MmpA, a Conserved Membrane Protein Required for Efficient Surface Transport of Trehalose Lipids in Corynebacterineae
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bacterial Strains and Culturing Conditions
2.2. Genetic Manipulation of Bacteria
2.3. Bioinformatics
2.4. Reverse Transcriptase (RT)-PCR
2.5. Construction of C. glutamicum ΔNCgl2761 and Complementation Strains
2.6. Southern Hybridization
2.7. Extraction of Cell Wall Components, HPTLC and SDS-PAGE
2.8. Lipoglycan Extraction and Analysis
2.9. Extraction of IM and OM Lipids for LC/MS and Lipidomics Analyses
2.10. Metabolic Labeling
3. Results
3.1. Identification of the Corynebacterial Ortholog of M. Tuberculosis Rv0226c
3.2. Evidence of NCgl2760 and NCgl2761 Co-Transcription
3.3. Inactivation of the NCgl2761 Gene Affects Growth of C. glutamicum
3.4. Loss of NCgl2761 Does Not Impact Lipoglycan Biosynthesis
3.5. Loss of NCgl2761 Changes the Glycolipid Profile and Distribution of Trehalose Corynomycolates
3.6. A ΔNCgl2761 Mutant Phenocopies ΔtmaT and ΔmtrP Mutants
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- WHO. Global Tuberculosis Report 2020; WHO: Geneve, Switzerland, 2020. [Google Scholar]
- Brennan, P.J.; Nikaido, H. The envelope of mycobacteria. Annu. Rev. Biochem. 1995, 64, 29–63. [Google Scholar] [CrossRef] [PubMed]
- Jankute, M.; Cox, J.A.; Harrison, J.; Besra, G.S. Assembly of the Mycobacterial Cell Wall. Annu. Rev. Microbiol. 2015, 69, 405–423. [Google Scholar] [CrossRef] [Green Version]
- Barry, C.E.; Lee, R.E.; Mdluli, K.; Sampson, A.E.; Schroeder, B.G.; Slayden, R.A.; Yuan, Y. Mycolic acids: Structure, biosynthesis and physiological functions. Prog. Lipid Res. 1998, 37, 143–179. [Google Scholar] [CrossRef] [Green Version]
- Druszczynska, M.; Kowalski, K.; Wawrocki, S.; Fol, M. Diversity and Functionality of Mycobacterial Mycolic Acids in Relation to Host-pathogen Interactions. Curr. Med. Chem. 2017, 24, 4267–4278. [Google Scholar] [CrossRef] [PubMed]
- Marrakchi, H.; Laneelle, M.A.; Daffe, M. Mycolic acids: Structures, biosynthesis, and beyond. Chem. Biol. 2014, 21, 67–85. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Takayama, K.; Wang, C.; Besra, G.S. Pathway to synthesis and processing of mycolic acids in Mycobacterium tuberculosis. Clin. Microbiol. Rev. 2005, 18, 81–101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Portevin, D.; De Sousa-D’Auria, C.; Houssin, C.; Grimaldi, C.; Chami, M.; Daffe, M.; Guilhot, C. A polyketide synthase catalyzes the last condensation step of mycolic acid biosynthesis in mycobacteria and related organisms. Proc. Natl. Acad. Sci. USA 2004, 101, 314–319. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fernandes, N.D.; Kolattukudy, P.E. Cloning, sequencing and characterization of a fatty acid synthase-encoding gene from Mycobacterium tuberculosis var. bovis BCG. Gene 1996, 170, 95–99. [Google Scholar] [CrossRef]
- Bhatt, A.; Molle, V.; Besra, G.S.; Jacobs, W.R., Jr.; Kremer, L. The Mycobacterium tuberculosis FAS-II condensing enzymes: Their role in mycolic acid biosynthesis, acid-fastness, pathogenesis and in future drug development. Mol. Microbiol. 2007, 64, 1442–1454. [Google Scholar] [CrossRef] [PubMed]
