | Cytosol | |
Cvel_22707.t1 | 425 | SP (0.999, L17) | M/SP (0.631/0.771,L17, R5) | M (0.852, R2, L71) | Plastid | Plastid | |
Vbra_7407.t1 | 445 | - | M (0.564, L12, R5) | - | Cytosol/ER | Cytosol | |
Vbra_15192.t1 | 465 | - | - | - | Cytosol/ER | Cytosol | |
Vbra_20615.t1 | 447 | - | - | - | Cytosol/ER | Cytosol | |
Delta 9 | Cvel_14249.t1 | 884 | Anch (0.791, L39) | - | - | Cytosol/ER | ER/Microsome memb. |
Cvel_21149.t1 | 395 | SP (0.910, L37) | SP (0.979, L37, R1) | M 0.814 (R2, L6) | Cytosol/ER | Plastid | |
Vbra_9666.t1 | 885 | SP (0.675, L40) | SP (0.622, L40, R3) | - | Cytosol/ER | ER/Microsome lumen | |
Vbra_15445.t1 | 565 | - | M (0.549, L19, R5) | - | Cytosol/ER | Cytosol | |
Front-end | Cvel_8966.t1 | 507 | - | - | - | Cytosol/ER | Cytosol |
Cvel_17413.t1 | 543 | - | - | - | Cytosol/ER | Cytosol | |
Vbra_17659.t1 | 439 | - | - | - | Cytosol/ER | Cytosol | |
Vbra_20473.t1 | 437 | - | M (0.738, L17, R3) | - | Mitochondrion | Mitochondrion | |
Acetyl-CoA Carboxylases | Accession | Length (AA) | SignalP 3.0 | TargetP 1.1 | TargetP (trimmed SP) | ASAFind | Pred. Localization |
Cvel_530.t2 | 2097 | - | M (0.478, L18, R5) | - | Cytosol/ER | Cytosol | |
Cvel_25292.t1 | 1651 | - | - | - | Cytosol/ER | Cytosol | |
Vbra_9562.t1 | 2702 | - | - | - | Cytosol/ER | Cytosol | |
Vbra_15163.t1 | 2146 | SP (0.999, L19) | SP (0.828, L19, R2) | M 0.833 (R2, L20) | Cytosol/ER | Plastid |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tomčala, A.; Michálek, J.; Schneedorferová, I.; Füssy, Z.; Gruber, A.; Vancová, M.; Oborník, M. Fatty Acid Biosynthesis in Chromerids. Biomolecules 2020, 10, 1102. https://doi.org/10.3390/biom10081102
Tomčala A, Michálek J, Schneedorferová I, Füssy Z, Gruber A, Vancová M, Oborník M. Fatty Acid Biosynthesis in Chromerids. Biomolecules. 2020; 10(8):1102. https://doi.org/10.3390/biom10081102
Chicago/Turabian StyleTomčala, Aleš, Jan Michálek, Ivana Schneedorferová, Zoltán Füssy, Ansgar Gruber, Marie Vancová, and Miroslav Oborník. 2020. "Fatty Acid Biosynthesis in Chromerids" Biomolecules 10, no. 8: 1102. https://doi.org/10.3390/biom10081102
APA StyleTomčala, A., Michálek, J., Schneedorferová, I., Füssy, Z., Gruber, A., Vancová, M., & Oborník, M. (2020). Fatty Acid Biosynthesis in Chromerids. Biomolecules, 10(8), 1102. https://doi.org/10.3390/biom10081102