Keratinases as Versatile Enzymatic Tools for Sustainable Development
Abstract
:1. Introduction
2. Keratin Characterization
3. Conventional Keratin Degradation
4. Microbial and Enzymatic Biodegradation
4.1. Keratinases Properties
4.2. Catalytic Mechanism
4.3. Keratinases Immobilization Methods
4.4. Genetic Engineering of Keratinolytic Strains and Enzymes
5. Application
5.1. Nutrition and Food Technology
Bioactive Peptides
5.2. Agriculture
5.2.1. Biofertilizers and Plant Biostimulants
5.2.2. Animal Feed
5.2.3. Livestock Stress Assessment
5.3. Biotechnology
Microbial Media
5.4. Pharmaceuticals and Medicine
5.4.1. Transdermal Drug Delivery Systems
5.4.2. Anti-Amyloid- β Agents
5.5. Biomaterials
PHA Production
5.6. Detergent, Leather and Textile Industries
5.7. Environmental Protection
5.7.1. Wastewater Treatment
5.7.2. Prion Proteins Decontamination
5.7.3. Wild-Life Protection
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sachs, J.D.; Schmidt-Traub, G.; Mazzucato, M.; Messner, D.; Nakicenovic, N.; Rockström, J. Six Transformations to achieve the Sustainable Development Goals. Nat. Sustain. 2019, 2, 805–814. [Google Scholar] [CrossRef]
- The United Nations. The Sustainable Development Goals. Available online: https://sdgs.un.org/goals (accessed on 5 October 2021).
- Zeng, Y.; Maxwell, S.; Runting, R.K.; Venter, O.; Watson, J.E.M.; Carrasco, L.R. Environmental destruction not avoided with the Sustainable Development Goals. Nat. Sustain. 2020, 3, 795–798. [Google Scholar] [CrossRef]
- Raszkowski, A.; Bartniczak, B. On the road to sustainability: Implementation of the 2030 Agenda sustainable development goals (SDG) in Poland. Sustainability 2019, 11, 366. [Google Scholar] [CrossRef] [Green Version]
- Khalid, A.M.; Sharma, S.; Dubey, A.K. Concerns of developing countries and the sustainable development goals: Case for India. Int. J. Sustain. Dev. World Ecol. 2021, 28, 303–315. [Google Scholar] [CrossRef]
- Godfray, H.C.J.; Aveyard, P.; Garnett, T.; Hall, J.W.; Key, T.J.; Lorimer, J.; Pierrehumbert, R.T.; Scarborough, P.; Springmann, M.; Jebb, S.A. Meat consumption, health, and the environment. Science 2018, 361. [Google Scholar] [CrossRef] [Green Version]
- Alsaffar, A.A. Sustainable diets: The interaction between food industry, nutrition, health and the environment. Food Sci. Technol. Int. 2016, 22, 102–111. [Google Scholar] [CrossRef]
- Cheng, D.; Liu, Y.; Hao, H.; Guo, W.; Woong, S.; Duc, D.; Zhang, S.; Luo, G.; Thanh, X. Sustainable enzymatic technologies in waste animal fat and protein management. J. Environ. Manag. 2021, 284, 112040. [Google Scholar] [CrossRef]
- European Commission. Poultry. Available online: https://ec.europa.eu/info/food-farming-fisheries/animals-and-animal-products/animal-products/poultry_en (accessed on 5 October 2021).
- Dróżdż, D.; Wystalska, K.; Malińska, K.; Grosser, A.; Grobelak, A.; Kacprzak, M. Management of poultry manure in Poland—Current state and future perspectives. J. Environ. Manag. 2020, 264, 110327. [Google Scholar] [CrossRef]
- Thyagarajan, D.; Barathi, M.; Sakthivadivu, R. Scope of Poultry Waste Utilization. J. Agric. Vet. Sci. 2013, 6, 29–35. [Google Scholar]
- Leinonen, I.; Kyriazakis, I. How can we improve the environmental sustainability of poultry production? Proc. Nutr. Soc. 2016, 265–273. [Google Scholar] [CrossRef] [Green Version]
- European Commission; CORDIS. Industrial Feather Waste Valorisation for Sustainable KeRatin Based MAterials. Available online: https://cordis.europa.eu/project/id/723268 (accessed on 5 October 2021).
- Aranberri, I.; Montes, S.; Azcune, I.; Rekondo, A.; Grande, H.J. Fully biodegradable biocomposites with high chicken feather content. Polymers 2017, 9, 593. [Google Scholar] [CrossRef] [Green Version]
- Alahyaribeik, S.; Sharifi, S.D.; Tabandeh, F.; Honarbakhsh, S.; Ghazanfari, S. Bioconversion of chicken feather wastes by keratinolytic bacteria. Process Saf. Environ. Prot. 2020, 135, 171–178. [Google Scholar] [CrossRef]
- Sharma, I.; Kango, N. Production and characterization of keratinase by Ochrobactrum intermedium for feather keratin utilization. Int. J. Biol. Macromol. 2021, 166, 1046–1056. [Google Scholar] [CrossRef]
- Nnolim, N.E.; Nwodo, U.U. Microbial keratinase and the bio-economy: A three-decade meta-analysis of research exploit. AMB Express 2021, 11. [Google Scholar] [CrossRef]
- Nnolim, N.E.; Udenigwe, C.C.; Okoh, A.I.; Nwodo, U.U. Microbial Keratinase: Next Generation Green Catalyst and Prospective Applications. Front. Microbiol. 2020, 11. [Google Scholar] [CrossRef]
- Martinez, J.P.D.O.; Cai, G.; Nachtschatt, M.; Navone, L.; Zhang, Z.; Robins, K.; Speight, R. Challenges and opportunities in identifying and characterising keratinases for value-added peptide production. Catalysts 2020, 10, 184. [Google Scholar] [CrossRef] [Green Version]
- Qiu, J.; Wilkens, C.; Barrett, K.; Meyer, A.S. Microbial enzymes catalyzing keratin degradation: Classification, structure, function. Biotechnol. Adv. 2020, 44. [Google Scholar] [CrossRef]
- Wang, B.; Yang, W.; McKittrick, J.; Meyers, M.A. Keratin: Structure, mechanical properties, occurrence in biological organisms, and efforts at bioinspiration. Prog. Mater. Sci. 2016, 76, 229–318. [Google Scholar] [CrossRef] [Green Version]
- Rodziewicz, A.; Łaba, W. Keratyny i ich biodegradacja. Biotechnologia 2006, 73, 130–147. [Google Scholar]
- Sinkiewicz, I.; Staroszczyk, H.; Śliwińska, A. Solubilization of keratins and functional properties of their isolates and hydrolysates. J. Food Biochem. 2018, 42, e12494. [Google Scholar] [CrossRef]
- Perta-Crisan, S.; Ursachi, C.S.; Gavrilas, S.; Oancea, F.; Munteanu, F.-D. Closing the Loop with Keratin-Rich Fibrous Materials. Polymers 2021, 13, 1896. [Google Scholar] [CrossRef]
- Hassan, M.A.; Taha, T.H.; Hamad, G.M.; Hashem, M.; Alamri, S.; Mostafa, Y.S. Biochemical characterisation and application of keratinase from Bacillus thuringiensis MT1 to enable valorisation of hair wastes through biosynthesis of vitamin B-complex. Int. J. Biol. Macromol. 2020, 153, 561–572. [Google Scholar] [CrossRef]
- Fraser, R.D.B.; Parry, D.A.D. Trichocyte Keratin-Associated Proteins (KAPs). In The Hair Fibre: Proteins, Structure and Development, Advances in Experimental Medicine and Biology; Springer: Berlin/Heidelberg, Germany, 2018; pp. 71–86. ISBN 9789811081958. [Google Scholar]
- Wang, J.; Hao, S.; Luo, T.; Cheng, Z.; Li, W.; Gao, F.; Guo, T.; Gong, Y.; Wang, B. Feather keratin hydrogel for wound repair: Preparation, healing effect and biocompatibility evaluation. Colloids Surf. B Biointerfaces 2017, 149, 341–350. [Google Scholar] [CrossRef]
- Hill, P.; Brantley, H.; Van Dyke, M. Some properties of keratin biomaterials: Kerateines. Biomaterials 2010, 31, 585–593. [Google Scholar] [CrossRef]
- Dhurai, B.; Saravanan, K. Exploration on Amino Acid Content and Morphological Structure in Chicken Feather Fiber. J. Text. Appar. Technol. Manag. 2012, 7, 1–6. [Google Scholar]
- Sinkiewicz, I.; Śliwińska, A.; Staroszczyk, H.; Kołodziejska, I. Alternative Methods of Preparation of Soluble Keratin from Chicken Feathers. Waste Biomass Valorization 2017, 8, 1043–1048. [Google Scholar] [CrossRef]
- Sakhno, T.V.; Barashkov, N.N.; Irgibaeva, I.S.; Mendigaliyeva, S.; Bostan, D.S. Ionic Liquids and Deep Eutectic Solvents and Their Use for Dissolving Animal Hair. Adv. Chem. Eng. Sci. 2020, 10, 40–51. [Google Scholar] [CrossRef] [Green Version]
- Shavandi, A.; Silva, T.H.; Bekhit, A.A.; Bekhit, A.E.D.A. Keratin: Dissolution, extraction and biomedical application. Biomater. Sci. 2017, 5, 1699–1735. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rajabinejad, H.; Bucişcanu, I.I.; Maier, S.S. Practical ways of extracting keratin from keratinous wastes and by-products: A review. Environ. Eng. Manag. J. 2016, 15, 1131–1147. [Google Scholar] [CrossRef]
- Gaidau, C.; Stanca, M.; Niculescu, M.-D.; Alexe, C.-A.; Becheritu, M.; Horoias, R.; Cioineag, C.; Râpă, M.; Stanculescu, I.R. Wool Keratin Hydrolysates for Bioactive Additives Preparation. Materials 2021, 14, 4696. [Google Scholar] [CrossRef]