- Lea-Smith, D.J.; Pyke, J.S.; Tull, D.; McConville, M.J.; Coppel, R.L.; Crellin, P.K. The reductase that catalyzes mycolic motif synthesis is required for efficient attachment of mycolic acids to arabinogalactan. J. Biol. Chem. 2007, 282, 11000–11008. [Google Scholar] [CrossRef] [Green Version]
- Su, C.C.; Klenotic, P.A.; Bolla, J.R.; Purdy, G.E.; Robinson, C.V.; Yu, E.W. MmpL3 is a lipid transporter that binds trehalose monomycolate and phosphatidylethanolamine. Proc. Natl. Acad. Sci. USA 2019, 116, 11241–11246. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, Z.; Meshcheryakov, V.A.; Poce, G.; Chng, S.S. MmpL3 is the flippase for mycolic acids in mycobacteria. Proc. Natl. Acad. Sci. USA 2017, 114, 7993–7998. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Belisle, J.T.; Vissa, V.D.; Sievert, T.; Takayama, K.; Brennan, P.J.; Besra, G.S. Role of the major antigen of Mycobacterium tuberculosis in cell wall biogenesis. Science 1997, 276, 1420–1422. [Google Scholar] [CrossRef] [PubMed]
- Lea-Smith, D.J.; Martin, K.L.; Pyke, J.S.; Tull, D.; McConville, M.J.; Coppel, R.L.; Crellin, P.K. Analysis of a new mannosyltransferase required for the synthesis of phosphatidylinositol mannosides and lipoarbinomannan reveals two lipomannan pools in corynebacterineae. J. Biol. Chem. 2008, 283, 6773–6782. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rainczuk, A.K.; Yamaryo-Botte, Y.; Brammananth, R.; Stinear, T.P.; Seemann, T.; Coppel, R.L.; McConville, M.J.; Crellin, P.K. The lipoprotein LpqW is essential for the mannosylation of periplasmic glycolipids in Corynebacteria. J. Biol. Chem. 2012, 287, 42726–42738. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yamaryo-Botte, Y.; Rainczuk, A.K.; Lea-Smith, D.J.; Brammananth, R.; van der Peet, P.L.; Meikle, P.; Ralton, J.E.; Rupasinghe, T.W.; Williams, S.J.; Coppel, R.L.; et al. Acetylation of trehalose mycolates is required for efficient MmpL-mediated membrane transport in Corynebacterineae. ACS Chem. Biol. 2015, 10, 734–746. [Google Scholar] [CrossRef] [PubMed]
- Rainczuk, A.K.; Klatt, S.; Yamaryo-Botte, Y.; Brammananth, R.; McConville, M.J.; Coppel, R.L.; Crellin, P.K. MtrP, a putative methyltransferase in Corynebacteria, is required for optimal membrane transport of trehalose mycolates. J. Biol. Chem. 2020, 295, 6108–6119. [Google Scholar] [CrossRef] [Green Version]
- Altschul, S.F.; Gish, W.; Miller, W.; Myers, E.W.; Lipman, D.J. Basic local alignment search tool. J. Mol. Biol. 1990, 215, 403–410. [Google Scholar] [CrossRef]
- Omasits, U.; Ahrens, C.H.; Muller, S.; Wollscheid, B. Protter: Interactive protein feature visualization and integration with experimental proteomic data. Bioinformatics 2014, 30, 884–886. [Google Scholar] [CrossRef] [Green Version]
- Jumper, J.; Evans, R.; Pritzel, A.; Green, T.; Figurnov, M.; Ronneberger, O.; Tunyasuvunakool, K.; Bates, R.; Zidek, A.; Potapenko, A.; et al. Highly accurate protein structure prediction with AlphaFold. Nature 2021, 596, 583–589. [Google Scholar] [CrossRef] [PubMed]
- Yanisch-Perron, C.; Vieira, J.; Messing, J. Improved M13 phage cloning vectors and host strains: Nucleotide sequences of the M13mp18 and pUC19 vectors. Gene 1985, 33, 103–119. [Google Scholar] [CrossRef]
