The Effects of Calcium, Magnesium, Phosphorus, Fluoride, and Lead on Bone Tissue
Abstract
:1. Introduction
2. Calcium (Ca)
3. Magnesium (Mg)
4. Phosphorus (P)
5. Fluorine (F)
6. Lead (Pb)
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Osterhoff, G.; Morgan, E.F.; Shefelbine, S.J.; Karim, L.; McNamara, L.M.; Augat, P. Bone mechanical properties and changes with osteoporosis. Injury 2016, 47, 11–20. [Google Scholar] [CrossRef] [Green Version]
- Kini, U.; Nandeesh, B.N. Physiology of Bone Formation, Remodeling, and Metabolism. In Radionuclide and Hybrid Bone Imaging; Fogelman, I., Gnanasegaran, G., van der Wall, H., Eds.; Springer: Berlin/Heidelberg, Germany, 2012; pp. 29–57. ISBN 978-3-642-02400-9. [Google Scholar]
- Vidaud, C.; Bourgeois, D.; Meyer, D. Bone as Target Organ for Metals: The Case of f-Elements. Chem. Res. Toxicol. 2012, 25, 1161–1175. [Google Scholar] [CrossRef]
- Wang, L.; Yu, H.; Yang, G.; Zhang, Y.; Wang, W.; Su, T.; Ma, W.; Yang, F.; Chen, L.; He, L.; et al. Correlation between bone mineral density and serum trace element contents of elderly malesin Beijing urban area. Int. J. Clin. Exp. Med. 2015, 8, 19250. [Google Scholar]
- Wang, N.; Xie, D.; Wu, J.; Wu, Z.; He, H.; Yang, Z.; Yang, T.; Wang, Y. Selenium and bone health: A protocol for a systematic review and meta-analysis. BMJ Open 2020, 26, e036612. [Google Scholar] [CrossRef]
- Gaffney-Stomberg, E. The Impact of Trace Minerals on Bone Metabolism. Biol. Trace Elem. Res. 2019, 188, 26–34. [Google Scholar] [CrossRef]
- Richardson, R.B. A physiological skeletal model for radionuclide and stable element biokinetics in children and adults. Health Phys. 2010, 99, 471–482. [Google Scholar] [CrossRef] [PubMed]
- Drouet, C.; Carayon, M.T.; Combes, C.; Rey, C. Surface enrichment of biomimetic apatites with biologically-active ions Mg(2+) and Sr(2+): A preamble to the activation of bone repair materials. Mater. Sci Eng. 2008, 28, 1544–1550. [Google Scholar] [CrossRef] [Green Version]
- Cazalbou, S.; Eichert, D.; Ranz, X.; Drouet, C.; Combes, C.; Harmand, M.F.; Rey, C. Ion exchanges in apatites for biomedical application. J. Mater. Sci. Mater. Med. 2005, 16, 405–409. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Durbin, P.W. Actinides in Animals and Man. In The Chemistry of the Actinide and Transactinide Elements, 2nd ed.; Morss, L.R., Edelstein, N.M., Fuger, J., Eds.; Springer: New York, NY, USA, 2006; Volume 4, pp. 3339–3440. [Google Scholar]
- Brodziak-Dopierała, B.; Kwapuliński, J.; Rzepka, J.; Nogaj, E.; Bogunia, M.; Ahnert, B. Influence of smoking tobacco on the occurrence metals in some parts and profiles of femur head. Przeglad Lekarski 2007, 64, 720–722. [Google Scholar] [PubMed]
- Beto, J.A. The role of calcium in human aging. Clin. Nutr Res. 2015, 4, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Fischer, V.; Ignatius, A.; Haffner-Luntzer, M.; Amling, M. Calcium and vitamin D in bone fracture healing and post-traumatic bone turnover. Eur. Cells Mater. 2018, 35, 365–385. [Google Scholar] [CrossRef]
- Zhu, K.; Prince, R.L. Calcium and bone. Clin. Biochem. 2012, 45, 936–942. [Google Scholar] [CrossRef] [PubMed]