- Mu, B.; Hassan, F.; Yang, Y. Controlled assembly of secondary keratin structures for continuous and scalable production of tough fibers from chicken feathers. Green Chem. 2020, 22, 1726–1734. [Google Scholar] [CrossRef]
- Ding, S.; Sun, Y.; Chen, H.; Xu, C.; Hu, Y. An ultrasonic-ionic liquid process for the efficient acid catalyzed hydrolysis of feather keratin. Chin. J. Chem. Eng. 2019, 27, 660–667. [Google Scholar] [CrossRef]
- Stiborova, H.; Branska, B.; Vesela, T.; Lovecka, P.; Stranska, M.; Hajslova, J.; Jiru, M.; Patakova, P.; Demnerova, K. Transformation of raw feather waste into digestible peptides and amino acids. J. Chem. Technol. Biotechnol. 2016, 91, 1629–1637. [Google Scholar] [CrossRef]
- Błaszczyk, M.; Goryluk-Salmonowicz, A. Enzymy produkowane w skali przemysłowej przez mikroorganizmy. In Przemysłowe Wykorzystanie Mikroorganizmów; Kompanowska, M., Ed.; Wydawnictwo Naukowe PWN: Warszawa, Poland, 2020; pp. 191–218. ISBN 978-83-01-21021-2. [Google Scholar]
- Vidmar, B.; Vodovnik, M. Microbial keratinases: Enzymes with promising biotechnological applications. Food Technol. Biotechnol. 2018, 56, 312–328. [Google Scholar] [CrossRef]
- Wawrzkiewicz, K.; Wolski, T.; Lobarzewski, J. Screening the keratinolytic activity of dermatophytes in vitro. Mycopathologia 1991, 1–8. [Google Scholar] [CrossRef]
- Keefe, M.; Lei, X.G. Unveiling the keratinolytic transcriptome of the black carpet beetle (Attagenus unicolor) for sustainable poultry feather recycling. Appl. Microbiol. Biotechnol. 2021, 105, 5577–5587. [Google Scholar] [CrossRef]
- Vilcinskas, A.; Schwabe, M.; Brinkrolf, K.; Plarre, R.; Wielsch, N. Larvae of the Clothing Moth Tineola bisselliella Maintain Gut Bacteria that Secrete Enzyme Cocktails to Facilitate the Digestion of Keratin. Microorganisms 2020, 8, 1415. [Google Scholar] [CrossRef]
- Srivastava, B.; Khatri, M.; Singh, G.; Kumar, S. Microbial keratinases : An overview of biochemical characterization and its eco-friendly approach for industrial applications. J. Clean. Prod. 2020, 252, 119847. [Google Scholar] [CrossRef]
- Thankaswamy, S.R.; Sundaramoorthy, S.; Palanivel, S.; Ramudu, K.N. Improved microbial degradation of animal hair waste from leather industry using Brevibacterium luteolum (MTCC 5982). J. Clean. Prod. 2018, 189, 701–708. [Google Scholar] [CrossRef]
- Lee, Y.; Dhanasingh, I.; Ahn, J.; Jin, H.; Choi, J.M.; Lee, S.; Lee, D. Biochemical and Structural Characterization of a Keratin-Degrading M32 Carboxypeptidase from Fervidobacterium islandicum AW-1. Biochem. Biophys. Res. Commun. 2015. [Google Scholar] [CrossRef]
- Muhsin, T.M.; Aubaid, A.H. Partial purification and some biochemical characteristics of exocellular keratinase from Trichophyton mentagrophytes var. erinacei. Mycopathologia 2001, 150, 121–125. [Google Scholar] [CrossRef] [PubMed]
- Rai, S.K.; Mukherjee, A.K. Optimization of production of an oxidant and detergent-stable alkaline β-keratinase from Brevibacillus sp. strain AS-S10-II: Application of enzyme in laundry detergent formulations and in leather industry. Biochem. Eng. J. 2011, 54, 47–56. [Google Scholar] [CrossRef]
- Mitsuiki, S.; Sakai, M.; Moriyama, Y.; Goto, M.; Furukawa, K. Purification and Some Properties of a Keratinolytic Enzyme from an Alkaliphilic Nocardiopsis sp. TOA-1. Biosci. Biotechnol. Biochem. 2002, 66, 164–167. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bernal, C.; Cair, J.; Coello, N. Purification and characterization of a novel exocellular keratinase from Kocuria rosea. Enzym. Microb. Technol. 2006, 38, 49–54. [Google Scholar] [CrossRef]
- Abdel-Fattah, A.M.; El-Gamal, M.S.; Ismail, S.A.; Emran, M.A.; Hashem, A.M. Biodegradation of feather waste by keratinase produced from newly isolated Bacillus licheniformis ALW1. J. Genet. Eng. Biotechnol. 2018, 16, 311–318. [Google Scholar] [CrossRef]
- Bhange, K.; Chaturvedi, V.; Bhatt, R. Simultaneous production of detergent stable keratinolytic protease, amylase and biosurfactant by Bacillus subtilis PF1 using agro industrial waste. Biotechnol. Rep. 2016, 10, 94–104. [Google Scholar] [CrossRef] [Green Version]
- Rieger, T.J.; de Oliveira, C.T.; Pereira, J.Q.; Brandelli, A.; Daroit, D.J. Proteolytic system of Bacillus sp. CL18 is capable of extensive feather degradation and hydrolysis of diverse protein substrates. Br. Poult. Sci. 2017, 58, 329–335. [Google Scholar] [CrossRef]
- Gegeckas, A.; Šimkutė, A.; Gudiukaitė, R.; Čitavičius, D.J. Characterization and application of keratinolytic paptidases from Bacillus spp. Int. J. Biol. Macromol. 2018, 113, 1206–1213. [Google Scholar] [CrossRef]
- Ferrareze, P.A.G.; Correa, A.P.F.; Brandelli, A. Purification and characterization of a keratinolytic protease produced by probiotic Bacillus subtilis. Biocatal. Agric. Biotechnol. 2016, 7, 102–109. [Google Scholar] [CrossRef]
- Emran, M.A.; Ismail, S.A.; Abdel-Fattah, A.M. Valorization of feather via the microbial production of multi-applicable keratinolytic enzyme. Biocatal. Agric. Biotechnol. 2020, 27, 101674. [Google Scholar] [CrossRef]
- Hamiche, S.; Mechri, S.; Khelouia, L.; Annane, R.; El Hattab, M.; Badis, A.; Jaouadi, B. Purification and biochemical characterization of two keratinases from Bacillus amyloliquefaciens S13 isolated from marine brown alga Zonaria tournefortii with potential keratin-biodegradation and hide-unhairing activities. Int. J. Biol. Macromol. 2019, 122, 758–769. [Google Scholar] [CrossRef]
- Tian, J.; Long, X.; Tian, Y.; Shi, B. Enhanced extracellular recombinant keratinase activity in Bacillus subtilis SCK6 through signal peptide optimization and site-directed mutagenesis. RSC Adv. 2019, 9, 33337–33344. [Google Scholar] [CrossRef] [Green Version]
- Zhang, R.X.; Gong, J.S.; Su, C.; Zhang, D.D.; Tian, H.; Dou, W.F.; Li, H.; Shi, J.S.; Xu, Z.H. Biochemical characterization of a novel surfactant-stable serine keratinase with no collagenase activity from Brevibacillus parabrevis CGMCC 10798. Int. J. Biol. Macromol. 2016, 93, 843–851. [Google Scholar] [CrossRef]
- Bouacem, K.; Bouanane-Darenfed, A.; Zaraî Jaouadi, N.; Joseph, M.; Hacene, H.; Ollivier, B.; Fardeau, M.-L.; Bejar, S.; Jaouadi, B. Novel serine keratinase from Caldicoprobacter algeriensis exhibiting outstanding hide dehairing abilities. Int. J. Biol. Macromol. 2016, 86, 321–328. [Google Scholar] [CrossRef]
- Wu, W.L.; Chen, M.Y.; Tu, I.F.; Lin, Y.C.; Eswarkumar, N.; Chen, M.Y.; Ho, M.C.; Wu, S.H. The discovery of novel heat-stable keratinases from Meiothermus taiwanensis WR-220 and other extremophiles. Sci. Rep. 2017, 7, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Bokveld, A.; Nnolim, N.E.; Nwodo, U.U. Chryseobacterium aquifrigidense FANN1 Produced Detergent-Stable Metallokeratinase and Amino Acids Through the Abasement of Chicken Feathers. Front. Bioeng. Biotechnol. 2021, 9, 720176. [Google Scholar] [CrossRef]
- González, V.; Vargas-Straube, M.J.; Beys-da-Silva, W.O.; Santi, L.; Valencia, P.; Beltrametti, F.; Cámara, B. Enzyme Bioprospection of Marine-Derived Actinobacteria from the Chilean Coast and New Insight in the Mechanism of Keratin Degradation in Streptomyces sp. G11C. Mar. Drugs 2020, 18, 537. [Google Scholar] [CrossRef]
- Shalaby, M.M.; Samir, R.; Goma, F.A.Z.M.; Rammadan, M.A. Enhanced fusidic acid transdermal delivery achieved by newly isolated and optimized Bacillus cereus Keratinase. Biotechnol. Rep. 2021, 30, e00620. [Google Scholar] [CrossRef]
- Nnolim, N.E.; Nwodo, U.U. Bacillus sp. CSK2 produced thermostable alkaline keratinase using agro-wastes: Keratinolytic enzyme characterization. BMC Biotechnol. 2020, 20, 1–14. [Google Scholar] [CrossRef]
- Duffeck, C.E.; de Menezes, C.L.A.; Boscolo, M.; da Silva, R.; Gomes, E.; da Silva, R.R. Citrobacter diversus-derived keratinases and their potential application as detergent-compatible cloth-cleaning agents. Braz. J. Microbiol. 2020, 51, 969–977. [Google Scholar] [CrossRef]
- Barman, N.C.; Zohora, F.T.; Das, K.C.; Mowla, M.G.; Banu, N.A.; Salimullah, M.; Hashem, A. Production, partial optimization and characterization of keratinase enzyme by Arthrobacter sp. NFH5 isolated from soil samples. AMB Express 2017, 7. [Google Scholar] [CrossRef]