- Schafer, A.; Tauch, A.; Jager, W.; Kalinowski, J.; Thierbach, G.; Puhler, A. Small mobilizable multi-purpose cloning vectors derived from the Escherichia coli plasmids pK18 and pK19: Selection of defined deletions in the chromosome of Corynebacterium glutamicum. Gene 1994, 145, 69–73. [Google Scholar] [CrossRef]
- van der Rest, M.E.; Lange, C.; Molenaar, D. A heat shock following electroporation induces highly efficient transformation of Corynebacterium glutamicum with xenogeneic plasmid DNA. Appl. Microbiol. Biotechnol. 1999, 52, 541–545. [Google Scholar] [CrossRef] [PubMed]
- McKean, S.; Davies, J.; Moore, R. Identification of macrophage induced genes of Corynebacterium pseudotuberculosis by differential fluorescence induction. Microbes Infect. 2005, 7, 1352–1363. [Google Scholar] [CrossRef]
- Cashmore, T.J.; Klatt, S.; Yamaryo-Botte, Y.; Brammananth, R.; Rainczuk, A.K.; McConville, M.J.; Crellin, P.K.; Coppel, R.L. Identification of a Membrane Protein Required for Lipomannan Maturation and Lipoarabinomannan Synthesis in Corynebacterineae. J. Biol. Chem. 2017, 292, 4976–4986. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Klatt, S.; Brammananth, R.; O’Callaghan, S.; Kouremenos, K.A.; Tull, D.; Crellin, P.K.; Coppel, R.L.; McConville, M.J. Identification of novel lipid modifications and intermembrane dynamics in Corynebacterium glutamicum using high-resolution mass spectrometry. J. Lipid. Res. 2018, 59, 1190–1204. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- DeJesus, M.A.; Gerrick, E.R.; Xu, W.; Park, S.W.; Long, J.E.; Boutte, C.C.; Rubin, E.J.; Schnappinger, D.; Ehrt, S.; Fortune, S.M.; et al. Comprehensive Essentiality Analysis of the Mycobacterium tuberculosis Genome via Saturating Transposon Mutagenesis. mBio 2017, 8, e02133. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Griffin, J.E.; Gawronski, J.D.; Dejesus, M.A.; Ioerger, T.R.; Akerley, B.J.; Sassetti, C.M. High-resolution phenotypic profiling defines genes essential for mycobacterial growth and cholesterol catabolism. PLoS Pathog. 2011, 7, e1002251. [Google Scholar] [CrossRef] [Green Version]
- Sassetti, C.M.; Boyd, D.H.; Rubin, E.J. Genes required for mycobacterial growth defined by high density mutagenesis. Mol. Microbiol. 2003, 48, 77–84. [Google Scholar] [CrossRef]
- Mawuenyega, K.G.; Forst, C.V.; Dobos, K.M.; Belisle, J.T.; Chen, J.; Bradbury, E.M.; Bradbury, A.R.; Chen, X. Mycobacterium tuberculosis functional network analysis by global subcellular protein profiling. Mol. Biol. Cell 2005, 16, 396–404. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kalscheuer, R.; Weinrick, B.; Veeraraghavan, U.; Besra, G.S.; Jacobs, W.R., Jr. Trehalose-recycling ABC transporter LpqY-SugA-SugB-SugC is essential for virulence of Mycobacterium tuberculosis. Proc. Natl. Acad. Sci. USA 2010, 107, 21761–21766. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alderwick, L.J.; Birch, H.L.; Krumbach, K.; Bott, M.; Eggeling, L.; Besra, G.S. AftD functions as an alpha1-->5 arabinofuranosyltransferase involved in the biosynthesis of the mycobacterial cell wall core. Cell Surf. 2018, 1, 2–14. [Google Scholar] [CrossRef] [PubMed]