- Zhu, K.; Greenfield, H.; Zhang, Q.; Du, X.; Ma, G.; Foo, L.; Cowel, C.T.; Fraser, D.R. Growth and bone mineral accretion during puberty in Chinese girls: A five-year longitudinal study. J. Bone Miner. Res. 2008, 23, 167–172. [Google Scholar] [CrossRef]
- Kalkwarf, H.J.; Khoury, J.C.; Lanphear, B.P. Milk intake during childhood and adolescence, adult bone density, and osteoporotic fractures in US women. Am. J. Clin. Nutr. 2003, 77, 257–265. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goulding, A.; Rockell, J.E.; Black, R.E.; Grant, A.M.; Jones, I.E.; Williams, S.M. Children who avoid drinking cow's milk are at increased risk for prepubertal bone fractures. J. Am. Diet. Assoc. 2004, 104, 250–253. [Google Scholar] [CrossRef] [PubMed]
- Cashman, K.; Flynn, A. Optimal nutrition: Calcium, magnesium and phosphorus. Proc. Nutr. Soc. 1999, 58, 477–487. [Google Scholar] [CrossRef] [Green Version]
- Bonjour, J.P.; Carrie, A.L.; Ferrari, S.; Clavien, H.; Slosman, D.; Theintz, G.; Rizzoli, R. Calcium-enriched foods and bone mass growth in prepubertal girls: A randomized, double-blind, placebo-controlled trial. J. Clin. Investig. 1997, 99, 1287–1294. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Winzenberg, T.; Shaw, K.; Fryer, J.; Jones, G. Effects of calcium supplementation on bone density in healthy children: Meta-analysis of randomised controlled trials. BMJ 2006, 333, 775. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huncharek, M.; Muscat, J.; Kupelnick, B. Impact of dairy products and dietary calcium on bone-mineral content in children: Results of a meta-analysis. Bone 2008, 43, 312–321. [Google Scholar] [CrossRef]
- Matkovic, V.; Goel, P.K.; Badenhop-Stevens, N.E.; Landoll, J.D.; Li, B.; Ilich, J.Z.; Skugor, M.; Nagode, L.A.; Mobley, S.L.; Ha, E.J.; et al. Calcium supplementation and bone mineral density in females from childhood to young adulthood: A randomized controlled trial. Am. J. Clin. Nutr. 2005, 81, 175–188. [Google Scholar] [CrossRef] [Green Version]
- Shea, B.; Wells, G.; Cranney, A.; Zytaruk, N.; Robinson, V.; Griffith, L.; Ortiz, Z.; Peterson, J.; Adachi, J.; Tugwell, P.; et al. Meta-analysis of calcium supplementation for the prevention of postmenopausal osteoporosis. Endocr. Rev. 2002, 23, 552–559. [Google Scholar] [CrossRef]
- New, S.A.; Robins, S.P.; Campbell, M.K.; Martin, J.C.; Garton, M.J.; Bolton- Smith, C.; Grubb, D.A.; Lee, S.J.; Reid, D.M. Dietary influences on bone mass and bone metabolism: Further evidence of a positive link between fruit and vegetable consumption and bone health? Am. J. Clin. Nutr. 2000, 71, 142–151. [Google Scholar] [CrossRef] [Green Version]
- Bergwitz, C.; Jüppner, H. Regulation of Phosphate Homeostasis by PTH, Vitamin D, and FGF23. Annu. Rev. Med. 2010, 61, 91–104. [Google Scholar] [CrossRef] [Green Version]
- Shimada, T.; Mizutani, S.; Muto, T.; Yoneya, T.; Hino, R.; Takeda, S.; Takeuchi, Y.; Fujita, T.; Fukumoto, S.; Yamashita, T. Cloning and characterization of FGF23 as a causative factor of tumor-induced osteomalacia. Proc. Natl. Acad. Sci. 2001, 98, 6500–6505. [Google Scholar] [CrossRef] [Green Version]