- Pawar, V.A.; Prajapati, A.S.; Akhani, R.C.; Patel, D.H.; Subramanian, R.B. Molecular and biochemical characterization of a thermostable keratinase from Bacillus altitudinis RBDV1. 3 Biotech 2018, 8, 2–8. [Google Scholar] [CrossRef]
- Cavello, I.; Bezus, B.; Cavalitto, S. The keratinolytic bacteria Bacillus cytotoxicus as a source of novel proteases and feather protein hydrolysates with antioxidant activities. J. Genet. Eng. Biotechnol. 2021, 19, 1–12. [Google Scholar] [CrossRef]
- Gurunathan, R.; Huang, B.; Ponnusamy, V.K.; Hwang, J.S.; Dahms, H.U. Novel recombinant keratin degrading subtilisin like serine alkaline protease from Bacillus cereus isolated from marine hydrothermal vent crabs. Sci. Rep. 2021, 11, 1–14. [Google Scholar] [CrossRef]
- Nnolim, N.E.; Mpaka, L.; Okoh, A.I.; Nwodo, U.U. Biochemical and molecular characterization of a thermostable alkaline metallo-keratinase from Bacillus sp. Nnolim-k1. Microorganisms 2020, 8, 1304. [Google Scholar] [CrossRef]
- Alwakeel, S.S.; Ameen, F.; Al Gwaiz, H.; Sonbol, H.; Alghamdi, S.; Moharram, A.M.; Al-Bedak, O.A. Keratinases produced by Aspergillus stelliformis, Aspergillus sydowii, and Fusarium brachygibbosum isolated from human hair: Yield and activity. J. Fungi 2021, 7, 471. [Google Scholar] [CrossRef]
- Yahaya, R.S.R.; Normi, Y.M.; Phang, L.Y.; Ahmad, S.A.; Abdullah, J.O.; Sabri, S. Molecular strategies to increase keratinase production in heterologous expression systems for industrial applications. Appl. Microbiol. Biotechnol. 2021, 105, 3955–3969. [Google Scholar] [CrossRef]
- Goda, D.A.; Bassiouny, A.R.; Abdel Monem, N.M.; Soliman, N.A.; Abdel Fattah, Y.R. Effective multi-functional biotechnological applications of protease/keratinase enzyme produced by new Egyptian isolate (Laceyella sacchari YNDH). J. Genet. Eng. Biotechnol. 2020, 18. [Google Scholar] [CrossRef]
- Letourneau, F.; Soussotte, V.; Bressollier, P.; Branland, P.; Verneuil, B. Keratinolytic activity of Streptomyces sp. S.K1-02: A new isolated strain. Lett. Appl. Microbiol. 1998, 26, 77–80. [Google Scholar] [CrossRef]
- Li, Q. Structure, Application, and Biochemistry of Microbial Keratinases. Front. Microbiol. 2021, 12, 1–14. [Google Scholar] [CrossRef]
- Dozie, I.N.S.; Okeke, C.N.; Unaeze, N.C. A thermostable, alkaline-active, keratinolytic proteinase from Chrysosporium keratinophilum. World J. Microbiol. Biotechnol. 1994, 10, 563–567. [Google Scholar] [CrossRef] [PubMed]
- Kang, E.; Jin, H.S.; La, J.W.; Sung, J.Y.; Park, S.Y.; Kim, W.C.; Lee, D.W. Identification of keratinases from Fervidobacterium islandicum AW-1 using dynamic gene expression profiling. Microb. Biotechnol. 2020, 13, 442–457. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Akhter, M.; Wal Marzan, L.; Akter, Y.; Shimizu, K. Microbial Bioremediation of Feather Waste for Keratinase Production: An Outstanding Solution for Leather Dehairing in Tanneries. Microbiol. Insights 2020, 13, 117863612091328. [Google Scholar] [CrossRef] [PubMed]
- Jin, H.S.; Park, S.Y.; Kim, K.; Lee, Y.J.; Nam, G.W.; Kang, N.J.; Lee, D.W. Development of a keratinase activity assay using recombinant chicken feather keratin substrates. PLoS ONE 2017, 12, e0172712. [Google Scholar] [CrossRef] [Green Version]
- Herzog, B.; Overy, D.P.; Haltli, B.; Kerr, R.G. Discovery of keratinases using bacteria isolated from marine environments. Syst. Appl. Microbiol. 2015, 39, 49–57. [Google Scholar] [CrossRef]
- Tork, S.E.; Shahein, Y.E.; El-hakim, A.E.; Abdel-aty, A.M.; Aly, M.M. Production and characterization of thermostable metallo-keratinase from newly isolated Bacillus subtilis NRC 3. Int. J. Biol. Macromol. 2013, 55, 169–175. [Google Scholar] [CrossRef]
- Demirkan, E.; Kut, D.; Sevgi, T.; Dogan, M.; Baygin, E. Investigation of effects of protease enzyme produced by Bacillus subtilis 168 E6-5 and commercial enzyme on physical properties of woolen fabric. J. Text. Inst. 2020, 111, 26–35. [Google Scholar] [CrossRef]
- Iglesias, M.S.; Sequeiros, C.; García, S.; Olivera, N.L. Newly isolated Bacillus sp. G51 from Patagonian wool produces an enzyme combination suitable for felt-resist treatments of organic wool. Bioprocess Biosyst. Eng. 2017, 40, 833–842. [Google Scholar] [CrossRef]
- Bohacz, J.; Korniłowicz-Kowalska, T. Fungal diversity and keratinolytic activity of fungi from lignocellulosic composts with chicken feathers. Process Biochem. 2019, 80, 119–128. [Google Scholar] [CrossRef]
- Qu, F.; Chen, Q.; Ding, Y.; Liu, Z.; Zhao, Y.; Zhang, X.; Liu, Z.; Chen, J. Isolation of a feather-degrading strain of bacterium from spider gut and the purification and identification of its three key enzymes. Mol. Biol. Rep. 2018, 45, 1681–1989. [Google Scholar] [CrossRef]
- Gurung, S.K.; Adhikari, M.; Kim, S.W.; Bazie, S.; Kim, S.; Lee, H.G.; Kosol, S.; Lee, H.B.; Lee, Y.S. Discovery of Two Chrysosporium Species with Keratinolytic Activity from Field Soil in Korea. Mycobiology 2018, 46, 260–268. [Google Scholar] [CrossRef] [Green Version]
- Lowry, H.; Randall, R.J. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 1951, 193, 265–275. [Google Scholar] [CrossRef]
- Bockle, B.; Galunsky, B.; Muller, R. Characterization of a Keratinolytic Serine Proteinase from Streptomyces pactum DSM 40530. Appl. Environ. Microbiol. 1995, 61, 3705–3710. [Google Scholar] [CrossRef] [Green Version]
- Fang, Z.; Zhang, J.; Liu, B.; Du, G.; Chen, J. Enhancement of the catalytic efficiency and thermostability of Stenotrophomonas sp. keratinase KerSMD by domain exchange with KerSMF. Microb. Biotechnol. 2016, 9, 35–46. [Google Scholar] [CrossRef]
- Rozs, M.; Manczinger, L.; Vagvolgyi, C.; Kevei, F. Secretion of a trypsin-like thiol protease by a new keratinolytic strain of Bacillus licheniformis. FEMS Microbiol. Lett. 2001, 205, 221–224. [Google Scholar] [CrossRef] [Green Version]
- Macedo, A.J.; Beys da Silva, W.O.; Termignoni, C. Properties of a non collagen-degrading Bacillus subtilis keratinase. Can. J. Microbiol. 2008, 54, 180–188. [Google Scholar] [CrossRef]
- Bakhtiar, S.; Estiveira, R.J.; Hatti-Kaul, R. Substrate specificity of alkaline protease from alkaliphilic Nesterenkonia sp. AL20. Enzym. Microb. Technol. 2005, 37, 534–540. [Google Scholar] [CrossRef]
- Brandelli, A.; Daroit, D.J.; Riffel, A. Biochemical features of microbial keratinases and their production and applications. Appl. Microbiol. Biotechnol. 2010, 85, 1735–1750. [Google Scholar] [CrossRef]
- Makinen, P.; Makinen, K.K.; Syed, S.A. An Endo-Acting Proline-Specific Oligopeptidase from Treponema denticola ATCC 35405 : Evidence of Hydrolysis of Human Bioactive Peptides. Infect. Immun. 1994, 62, 4938–4947. [Google Scholar] [CrossRef] [Green Version]
- Wawrzkiewicz, K.; Łobarzewski, J.; Wolski, T. Intracellular keratinase of Trichophyton gallinae. J. Med. Vet. Mycol. 1987, 261–268. [Google Scholar] [CrossRef]
- Ramnani, P.; Gupta, R. Optimization of medium composition for keratinase production on feather by Bacillus licheniformis RG1 using statistical methods involving response surface methodology. Biotechnol. Appl. Biochem. 2004, 40, 191–196. [Google Scholar]
- Kshetri, P.; Roy, S.S.; Chanu, S.B.; Singh, T.S.; Tamreihao, K.; Sharma, S.K.; Ansari, M.A.; Prakash, N. Valorization of chicken feather waste into bioactive keratin hydrolysate by a newly purified keratinase from Bacillus sp. RCM-SSR-102. J. Environ. Manag. 2020, 273, 111195. [Google Scholar] [CrossRef]
- Busk, P.K.; Lange, L. Classification of fungal and bacterial lytic polysaccharide monooxygenases. BMC Genom. 2015, 16, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Huang, Y.; Busk, P.K.; Herbst, F.A.; Lange, L. Genome and secretome analyses provide insights into keratin decomposition by novel proteases from the non-pathogenic fungus Onygena corvina. Appl. Microbiol. Biotechnol. 2015, 99, 9635–9649. [Google Scholar] [CrossRef] [Green Version]
- Lange, L.; Huang, Y.; Busk, P.K. Microbial decomposition of keratin in nature—A new hypothesis of industrial relevance. Appl. Microbiol. Biotechnol. 2016, 100, 2083–2096. [Google Scholar] [CrossRef] [Green Version]