- Tan, Y.Z.; Zhang, L.; Rodrigues, J.; Zheng, R.B.; Giacometti, S.I.; Rosario, A.L.; Kloss, B.; Dandey, V.P.; Wei, H.; Brunton, R.; et al. Cryo-EM Structures and Regulation of Arabinofuranosyltransferase AftD from Mycobacteria. Mol. Cell 2020, 78, 683–699.e611. [Google Scholar] [CrossRef] [PubMed]
Lipid (Sub)Class | WT | ΔNCgl2759 | ΔNCgl2764 | ΔNCgl2761 | |||||
---|---|---|---|---|---|---|---|---|---|
IM | OM | IM | OM | IM | OM | IM | OM | ||
1 | hTMCM | 18 | 20 | 26 | 15 | 23 | 18 | 27 | 14 |
2 | AcTMCM | 3 | 8 | 0 | 0 | 0 | 0 | 0 | 0 |
3 | keto-TMCM | 3 | 0 | 10 | 3 | 8 | 5 | 6 | 4 |
4 | Acyl-hTMCM | 7 | 5 | 12 | 5 | 9 | 7 | 11 | 4 |
5 | Acyl-AcTMCM | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
6 | h2TDCM | 28 | 28 | 30 | 25 | 27 | 29 | 28 | 26 |
7 | Ac1-hTDCM | 3 | 3 | 3 | 1 | 0 | 0 | 0 | 0 |
8 | hGMM | 5 | 11 | 8 | 7 | 8 | 8 | 7 | 5 |
9 | DAG | 7 | 4 | 8 | 4 | 7 | 5 | 7 | 4 |
10 | Ala-DAG | 11 | 5 | 9 | 2 | 7 | 1 | 5 | 1 |
11 | CDP-DAG | 1 | 0 | 1 | 0 | 1 | 1 | 0 | 1 |
12 | TAG | 10 | 10 | 11 | 11 | 11 | 10 | 13 | 8 |
13 | PG | 11 | 5 | 5 | 2 | 6 | 5 | 6 | 2 |
14 | Acyl-PG | 3 | 0 | 1 | 0 | 1 | 0 | 1 | 0 |
15 | Ala-PG | 2 | 1 | 1 | 0 | 1 | 1 | 0 | 1 |
16 | PA | 2 | 0 | 0 | 0 | 1 | 1 | 1 | 1 |
17 | CL | 16 | 3 | 14 | 4 | 10 | 5 | 9 | 5 |
18 | PI | 4 | 3 | 3 | 2 | 4 | 5 | 4 | 4 |
19 | PIM1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 0 |
20 | PIM2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
21 | AcPIM2 | 4 | 1 | 5 | 1 | 4 | 1 | 4 | 1 |
22 | AcPIM3 | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 1 |
23 | AcPIM4 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 |
24 | Gl-A | 6 | 2 | 5 | 1 | 3 | 2 | 4 | 1 |
25 | Gl-X | 6 | 1 | 4 | 1 | 3 | 2 | 3 | 1 |
26 | Gl-Y | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 1 |
27 | Gl-Z | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 1 |
28 | Acyl-PG-like | 4 | 3 | 0 | 0 | 0 | 0 | 0 | 0 |
SUM: | 161 | 115 | 162 | 86 | 139 | 111 | 141 | 87 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cashmore, T.J.; Klatt, S.; Brammananth, R.; Rainczuk, A.K.; Crellin, P.K.; McConville, M.J.; Coppel, R.L. MmpA, a Conserved Membrane Protein Required for Efficient Surface Transport of Trehalose Lipids in Corynebacterineae. Biomolecules 2021, 11, 1760. https://doi.org/10.3390/biom11121760
Cashmore TJ, Klatt S, Brammananth R, Rainczuk AK, Crellin PK, McConville MJ, Coppel RL. MmpA, a Conserved Membrane Protein Required for Efficient Surface Transport of Trehalose Lipids in Corynebacterineae. Biomolecules. 2021; 11(12):1760. https://doi.org/10.3390/biom11121760
Chicago/Turabian StyleCashmore, Tamaryn J., Stephan Klatt, Rajini Brammananth, Arek K. Rainczuk, Paul K. Crellin, Malcolm J. McConville, and Ross L. Coppel. 2021. "MmpA, a Conserved Membrane Protein Required for Efficient Surface Transport of Trehalose Lipids in Corynebacterineae" Biomolecules 11, no. 12: 1760. https://doi.org/10.3390/biom11121760
APA StyleCashmore, T. J., Klatt, S., Brammananth, R., Rainczuk, A. K., Crellin, P. K., McConville, M. J., & Coppel, R. L. (2021). MmpA, a Conserved Membrane Protein Required for Efficient Surface Transport of Trehalose Lipids in Corynebacterineae. Biomolecules, 11(12), 1760. https://doi.org/10.3390/biom11121760