Evolutionary and Molecular Aspects of Plastid Endosymbioses
Conflicts of Interest
References
- Keeling, P.J. The number, speed, and impact of plastid endosymbioses in eukaryotic evolution. Ann. Rev. Plant. Biol. 2013, 64, 583–607. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Archibald, J.M. Endosymbiosis and eukaryotic cell evolution. Curr. Biol. 2015, 25, R911–R921. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oborník, M. Endosymbiotic evolution of algae, secondary heterotrophy and parasitism. Biomolecules 2019, 9, 266. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Larkum, A.W.D.; Lockhart, P.J.; Howe, C.J. Shopping for plastids. Trends Plant Sci. 2007, 12, 189–195. [Google Scholar] [CrossRef] [PubMed]
- Salomaki, E.D.; Kolísko, M. There is treasure everywhere: Reductive plastid evolution in Apicomplexa in light of their close relatives. Biomolecules 2019, 9, 378. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kwong, W.K.; del Campo, J.; Mathur, V.; Vermeij, M.J.A.; Keeling, P.J. A widespread coral-infecting apicomplexan with chlorophyll biosynthesis genes. Nature 2019, 568, 103–107. [Google Scholar] [CrossRef] [PubMed]
- Keeling, P.J.; Mathur, V.; Kwong, W.K. Corallicolids: The elusive coral-infecting apicomplexans. PLoS Pathog. 2021, 17, e1009845. [Google Scholar] [CrossRef] [PubMed]
- Moore, R.B.; Oborník, M.; Janouškovec, J.; Chrudimský, T.; Vancová, M.; Green, D.H.; Wright, S.W.; Davies, N.W.; Bolch, C.J.S.; Heimann, K.; et al. A photosynthetic alveolate closely related to apicomplexan parasites. Nature 2008, 451, 959–963. [Google Scholar] [CrossRef] [PubMed]
- Mathur, V.; Kolísko, M.; Hehenberger, E.; Irwin, N.A.T.; Leander, B.S.; Kristmudsson, Á.; Freeman, M.A.; Keeling, P.J. Multiple independent origins of apicomplexan-like parasites. Curr. Biol. 2019, 29, 2936–2941. [Google Scholar] [CrossRef] [PubMed]
- Hirakawa, Y.; Watanabe, A. Organellar DNA polymerases in complex plastid-bearing algae. Biomolecules 2019, 9, 140. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nonoyama, T.; Kazamia, E.; Nawaly, H.; Gao, X.; Tsuji, Y.; Matsuda, Y.; Bowler, C.; Tanaka, T.; Dorrell, R.G. Metabolic innovations underpinning the origin and diversification of the diatom chloroplast. Biomolecules 2019, 9, 322. [Google Scholar] [CrossRef] [PubMed]
- Gruber, A.; Haferkamp, I. Nucleotide transport and metabolism in diatoms. Biomolecules 2019, 9, 761. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Klinger, C.M.; Richardson, E. Small genomes and big data: Adaptation of plastid genomics to the high-throughput era. Biomolecules 2019, 9, 299. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Green, B.R. What happened to the phycobilisome? Biomolecules 2019, 9, 748. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oborník, M.; Füssy, Z. Evolutionary and Molecular Aspects of Plastid Endosymbioses. Biomolecules 2021, 11, 1694. https://doi.org/10.3390/biom11111694
Oborník M, Füssy Z. Evolutionary and Molecular Aspects of Plastid Endosymbioses. Biomolecules. 2021; 11(11):1694. https://doi.org/10.3390/biom11111694
Chicago/Turabian StyleOborník, Miroslav, and Zoltán Füssy. 2021. "Evolutionary and Molecular Aspects of Plastid Endosymbioses" Biomolecules 11, no. 11: 1694. https://doi.org/10.3390/biom11111694