- Farag, A.M.; Hassan, M.A. Purification, characterization and immobilization of a keratinase from Aspergillus oryzae. Enzym. Microb. Technol. 2004, 34, 85–93. [Google Scholar] [CrossRef]
- Zdarta, J.; Meyer, A.S.; Jesionowski, T.; Pinelo, M. A General Overview of Support Materials for Enzyme Immobilization: Characteristics, Properties, Practical Utility. Catalysts 2018, 8, 92. [Google Scholar] [CrossRef] [Green Version]
- Srivastava, B.; Singh, H.; Khatri, M.; Singh, G.; Arya, S.K. Immobilization of keratinase on chitosan grafted-β-cyclodextrin for the improvement of the enzyme properties and application of free keratinase in the textile industry. Int. J. Biol. Macromol. 2020, 165, 1099–1110. [Google Scholar] [CrossRef]
- Husain, Q. Nanocarriers Immobilized Proteases and Their Industrial Applications: An Overview. J. Nanosci. Nanotechnol. 2018, 18, 486–499. [Google Scholar] [CrossRef]
- Adetunji, C.O.; Adejumo, I.O. Efficacy of crude and immobilised enzymes from Bacillus licheniformis for production of biodegraded feather meal and their assessment on chickens. Environ. Technol. Innov. 2018, 11, 116–124. [Google Scholar] [CrossRef]
- Zhang, Z.; Li, D.; Zhang, X. Enzymatic decolorization of melanoidins from molasses wastewater by immobilized keratinase. Bioresour. Technol. 2019, 280, 165–172. [Google Scholar] [CrossRef] [PubMed]
- Rai, S.K.; Roy, J.K.; Mukherjee, A.K. Application of poly (vinyl alcohol)-assisted silver nanoparticles immobilized β-keratinase composite as topical antibacterial and dehairing agent. J. Proteins Proteom. 2020, 11, 119–134. [Google Scholar] [CrossRef]
- Konwarh, R.; Karak, N.; Rai, S.K. Polymer-assisted iron oxide magnetic nanoparticle immobilized keratinase. Nanotechnology 2009, 20, 225107. [Google Scholar] [CrossRef] [PubMed]
- Rai, S.K.; Mukherjee, A.K. Optimization for production of liquid nitrogen fertilizer from the degradation of chicken feather by iron-oxide (Fe3O4) magnetic nanoparticles coupled β-keratinase. Biocatal. Agric. Biotechnol. 2015, 4, 632–644. [Google Scholar] [CrossRef]
- Wang, J.-J.; Swaisgood, H.E.; Shih, J.C.H. Bioimmobilization of Keratinase Using Bacillus subtilis and Escherichia coli Systems. Biotechnol. Bioeng. 2003, 81, 421–429. [Google Scholar] [CrossRef]
- Rubio, N.R.; Xiang, N.; Kaplan, D.L. Plant-based and cell-based approaches to meat production. Nat. Commun. 2020, 11, 1–11. [Google Scholar] [CrossRef]
- Gong, J.; Ye, J.; Tao, L.; Su, C.; Qin, J.; Zhang, Y.; Li, H. Enzyme and Microbial Technology E ffi cient keratinase expression via promoter engineering strategies for degradation of feather wastes. Enzym. Microb. Technol. 2020, 137, 109550. [Google Scholar] [CrossRef]
- Wang, L.; Qian, Y.; Cao, Y.; Huang, Y.; Chang, Z.; Huang, H. Production and characterization of keratinolytic proteases by a chicken feather-degrading Thermophilic strain, thermoactinomyces sp. YT06. J. Microbiol. Biotechnol. 2017, 27, 2190–2198. [Google Scholar] [CrossRef] [Green Version]
- Bhari, R.; Kaur, M.; Singh, R.S. Thermostable and halotolerant keratinase from Bacillus aerius NSMk2 with remarkable dehairing and laundary applications. J. Basic Microbiol. 2019, 59, 555–568. [Google Scholar] [CrossRef]
- Li, Z.-W.; Liang, S.; Ke, Y.; Deng, J.; Zhang, M.; Lu, D.; Li, J.; Luo, X. The feather degradation mechanisms of a new Streptomyces sp. isolate SCUT-3. Commun. Biol. 2020, 3, 191. [Google Scholar] [CrossRef] [Green Version]
- Yang, L.; Wang, H.; Lv, Y.; Bai, Y.; Luo, H.; Shi, P.; Huang, H.; Yao, B. Construction of a Rapid Feather-Degrading Bacterium by Overexpression of a Highly Efficient Alkaline Keratinase in Its Parent Strain Bacillus amyloliquefaciens K11. J. Agric. Food Chem. 2016, 64, 78–84. [Google Scholar] [CrossRef]
- Mukherjee, A.K.; Rai, S.K.; Bordoloi, N.K. Biodegradation of waste chicken-feathers by an alkaline b -keratinase (Mukartinase) purified from a mutant Brevibacillus sp. strain AS-S10-II. Int. Biodeterior. Biodegrad. 2011, 65, 1229–1237. [Google Scholar] [CrossRef]
- Duarte, T.R.; Oliveira, S.S.; Macrae, A.; Cedrola, S.M.L.; Mazotto, A.M.; Souza, E.P.; Melo, A.C.N. Increased expression of keratinase and other peptidases by Candida parapsilosis mutants. Braz. J. Med. Biol. Res. 2011, 43. [Google Scholar] [CrossRef] [Green Version]
- Hu, H.; He, J.; Yu, B.; Zheng, P.; Huang, Z.; Mao, X.; Yu, J.; Han, G.; Chen, D. Expression of a keratinase (kerA) gene from Bacillus licheniformis in Escherichia coli and characterization of the recombinant enzymes. Biotechnol. Lett. 2013, 35, 239–244. [Google Scholar] [CrossRef]
- Rajput, R.; Tiwary, E.; Sharma, R.; Gupta, R. Swapping of pro-sequences between keratinases of Bacillus licheniformis and Bacillus pumilus: Altered substrate specificity and thermostability. Enzym. Microb. Technol. 2012, 51, 131–138. [Google Scholar] [CrossRef]
- Yong, B.; Fei, X.; Shao, H.; Xu, P.; Hu, Y.; Ni, W.; Xiao, Q.; Tao, X.; He, X.; Feng, H. Recombinant expression and biochemical characterization of a novel keratinase BsKER71 from feather degrading bacterium Bacillus subtilis S1-4. AMB Express 2020, 10. [Google Scholar] [CrossRef]
- Hu, H.; Gao, J.; He, J.; Yu, B.; Zheng, P.; Huang, Z.; Mao, X.; Yu, J.; Han, G.; Chen, D. Codon Optimization Significantly Improves the Expression Level of a Keratinase Gene in Pichia pastoris. PLoS ONE 2013, 8, e005839. [Google Scholar] [CrossRef] [Green Version]
- Cao, H.; Villatoro-Hernandez, J.; Weme, R.D.O.; Frenzel, E.; Kuipers, O.P. Boosting heterologous protein production yield by adjusting global nitrogen and carbon metabolic regulatory networks in Bacillus subtilis. Metab. Eng. 2018, 49, 143–152. [Google Scholar] [CrossRef] [Green Version]
- Hertel, R.; Meyerjürgens, S.; Voigt, B.; Liesegang, H.; Volland, S. Small RNA mediated repression of subtilisin production in Bacillus licheniformis. Sci. Rep. 2017, 7, 5699. [Google Scholar] [CrossRef] [Green Version]
- Zhang, K.; Duan, X.; Wu, J. Multigene disruption in undomesticated Bacillus subtilis ATCC 6051a using the CRISPR/Cas9 system. Nat. Publ. Gr. 2016, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Yusuf, I.; Ahmad, S.A.; Phang, L.Y.; Syed, M.A.; Shamaan, N.A.; Khalil, K.A.; Dahalan, F.A.; Shukor, M.Y. Keratinase production and biodegradation of polluted secondary chicken feather wastes by a newly isolated multi heavy metal tolerant. J. Environ. Manag. 2016, 183, 182–195. [Google Scholar] [CrossRef]
- Arokiyaraj, S.; Varghese, R.; Ali Ahmed, B.; Duraipandiyan, V.; Al-Dhabi, N.A. Optimizing the fermentation conditions and enhanced production of keratinase from Bacillus cereus isolated from halophilic environment. Saudi J. Biol. Sci. 2019, 26, 378–381. [Google Scholar] [CrossRef]
- Ramakrishna Reddy, M.; Sathi Reddy, K.; Ranjita Chouhan, Y.; Bee, H.; Reddy, G. Effective feather degradation and keratinase production by Bacillus pumilus GRK for its application as bio-detergent additive. Bioresour. Technol. 2017, 243, 254–263. [Google Scholar] [CrossRef]
- Burdette, L.A.; Leach, S.A.; Wong, H.T.; Ercek, D.T. Developing Gram—Negative bacteria for the secretion of heterologous proteins. Microb. Cell Fact. 2018, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Baghban, R.; Farajnia, S.; Rajabibazl, M.; Ghasemi, Y.; Mafi, A.; Hoseinpoor, R.; Rahbarnia, L.; Aria, M. Yeast Expression Systems: Overview and Recent Advances. Mol. Biotechnol. 2019, 61, 365–384. [Google Scholar] [CrossRef]
- Huang, M.; Chen, R.; Ren, G. Secretory expression and purification of Bacillus licheniformis keratinase in insect cells. PLoS ONE 2017, 12, e0183764. [Google Scholar] [CrossRef] [Green Version]
- Sharma, R.; Devi, S. Versatility and commercial status of microbial keratinases : A review. Rev. Environ. Sci. Bio/Technol. 2017. [Google Scholar] [CrossRef]
- Callegaro, K.; Welter, N.; Daroit, D.J. Feathers as bioresource: Microbial conversion into bioactive protein hydrolysates. Process Biochem. 2018, 75, 1–9. [Google Scholar] [CrossRef]