- Weber, T.J.; Liu, S.; Indridason, O.S.; Quarles, D.L. Serum FGF23 levels in normal and disordered phosphorus homeostasis. J. Bone Miner. Res. 2003, 18, 1227–1234. [Google Scholar] [CrossRef]
- Yamazaki, Y.; Okazaki, R.; Shibata, M.; Hasegawa, Y.; Satoh, K.; Tajima, T.; Takeuchi, Y.; Fujita, T.; Nakahara, K.; Yamashita, T.; et al. Increased circulatory level of biologically active full-length FGF-23 in patients with hypophosphatemic rickets/osteomalacia. J. Clin. Endocrinol. Metab. 2002, 87, 4957–4960. [Google Scholar] [CrossRef] [PubMed]
- Theobald, H.E. Dietary calcium and health. Nutr. Bull. 2005, 30, 237–277. [Google Scholar] [CrossRef]
- Szeleszczuk, Ł.; Kuras, M. The importance of calcium in human metabolism and factors influencing its bioavailability in the diet. Biuletyn Wydziału Farmaceutycznego Warszawski Uniwersytet Medyczny 2014, 3, 16–22. (In polish) [Google Scholar]
- Alswat, K.A. Gender Disparities in Osteoporosis. J. Clin. Med. Res. 2017, 9, 382–387. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Theethira, T.G.; Dennis, M.; Leffler, D.A. Nutritional consequences of celiac disease and the gluten-free diet. Exp. Rev. Gastroent. Hepat. 2014, 8, 123–129. [Google Scholar] [CrossRef]
- Raszeja-Wyszomirska, J.; Miazgowski, T. Osteoporosis in primary biliary cirrhosis of the liver. Przeglad Gastroenterologiczny 2014, 9, 82–87. [Google Scholar] [CrossRef] [Green Version]
- Trotta, L.; Biagi, F.; Bianchi, P.I.; Marchese, A.; Vattiato, C.; Balduzzi, D.; Collesano, V.; Corazza, G.R. Dental enamel defects in adult coeliac disease: Prevalence and correlation with symptoms and age at diagnosis. Eur. J. Int. Med. 2013, 24, 832–834. [Google Scholar] [CrossRef]
- Łanocha-Arendarczyk, N.; Kosik-Bogacka, D.I.; Kalisinska, E.; Sokolowski, S.; Kolodziej, L.; Budis, H.; Safranow, K.; Kot, K.; Ciosek, Ż.; Tomska, N.; et al. Influence of Environmental Factors and Relationships between Vanadium, Chromium, and Calcium in Human Bone. Biomed. Res. Int. 2016, 2016, 8340425. [Google Scholar] [CrossRef] [Green Version]
- Brodziak-Dopierała, B.; Kwapuliński, J.; Sobczyk, K.; Wiechuła, D. Distribution of magnesium, calcium, sodium and potassium in tissues of the hip joint. Magnes. Res. 2013, 26, 125–131. [Google Scholar] [CrossRef] [PubMed]
- Wolff, W.A.; Kerr, E.G. Composition of human bone in chronic fluoride poisoning. Am. J. Med. Sci. 1938, 195, 493–497. [Google Scholar] [CrossRef]
- Yoshinaga, J.; Suzuki, T.; Morita, M.; Hayakawa, M. Trace elements in ribs of elderly people and elemental variation in the presence of chronic diseases. Sci. Total Environ. 1995, 162, 239–252. [Google Scholar] [CrossRef]
- Zaichick, V.; Zaichick, S.; Karandashev, V.; Nosenko, S. The effect of age and gender on Al, B, Ba, Ca, Cu, Fe, K, Li, Mg, Mn, Na, P, S, Sr, V, and Zn contents in rib bone of healthy humans. Biol. Trace Elem. Res. 2009, 129, 107–115. [Google Scholar] [CrossRef] [PubMed]
- Samudralwar, D.L.; Robertson, J.D. Determination of major and trace elements in bones by simultaneous PIXE/PIGE analysis. J. Radioanal. Nucl. Chem. Artic. 1993, 169, 259–267. [Google Scholar] [CrossRef]