- Bezus, B.; Ruscasso, F.; Garmendia, G.; Vero, S.; Cavello, I.; Cavalitto, S. Revalorization of chicken feather waste into a high antioxidant activity feather protein hydrolysate using a novel psychrotolerant bacterium. Biocatal. Agric. Biotechnol. 2021, 32. [Google Scholar] [CrossRef]
- Kshetri, P.; Roy, S.S.; Sharma, S.K.; Singh, T.S.; Ansari, M.A.; Prakash, N.; Ngachan, S.V. Transforming Chicken Feather Waste into Feather Protein Hydrolysate Using a Newly Isolated Multifaceted Keratinolytic Bacterium Chryseobacterium sediminis RCM-SSR-7. Waste Biomass Valorization 2019, 10, 1–11. [Google Scholar] [CrossRef]
- Darewicz, M.; Borawska, J.; Minkiewicz, P.; Iwaniak, A.; Starowicz, P. Biologicznie aktywne peptydy uwalniane z białek żywności. Zywn. Nauk. Technol. Jakosc/Food. Sci. Technol. Qual. 2015, 22, 26–41. [Google Scholar] [CrossRef]
- Białkowska, A.M.; Morawski, K.; Florczak, T. Extremophilic proteases as novel and efficient tools in short peptide synthesis. J. Ind. Microbiol. Biotechnol. 2017, 44, 1325–1342. [Google Scholar] [CrossRef] [PubMed]
- Nwachukwu, I.D.; Aluko, R.E. Structural and functional properties of food protein-derived antioxidant peptides. J. Food Biochem. 2019, 43, e12761. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bechaux, J.; Gatellier, P.; Page, J.L.; Drillet, Y.; Sante-lhoutellier, V. A comprehensive review of bioactive peptides obtained from animal byproducts and their applications. Food Funct. 2019, 6244–6266. [Google Scholar] [CrossRef]
- Qian, D.; Qiu, B.; Zhou, N.; Takaiwa, F.; Yong, W.; Qu, L.Q. Hypotensive Activity of Transgenic Rice Seed Accumulating Multiple Antihypertensive Peptides. J. Agric. Food Chem. 2020, 68, 7162–7168. [Google Scholar] [CrossRef]
- Origone, A.; Bersi, G.; Illanes, A.; Sturniolo, H.; Liggieri, C.; Guzmán, F.; Barberis, S. Enzymatic and chemical synthesis of new anticoagulant peptides. Biotechnol. Prog. 2018, 34, 1093–1101. [Google Scholar] [CrossRef]
- Lermen, A.M.; Clerici, N.J.; Daroit, D.J. Biochemical Properties of a Partially Purified Protease from Bacillus sp. CL18 and Its Use to Obtain Bioactive Soy Protein Hydrolysates. Appl. Biochem. Biotechnol. 2020, 192, 643–664. [Google Scholar] [CrossRef]
- Losurdo, L.; Quintieri, L.; Caputo, L.; Gallerani, R.; Mayo, B.; Leo, F. De Cloning and expression of synthetic genes encoding angiotensin-I converting enzyme (ACE)-inhibitory bioactive peptides in Bifidobacterium pseudocatenulatum. FEMS Microbiol. Lett. 2013, 340, 24–32. [Google Scholar] [CrossRef] [Green Version]
- El-Baky, N.A.; Ahmed, M.; Shawky, E.; Mohammed, M.; Mustafa, E.; Reda, H. De novo expression and antibacterial potential of four lactoferricin peptides in cell-free protein synthesis system. Biotechnol. Rep. 2021, 29, e00583. [Google Scholar] [CrossRef]
- Peng, Z.; Mao, X.; Zhang, J.; Du, G.; Chen, J. Biotransformation of keratin waste to amino acids and active peptides based on cell-free catalysis. Biotechnol. Biofuels 2020, 13, 1–12. [Google Scholar] [CrossRef]
- Tamreihao, K.; Mukaniherjee, S.; Khunjamayum, R.; Devi, L.J.; Asem, R.S.; Ningthoujam, D.S. Feather degradation by keratinolytic bacteria and biofertilizing potential for sustainable agricultural production. J. Basic Microbiol. 2019, 59, 4–13. [Google Scholar] [CrossRef] [Green Version]
- Kaur, M.; Bhari, R.; Singh, R.S. Chicken feather waste-derived protein hydrolysate as a potential biostimulant for cultivation of mung beans. Biologia 2021, 76, 1807–1815. [Google Scholar] [CrossRef]
- Calin, M.; Raut, I.; Arsene, M.L.; Capra, L.; Gurban, A.M.; Doni, M.; Jecu, L. Applications of Fungal Strains with Keratin-degrading and Plant Growth Promoting Characteristics. Agronomy 2019, 9, 543. [Google Scholar] [CrossRef] [Green Version]
- Bhari, R.; Kaur, M.; Sarup Singh, R. Chicken Feather Waste Hydrolysate as a Superior Biofertilizer in Agroindustry. Curr. Microbiol. 2021, 78, 2212–2230. [Google Scholar] [CrossRef]
- Campos, I.; Pinheiro Valente, L.M.; Matos, E.; Marques, P.; Freire, F. Life-cycle assessment of animal feed ingredients: Poultry fat, poultry by-product meal and hydrolyzed feather meal. J. Clean. Prod. 2020, 252. [Google Scholar] [CrossRef]
- Costantini, M.; Ferrante, V.; Guarino, M.; Bacenetti, J. Environmental sustainability assessment of poultry productions through life cycle approaches: A critical review. Trends Food Sci. Technol. 2021, 110, 201–212. [Google Scholar] [CrossRef]
- VALUEWASTE. Unlocking New Value from Urban Waste. Available online: https://valuewaste.eu/available-material/ (accessed on 5 October 2021).
- Callegaro, K.; Brandelli, A.; Daroit, D.J. Beyond plucking: Feathers bioprocessing into valuable protein hydrolysates. Waste Manag. 2019, 95, 399–415. [Google Scholar] [CrossRef]
- Alba, A.C.; Strauch, T.A.; Keisler, D.H.; Wells, K.D.; Kesler, D.C. Using a keratinase to degrade chicken feathers for improved extraction of glucocorticoids. Gen. Comp. Endocrinol. 2019, 270, 35–40. [Google Scholar] [CrossRef]
- Bortolotti, G.R.; Marchant, T.A.; Blas, J.; German, T. Corticosterone in feathers is a long-term, integrated measure of avian stress physiology. Funct. Ecol. 2008, 22, 494–500. [Google Scholar] [CrossRef]
- Bortolotti, G.R.; Marchant, T.; Blas, J.; Cabezas, S. Tracking stress: Localisation, deposition and stability of corticosterone in feathers. J. Exp. Biol. 2009, 212, 1477–1482. [Google Scholar] [CrossRef] [Green Version]
- Ningthoujam, D.S.; Mukherjee, S.; Devi, L.J.; Singh, E.S.; Tamreihao, K.; Khunjamayum, R.; Banerjee, S.; Mukhopadhyay, D. In vitro degradation of β-amyloid fibrils by microbial keratinase. Alzheimer’s Dement. Transl. Res. Clin. Interv. 2019, 5, 154–163. [Google Scholar] [CrossRef]
- Tarrahi, R.; Fathi, Z.; Seydibeyoğlu, M.Ö.; Doustkhah, E.; Khataee, A. Polyhydroxyalkanoates (PHA): From production to nanoarchitecture. Int. J. Biol. Macromol. 2020, 146, 596–619. [Google Scholar] [CrossRef]
- Koller, M. Biodegradable and biocompatible polyhydroxy-alkanoates (PHA): Auspicious microbial macromolecules for pharmaceutical and therapeutic applications. Molecules 2018, 23, 362. [Google Scholar] [CrossRef] [Green Version]
- Elmowafy, E.; Abdal-Hay, A.; Skouras, A.; Tiboni, M.; Casettari, L.; Guarino, V. Polyhydroxyalkanoate (PHA): Applications in drug delivery and tissue engineering. Expert Rev. Med. Devices 2019, 16, 467–482. [Google Scholar] [CrossRef]
- Amelia, T.S.M.; Govindasamy, S.; Tamothran, A.M.; Vigneswari, S.; Bhubalan, K. Applications of PHA in Agriculture. In Biotechnological Applications of Polyhydroxyalkanoates; Springer: Singapore, 2019; pp. 347–361. ISBN 9789811337598. [Google Scholar]
- Nilsen-Nygaard, J.; Fernández, E.N.; Radusin, T.; Rotabakk, B.T.; Sarfraz, J.; Sharmin, N.; Sivertsvik, M.; Sone, I.; Pettersen, M.K. Current status of biobased and biodegradable food packaging materials: Impact on food quality and effect of innovative processing technologies. Compr. Rev. Food Sci. Food Saf. 2021, 20, 1333–1380. [Google Scholar] [CrossRef]
- Wong, J.X.; Ogura, K.; Chen, S.; Rehm, B.H.A. Bioengineered Polyhydroxyalkanoates as Immobilized Enzyme Scaffolds for Industrial Applications. Front. Bioeng. Biotechnol. 2020, 8. [Google Scholar] [CrossRef] [Green Version]
- Volova, T.; Sapozhnikova, K.; Zhila, N. Cupriavidus necator B-10646 growth and polyhydroxyalkanoates production on different plant oils. Int. J. Biol. Macromol. 2020, 164, 121–130. [Google Scholar] [CrossRef]
- Rebocho, A.T.; Pereira, J.R.; Freitas, F.; Neves, L.A.; Alves, V.D.; Sevrin, C.; Grandfils, C.; Reis, M.A.M. Production of medium-chain length polyhydroxyalkanoates by Pseudomonas citronellolis grown in apple pulp waste. Appl. Food Biotechnol. 2019, 6, 71–82. [Google Scholar] [CrossRef]
- Obruca, S.; Sedlacek, P.; Slaninova, E.; Fritz, I.; Daffert, C.; Meixner, K.; Sedrlova, Z.; Koller, M. Novel unexpected functions of PHA granules. Appl. Microbiol. Biotechnol. 2020, 104, 4795–4810. [Google Scholar] [CrossRef]
- Koller, M.; Braunegg, G. Advanced approaches to produce polyhydroxyalkanoate (PHA) biopolyesters in a sustainable and economic fashion. EuroBiotech J. 2018, 2, 89–103. [Google Scholar] [CrossRef] [Green Version]
- Pernicova, I.; Enev, V.; Marova, I.; Obruca, S. Interconnection of waste chicken feather biodegradation and keratinase and mcl-PHA production employing Pseudomonas putida KT2440. Appl. Food Biotechnol. 2019, 6, 83–90. [Google Scholar] [CrossRef]
- Jana, A.; Halder, S.K.; Dasgupta, D.; Hazra, S.; Mondal, P.; Bhaskar, T.; Ghosh, D. Keratinase Biosynthesis from Waste Poultry Feathers for Proteinaceous Stain Removal. ACS Sustain. Chem. Eng. 2020, 8, 17651–17663. [Google Scholar] [CrossRef]
- Gunes, G.B.; Akkoyun, O.; Demir, T.; Bozaci, E.; Demir, A.; Esin Hames, E. Microbial Keratinase Production and Application to Improve the Properties of Wool Fabrics. Int. J. Text. Sci. 2018, 7, 43–47. [Google Scholar] [CrossRef]
- Chandra, R.; Kumar, V.; Tripathi, S. Evaluation of molasses-melanoidin decolourisation by potential bacterial consortium discharged in distillery effluent. 3 Biotech 2018, 8, 187. [Google Scholar] [CrossRef]
- Yoshioka, M.; Miwa, T.; Horii, H.; Takata, M.; Yokoyama, T.; Nishizawa, K.; Watanabe, M.; Shinagawa, M.; Murayama, Y. Characterization of a proteolytic enzyme derived from a Bacillus strain that effectively degrades prion protein. J. Appl. Microbiol. 2007, 102, 509–515. [Google Scholar] [CrossRef]
- Okoroma, E.A.; Purchase, D.; Garelick, H.; Morris, R.; Neale, M.H.; Windl, O.; Abiola, O.O. Enzymatic Formulation Capable of Degrading Scrapie Prion under Mild Digestion Conditions. PLoS ONE 2013, 8, e0068099. [Google Scholar] [CrossRef] [Green Version]
- Sharma, R.; Gupta, R. Coupled action of c -glutamyl transpeptidase-glutathione and keratinase effectively degrades feather keratin and surrogate prion protein, Sup 35NM. Bioresour. Technol. 2012, 120, 314–317. [Google Scholar] [CrossRef]
- Dillon, D.; Fernández Ajó, A.; Hunt, K.E.; Buck, C.L. Investigation of keratinase digestion to improve steroid hormone extraction from diverse keratinous tissues. Gen. Comp. Endocrinol. 2021, 309, 113795. [Google Scholar] [CrossRef]
- Blecher, A.S.; Scheun, J.; Ganswindt, A. Degradation of Temminck’s pangolin (Smutsia temminckii) scales with a keratinase for extraction of reproductive steroid hormones. MethodsX 2021, 8, 101229. [Google Scholar] [CrossRef]
- Lind, M.; Hõrak, P.; Sepp, T.; Meitern, R. Corticosterone levels correlate in wild-grown and lab-grown feathers in green finches (Carduelis chloris) and predict behaviour and survival in captivity. Horm. Behav. 2020, 118, 104642. [Google Scholar] [CrossRef]
- Stewart, N.D.; Reilly, A.; Gilman, C.; Mastromonaco, G.F.; Burness, G. Evidence of degradation of hair corticosterone in museum specimens. Gen. Comp. Endocrinol. 2018, 268, 128–133. [Google Scholar] [CrossRef]
Characteristic | α-Keratin | β-Keratin | γ-Keratin |
---|---|---|---|
Predominant affiliation | mammals, then birds, reptiles, fish and amphibians | mainly birds and reptiles with mammalian exceptions | mammals |
Tissues | epidermis, fibers, nails, hooves, horns, mucus, | feathers, claws, beaks, scales, cuticle, epidermis | epidermis, fibrils cortex and fiber matrix |
Form | filaments | filaments | globular |
Main secondary structures | mainly α-helixes | mainly β-sheets | not determined |
MW [kDa] | 40–80 | 10–22 | 7–35 |
Treatment Method | Physicochemical Factor | Advantages | Disadvantages |
---|---|---|---|
Solubilization | Organic solvents: DMF and DMSO | Powder form product, inhibition of microbial further product degradation, high efficiency process | Precipitation with acetone and drying is necessary, high organic solvent utilization |
Ionic liquids: [BMIM]Cl, [BMIM]Br | Precipitation is necessary (e.g., with acetone or methanol), high cost of ionic liquids, more difficult and less efficient extraction of keratin | ||
Hydrothermal | Steam (80–140 °C; 10–15 psi) | No organic solvents consumption, possible acceleration by acid or base addition | Degradation of thermally unstable amino acids—Gln and Asn; the addition of a base results in additional degradation of Lys, Met, Tyr, Cys; Cys turn into to lysinoalanine and lanthionine; heating proteins leads to racemization of free and bound L-amino acids |
Chemical reduction | Thioglycolate, DTT, β-ME, sodium sulfite and bisulfite in combination with high concentrations of urea, thiourea or surfactants | Efficient hydrogen bonds breaking, formation of poorly water-soluble kerateines with thiols and sulfonates at the site of disulfide bonds; no need for precipitation; cross-linking possibility after adding an oxidant, suitable for self-organizing biomaterials production | Significant consumption of chemical reagents, the process is usually carried out in an alkaline environment |
Chemical oxidation | Peracetic acid or peroxycarboximidic acid | Formation of keratoses with sulfonic acid and cysteic acid groups instead of disulfide bonds; keratoses are hygroscopic, water-soluble and non-crosslinkable | Lower stability of keratoses compared with kerateins, no possibility of recreating disulphide bridges under oxidative conditions |
Alkaline hydrolysis | Strong alkali, temperature 70–80 °C | Highly efficient degradation method | Degradation of Asn, Gln, Arg, Ser, Thr and Cys, formation of lysinoalanines and 8-aminoalanines, racemization of released and bound amino acids; use of concentrated bases |
Acid hydrolysis | Strong acids—concentrated sulfuric acid, hydrochloric acid, high temperature | Breaking the hydrogen bonds increases the content of amorphous keratins | Degradation of Ser, Thr, Tyr, Cys, conversion of Asn, Gln, Met, Trp; the use of concentrated bases; lower efficiency than in other physicochemical methods |
Microbial Source | Protease Type | Substrate | Optimal Temp. [°C] | Optimal pH | MW [kDa] | Potential Application | Essential Additives | Ref. |
---|---|---|---|---|---|---|---|---|
Bacillus thuringiensis MT1 | Metallo | Keratin | 50 | 9 | 80 | Hair degradation | Ba2+, Ca2+, Mg2+, Mn2+ | [25] |
Bacillus licheniformis ALW1 | n.a. | Azokeratin | 65 | 8 | n.a. | Feather degradation | n.a. | [50] |
Bacillus subtilis PF1 | n.a. | Casein | 60 | 9 | n.a. | Detergent formulation | Ca2+, Triton X-100, DMSO | [51] |
Bacillus sp. CL18 | Serine | Azocasein | 55 | 8 | n.a. | Recycling of keratin-rich waste | Ca2+, Mg2+, Triton X-100, DMSO | [52] |
Bacillus sp. AD-W | Serine | Keratin azure | 50 | 10 | 39 | Recycling of keratin-rich waste | Mn2+, DTT | [53] |
Bacillus sp. AD-AA3 | Serine | Keratin azure | 50 | 8 | 29 | Recycling of keratin-rich waste | DTT, β-ME | [53] |
Bacillus subtilis FTC02PR1 | Serine | Azocasein | 60 | 6−11 | 30 | Feather degradation | SDS, Mn2+ | [54] |
Bacillus haynesii ALW2 | n.a. | Keratin | 70 | 8−9 | n.a. | Hide dehairing | n.a. | [55] |
Bacillus amyloliquefaciens S13 | Serine | Keratin azure | 50 | 6.5 | 28 | Feather degradation, Hide dehairing | Ca2+, Mg2+, Zn2+ | [56] |
Bacillus amyloliquefaciens S13 | Serine | Keratin azure | 60 | 8 | 47 | Feather degradation, Hide dehairing | Ca2+, Mg2+, Zn2+ | [56] |
Bacillus subtilis SCK6 | Serine | Keratin | 60 | 10 | 30.95 | Skin dehairing | Cu2+, Co2+ | [57] |
Brevibacillus parabrevis | Serine | Keratin | 60 | 8 | 28 | Hide dehairing | Na+, Ca2+, Triton X-100, Tween-40 | [58] |
Brevibacillus luteolum | n.a. | Keratin azure | 30 | 10 | n.a. | Hair degradation | n.a. | [44] |
Caldicoprobacter algeriensis | Serine | Keratin azure | 50 | 7 | 33.25 | Hide dehairing | Ba2+, Ca2+, Mg2+, Mn2+, Sn2+ | [59] |
Meithermus taiwanensis WR-220 | n.a. | Chicken feather | 65 | 10 | 30 | Recycling of keratin-rich waste | n.a. | [60] |
Chryseobacterium aquifrigidense FANN1 | Metallo | Keratin azure | 40−50 | 8 | n.a. | Detergent formulation; feather degradation | Fe3+, Na+, Ca2+, Al3+, Triton X-100, Tween-80, SDS, DTT, DMSO, acetonitrile | [61] |
Streptomyces sp. G11C | n.a. | Keratin azure | 50 | 9 | n.a. | Recycling of keratin-rich waste | n.a. | [62] |
Streptomyces sp. CHA1 | n.a. | Keratin azure | 50 | 9 | n.a. | Recycling of keratin-rich waste | n.a. | [62] |
Bacillus cereus | n.a. | Azokeratin | n.a. | n.a. | n.a. | Transdermal delivery agent | n.a. | [63] |
Bacillus sp. CSK2 | n.a. | Keratin azure | 60 | 8 | n.a. | Bio-additive in detergents formulation | β-ME, DMSO, Tween-80 | [64] |
Citrobacter diversus | n.a. | Keratin azure | 50 | 8.5−9.5 | n.a. | Feather degradation | n.a. | [65] |
Arthrobacter sp. NFH5 | n.a. | Keratin | 40 | 8 | n.a. | Recycling of keratin-rich waste | n.a. | [66] |
Bacillus altitudinis RBDV1 | n.a. | Keratin azure | 85 | 8 | 43 | Recycling of feather waste | Mg2+, Mn2+, Ba2+, Zn2+, Fe3+, SDS, EDTA, DMSO, β-ME | [67] |
Bacillus cytotoxicus LT-1 | Metallo | Azocasein | 40 | 7 | n.a. | Scavenging activity feather protein hydrolysates | Zn2+, Ca2+, Mg2+, Mn2+ | [68] |
Bacillus cytotoxicus O11-15 | Metallo | Azocasein | 50 | 7 | n.a. | Scavenging activity feather protein hydrolysates | Zn2+, Ca2+, Mg2+, Mn2+ | [68] |
Bacillus cereus | Serine | Casein | 50 | 10 | 38 | Degradation and recycling of keratin waste | Ca2+, Co2+, Mn2+, DTT | [69] |
Bacillus sp. Nnolim-K1 | Metallo | Keratin azure | 60 | 8 | n.a. | Feather degradation | β-ME, Tween-80, Ca2+ | [70] |
Aspergillus stelliformis AUMC 10920 | n.a. | Keratin powder | 50 | 8 | n.a. | Degradation and recycling of keratin waste | n.a. | [71] |
Aspergillus sydowii AUMC 10935 | n.a. | Keratin powder | 50 | 8 | n.a. | Degradation and recycling of keratin waste | n.a. | [71] |
Fusarium brachygibbosum AUMC 10937 | n.a. | Keratin powder | 50 | 8 | n.a. | Degradation and recycling of keratin waste | n.a. | [71] |
Group | Substrate | Assay | References |
---|---|---|---|
Specific/dedicated substrates | Recombinant feather keratin | Absorbance at 280 nm | [79] |
Keratin azure | Absorbance at 595 nm | [74] | |
Azo-keratin | Absorbance at 450 nm | [80] | |
Azocasein | Absorbance at 366 nm | [81] | |
Natural substrates | Casein | Absorbance at 660 nm | [82] |
Cow horn | Absorbance at 280 nm | [76] | |
Wool hair | [83] | ||
Feather | [84] | ||
Feather powder | [85] | ||
Human hair | [86,87] | ||
Synthetic peptides | Suc-Ala-Ala-Pro-Phe-pNA | Absorbance at 405 nm | [88] |
Suc-Ala-Ala-Pro-Leu-pNA | [89] | ||
Bz-Arg-pNA | [88] | ||
Bz-Phe-Val-Arg-pNA | [90] | ||
Bz-Ile-Gly-Glu-Arg-pNA | [91] | ||
Suc-Leu-Leu-Val-Tyr-AMC | Fluorescent assay | [92] | |
Leu-AMC | [93] | ||
Short peptides | Reverse-phase chromatography | [94] |
Keratinolytic Microorganism or Enzyme | Strategy | Result | References |
---|---|---|---|
Bacillus spp., Meiothermus sp., Deinococcus radiodurans | Heterologous expression of keratinase in E. coli, with pET vector | Enhanced production of desired enzyme; expression in less demanding, well-studied microorganism; possibility of expressing enzyme as His-tagged protein on C-terminal end (easy down-stream processing) | [60,119] |
KerBP and KerBL in recombinant E. coli BL21 (DE3) | Switching of propeptide sequences between two different keratinases | Alteration of chaperoning activities; improvement of physicochemical KerBL characteristics | [120] |
BsKER71 | Heterologous expression of keratinase in B. subtilis WB600 | Absence of homologous proteases; high keratinase production; less pathogenic tendencies than E. coli; higher enzyme activity | [121] |
Bacillus spp. | Heterologous expression of keratinase in P. pastoris | Simple maintenance of host microorganism, possibility of cheaper inducers and secretion into the medium (α-factor), relatively simple downstream processing | [122] |
Keratinase from Streptomyces sp. SCUT-3 | Integrating native keratinase gene with an expression vector and transformation to native host | Controllable overexpression of an enzyme in native host; 5.6-fold increased keratinase production | [115] |
Keratinase from Bacillus amyloliquefaciens K11 | Controllable overexpression of an enzyme in native host; 6-fold increased keratinase production | [116] | |
Brevibacillus sp. ASS10II | UV-radiation random mutagenesis | Increased production of keratinase | [117] |
Candida parapsilosis | Ethyl methanesulfonate random mutagenesis | Better keratin-degrading properties of engineered strain | [118] |
Bacillus subtilis | Mutagenesis of sRNA genes, codY and ccpA | Improved expression of heterologous protein | [123] |
Bacillus licheniformis | Antisense aprA deletion | Significant expression of protease aprE gene | [124] |
Bacillus subtilis ATCC 6051a | Multigene deletion of intra- and extracellular proteases and RNases genes | Lower risk of heterologous genes and proteins degradation by native enzymes; increased expression of heterologous genes and increased production of desired enzymes | [125] |
Sector | Commercial Product | Manufacturer | Applications/Functions |
---|---|---|---|
Cosmetic and skin care products | Keratoclean Hydra PB | PROTEOS Biotech | Enzyme acts as an exfoliating, firming, thickening, moisturizing, anti-aging, anti-wrinkle, hair-removing and hair-growth-delaying agent |
Keratoclean PB | PROTEOS Biotech | Enzyme acts as anti-aging, anti-wrinkle, moisturizing, exfoliating, anti-hair growth and cell-renewing agent | |
Keratoclean Sensitive PB | PROTEOS Biotech | Enzyme acts as anti-aging, anti-wrinkle, moisturizing, exfoliating and cell-renewing agent | |
Agriculture | Ronozyme® ProAct | DSM/Novozymes | Enzyme improves digestibility and availability of proteins and amino acids (3–6% increase) in animal feed |
Cibenza DP 100 | Novus International | Enzyme helps to increase availability of valuable nutrients for animal growth and performance, while minimizing negative effects of anti-nutritional factors and undigested protein in animal digestive systems | |
Versazyme® | BioResource International, INc | Enzymes increase availability of energy, proteins, and minerals contained within fiber-rich cell walls or bound up in forms indigestible for livestock | |
Valkerase® | BioResource International, INc | ||
Medicine and medical treatments | Prionzyme TM | Genencor International and Health Protection Agency | Engineered keratinase with increased activity, thermostability, and broader specificity for effective decontamination of medical instruments from prion proteins |
NATE-0853 | Creative Enzymes® | Enzyme used for enzymatic treatment of cells, elementary body (EB) and glycosaminoglycans (GAGs) molecules, in the study of GAGs role of in the invasion of host cells by Chlamydia pneumoniae strains | |
PURE 100 Keratinase | PROTEOS Biotech | Enzyme with wide range of supposed applications, incl. regulation of keratin concentration in pores for blisters and keratinized skin treatment, scars, dermatophytic and nail diseases treatment, as well as epithelial regeneration. |
Group | Representative/Sequence | Function | Source | |
---|---|---|---|---|
Angiotensin-I-Converting Enzymes Inhibitors (ACEI) | VPP | Lowering blood pressure, hypertension treatment | β-casein | Milk and dairy products |
IPP | κ-casein | |||
YGLF; YLFF | β-lactoglobulin | |||
ALPM (β-lactosin) | - | |||
YAEERYPIL; IVF; ADHPFL; RADHP; FRADHPFL; RADHPF; LW | Ovalbumin | Eggs | ||
MNPKK (miopentapeptide A); ITTNP (miopentapeptide B) | Porcine myosin | Meat and meat derivatives | ||
MYPIGA | Porcine β-actin | |||
GAXGLXGP; GAXGPAGPGGIXGERGLXG; GLXGSRGERGERGLXG; GIXGSRGERGPVGPSG | Chicken legs collagen | |||
AAATP | Spanish-dry cured ham | |||
VY | Sardine meat | Fish | ||
LKPNM | Smoked sardine meat | |||
VW; GF; FG; SF; VY; YA; YG | Snail by-product | Gastropods | ||
VLIVP; YLAGNQ; FFL; IYLL; VMNKPG | Soy proteins | Plants | ||
IY; RIY; VWV; WIS | Rapeseed proteins | |||
Antioxidant peptides | VKEAMAPK; AVPYPQR; KVLPVEK; VLPVPEK | Free radical scavenging activity | β-casein | Milk and dairy products |
YFYPEL | αs1-casein | |||
DAQEKLE; DSGVT; IEAEGE; EELDNALN; VPSIDDQEELM | Pork myofibrils | Meat and meat derivatives | ||
FPLEMMPF | Pollock meat proteins | Fish | ||
YAEERYPIL | Ovalbumin | Eggs | ||
LLPHH | Soy β-conglycinin | Plants | ||
Antimicrobial peptides | Isracidin (1–23 fragment of αs1-casein) | Antibacterial, antifungal or antiviral activity | αs1-casein | Milk and dairy products |
165–203 fragment of αs2-casein | αs2-casein | |||
184–209 fragment of β-casein | β-casein | |||
Kappacine (106-169 fragment of κ-casein) | κ-casein | |||
LDT1; LDT2S-S; LDCS-S | α-lactalbumin | |||
Lactoferampin (268–284 fragment of lactoferrin) | lactoferrin | |||
98–112 fragment of lysozyme | lysozyme | Eggs | ||
109–200 fragment of ovotransferrin | ovotransferrin | |||
VTLASHLPSDFTPAVHASLD KFLANVSTVLTSKYR; TSKYR; STVLTSKYR; QADFQKVVAGVANALAHRYH | Bovine α-hemoglobin | Blood | ||
Nisin | Lactococcus lactis | |||
Bacitracin | Bacillus licheniformis, Bacillus subtilis | |||
Polymyxin B | Bacillus polymyxa | |||
Tyrothricin (mixture of cyclic polypeptides) | Bacillus brevis | |||
Gramicidin (mixture of gramicidin A, B and C) | Bacillus brevis | |||
Anti-amnesic peptides/Prolyl Endopeptidases (PEP) Inhibitors | Fragments of β-casein | Inhibition of prolyl endopeptidase (e.g., dipeptidyl peptidase IV; DPP IV) potentially responsible (when in increased concentrations) for memory loss and cognition disturbance; potential co-treatment of neurodegenerative diseases and type 2 diabetes | β-casein | Milk |
HLPPPV | maize γ-zein | Plants | ||
LLSPWNINA | By-product | Sake production | ||
GPGSPGGPL; GPVGXAGPPGK; GPM(O)GPXGVK; GPVGPSGPXGK; GPAGPXGVXGL | Deer collagen | Meat and meat derivatives | ||
Opioid peptides | YPFPGPIPNSL (β-casomorphin-11) | Ligands of opioid receptors; pain relief, relaxing properties, regulative towards libido, body temperature and appetite; potentially inducing psychological disorders | Bovine β-casein | Milk |
YPFPGPI (β-casomorphin-7) | ||||
YPFPG (β-casomorphin-5) | ||||
YLGYLE (90-96 fragment of αs1-casein | αs1-casein | |||
Hemorphins | Β-chain of hemoglobin | Blood | ||
Taste-active peptides | Gurmarin | Sweet, taste-suppressing peptide | Gymnema sylvestre | Plants |
DF-OMe (aspartame) | Sweet taste; common sweetener | Synthetic pathways | ||
RP; RA; AR; RG; RS; RV; VR; RM | Salty taste, potential replacement of kitchen salt for people with hypertension and/or diabetes; | Fish proteins | Fish | |
AQTQSLVYPFPGPIPNSLPQNIPPLTQ; GPFPVIPPVAPPEVPGK; PALPEYLK; RGPPFIV; VYPFPPGINH; cyclic LWLW | Bitter taste | Bovine casein | Milk | |
KGDEESLA | Umami taste | Bovine broth | Meat and meat derivatives | |
GD; DE; EE; KG; GDG; AEA; VEV; DL; EEE | Various | |||
Micro- and macro-elements binding peptides | Caseinphosphopeptides (CPPs): | Metal-ion-binding peptides; increasing bioavailability of Ca2+, Zn+, Cu2+, Mn2+ and Fe3+ | αs1-casein | Milk and dairy products |
59–79 and 64–84 fragments of αs1-casein | ||||
1–21 and 46–70 fragments of αs2-casein | αs2-casein | |||
1–5 fragment of β-casein | β-casein | |||
147–153 fragment of κ-casein | κ-casein | |||
FLDDLTD; ILDK | Calcium-binding peptides | Whey α-lactalbumin | ||
IPAVFK; VYVEELK | Whey β-lactoglobulin | |||
LPTGPKS | Iron-biding peptide | Shrimp proteins | Crustaceans | |
Fish-bone phosphopeptide (FBP) | Calcium-biding peptide | Johnius belengerii bone proteins | Fish | |
Bio-surfactant peptides | Surfactin (cyclic lipopeptide) | Decreasing water’s surface tension (also acting as an antibiotic) | Bacillus subtilis |
Microorganism or Enzyme | Keratin Waste | Plant | Plant Cultivation Promoting Properties |
---|---|---|---|
Bacillus subtilis | − | − | P solubilization, IAA and ammonia production, antifungal activity (hydrogen cyanide synthesis) |
Trichoderma asperellum T50, T. atroviride | Feathers or wool | Solanum lycopersicum (tomato) | Proton pump activation, seedling stimulation |
Bacillus thuringiensis, Bacillus sphaericus | − | − | Insecticidal activity (towards Phlebotominae subfamily) |
Bacillus cereus | Feather | Oryza sativa (rice seeds) | Enhanced growth, increased shoot and root lengths, |
Streptomyces sp. | − | − | P solubilization, IAA, amonnia and siderophore production, antifungal activity, |
Bacillus aerius NSMk2 | Feathers | Vigna radiata (mung bane) | IAA production, faster speed germination, increased amount of DNA, RNA and total protein in root tips, overall enhancement of plant development |
Thermoactinomyctes sp. | Feathers | Cicer arietinum (gram seeds) | Faster seed germination, plant height improvement |
Stenotophomonas maltophilia | − | − | IAA and ammonia production, inhibition of Botrytis cinerea, Colletotrichum gloeosporioides, Fusarium oxysporum and Pythium ultimum growth |
Chyrsobacterium sp. RBT | Feathers | Musa spp. (banana) | Higher antioxidant potential of fruits (increased phenolics and flavonoids content) |
Promatex® (Bacillus spp.) | Wool | Zea mays L. (maize seeds) | Modification of cellulose, protein and phenolics content in maize leaves, antifungal activities |
Esperase® (Bacillus lentus) | |||
Valkerase® (Bacillus licheniformis) |
Microorganism and/or Enzyme | Keratin-Rich Waste | Bioconversion Conditions | Results |
---|---|---|---|
Chryseobacterium sediminis RCM-SSR- 7 | Poultry feathers | 50 g/L feathers, 30 °C, pH 7.5, 84 h | Higher digestibility, amino acids enrichment |
Chryseobacterium sp. kr6 | 50 g/L feathers, 30 °C, 120 h | Higher biological value, digestibility and amino acids content | |
Bacillus sp. MPTK6 | 30 g/L feathers, 30 °C, pH 10, 48 h | Higher digestibility | |
Bacillus subtilis AMR | 10 g/L feathers, 26 °C, pH 8.0, 144 h | Mixed with cornmeal (26% of hydrolysate), higher nutritional value | |
Vibrio sp. kr2 | 60 g/L feathers, 30 °C, pH 6.0, 168 h | Partial replacement of soybean protein in feed, higher digestibility and biological value than feather meal, supplementation of diet with methionine | |
Bacillus pumilus A1 | Wool waste | 50 g/L wool, 45 °C, pH 10.0, 48 h | Higher digestibility than un-treated wool waste |
Bacillus pumilus A1 | Milled feathers | 50 g/L milled feathers, 45 °C, pH 10.0, 48 h | Improved growth of Wistar rats by 2.5% and 5% of hydrolysate to standard diet |
Keratinolytic Microorganism or Enzyme | Substrate/Additive | Process Parameters | Industry | Ref. |
---|---|---|---|---|
Bacillus pumilus GRK | Commercially available detergents (CAD) | 60 °C, 1 h | Detergent | [128] |
Citrobacter diversus | 30 °C, 1 h | [65] | ||
Bacillus cereus IIPK35 | 35 °C, 0.5 h, 6 mg/mL CAD | [169] | ||
Chryseobacterium aquifrigidense FANN1 | 30 °C, pH 8.0, 1 h, 0.7% (w/v) of detergent | [61] | ||
Bacillus subtilis PF1 | 50 °C, 1 h | [51] | ||
Brevibacillus sp. AS-S10-II | 100 °C, 1 h | [47] | ||
Bacillus aerius NSMk2 | 4 °C, 30 min−2 h, 1% CAD | [114] | ||
Goat skin | 37 °C, pH 8.0, 15 h | Leather | ||
Brevibacterium luteolum MTCC 5982 | Goat skin | − | [44] | |
Bacillus subtilis S14 | Bovine skin | 24 °C, pH 9.0, 9 h | [91] | |
Caldicoprobacter algeriensis TH7C1 | Goat, sheep and bovine skins | 30 °C, pH 8.0, 12 h | [59] | |
Bacillus amyloliquefaciens S13 | Sheep, goat, bovine skin | 30 °C, 10 h | [56] | |
Brevibacillus parabrevis CGMCC 10798 | Goat skin | 37 °C, 7 h | [58] | |
Laceyella sacchari YNH | Goat skin | 37 °C, pH 10.0, 1 h | Leather | [73] |
Blood-stained fabric | Detergent | |||
Chocolate-stained fabric | Detergent | |||
Bacillus cereus | Cow skin | 37 °C, 16 h | Leather | [78] |
Pseudomonas sp. | ||||
Recombinant keratinase from B. licheniformis | Wool fabrics | 50 °C, pH 8.5, 2 h, 0.5 g/L non-ionic surfactant | Textile | [103] |
Bacillus sp. G51 | Merino wool | 50 °C, pH 8.0, 2 h | [83] | |
Bacillus subtilis 168 E6-5 | Wool fabric | 55 °C, pH 7.0, 1 h | [82] | |
Streptomyces sp. 2M21 | Wool fabric | 37 °C, pH 8.0, 1 h, 0.5 g/L non-ionic surfactant | [170] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sypka, M.; Jodłowska, I.; Białkowska, A.M. Keratinases as Versatile Enzymatic Tools for Sustainable Development. Biomolecules 2021, 11, 1900. https://doi.org/10.3390/biom11121900
Sypka M, Jodłowska I, Białkowska AM. Keratinases as Versatile Enzymatic Tools for Sustainable Development. Biomolecules. 2021; 11(12):1900. https://doi.org/10.3390/biom11121900
Chicago/Turabian StyleSypka, Marcin, Iga Jodłowska, and Aneta M. Białkowska. 2021. "Keratinases as Versatile Enzymatic Tools for Sustainable Development" Biomolecules 11, no. 12: 1900. https://doi.org/10.3390/biom11121900
APA StyleSypka, M., Jodłowska, I., & Białkowska, A. M. (2021). Keratinases as Versatile Enzymatic Tools for Sustainable Development. Biomolecules, 11(12), 1900. https://doi.org/10.3390/biom11121900