- Roczniak, W.; Brodziak-Dopierała, B.; Cipora, E.; Mitko, K.; Jakóbik-Kolon, A.; Konieczny, M.; Babuśka-Roczniak, M. The Content of Structural and Trace Elements in the Knee Joint Tissues. Int J. Environ. Res. Public Health 2017, 14, 1441. [Google Scholar] [CrossRef] [Green Version]
- Zioła-Frankowska, A.; Kubaszewski, Ł.; Dąbrowski, M.; Kowalski, A.; Rogala, P.; Strzyżewski, W.; Łabędź, W.; Uklejewski, R.; Nowotny, K.; Kanicky, V.; et al. The content of the 14 metals in cancellous and cortical bone of the hip joint affected by osteoarth. Biomed. Res. Int. 2015, 2015, 815648. [Google Scholar] [CrossRef] [PubMed]
- Brodziak-Dopierała, B.; Kwapuliński, J.; Kusz, D.; Gajda, Z.; Sobczyk, K. Interactions between concentrations of chemical elements in human femoral heads. Arch. Environ. Contam. Toxicol. 2009, 57, 203–210. [Google Scholar] [CrossRef]
- Brodziak-Dopierała, B.; Kowol, J.; Kwapuliński, J.; Kusz, D.; Cieliński, Ł. Lead and Calcium Content in the Human Hip Joint. Biol. Trace Elem. Res. 2011, 144, 6–16. [Google Scholar] [CrossRef]
- Wiechuła, D.; Jurkiewicz, A.; Loska, K. An assessment of natural concentrations of selected metals in the bone tissues of the femur head. Sci. Total Environ. 2008, 15, 161–167. [Google Scholar] [CrossRef] [PubMed]
- Kuo, H.W.; Kuo, S.M.; Chou, C.H.; Lee, T.C. Determination of 14 elements in Taiwanese bones. Sci. Total Environ. 2000, 22, 45–54. [Google Scholar] [CrossRef]
- Jurkiewicz, A.; Wiechuła, D.; Nowak, R.; Gaździk, T.; Loska, K. Metal content in femoral head spongious bone of people living in regions of different degrees of environmental pollution in Southern and Middle Poland. Ecotoxicol. Environ. Saf. 2004, 59, 95–101. [Google Scholar] [CrossRef] [PubMed]
- Jurkiewicz, A.; Wiechuła, D.; Loska, K. Cigarette smoking as factor influencing mineral content of head of femur in people with osteoporosis. J. Orthop. Trauma Surg. Rel. Res. 2008, 2, 17–24. [Google Scholar]
- Brodziak-Dopierała, B.; Kosterska, E.; Kwapuliński, J. Metal content in horizontally and vertically cut profiles of femur heads of women and men. Ann. Acad. Med. Silesien 2006, 60, 511–515. [Google Scholar]
- Zhang, Y.; Cheng, F.; Wang, Y.; Zhang, G.; Liao, W.; Tang, T.; Huang, Y.; He, W. Investigation of elemental content distribution in femoral head slice with osteoporosis by SRXRF microprobe. Biol. Trace Elem. Res. 2005, 10, 177–185. [Google Scholar] [CrossRef]
- Brodziak-Dopierała, B.; Kwapuliński, J.; Kowol, J.; Sobczyk, K.; Gajda, Z. The application of principal component analysis to interpretation of occurrence of metal in the femur head. Pol. J. Environ. Stud. 2010, 19, 49–58. [Google Scholar]
- Zaichick, S.; Zaichick, V. The effect of age and gender on 38 chemical element contents in human femoral neck investigated by instrumental neutron activation analysis. Biol. Trace Elem. Res. 2010, 137, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Karaaslan, F.; Mutlu, M.; Mermerkaya, M.U.; Karaoğlu, S.; Saçmaci, Ş.; Kartal, Ş. Comparison of bone tissue trace-element concentrations and mineral density in osteoporotic femoral neck fractures and osteoarthritis. Clin. Interv. Aging 2014, 18, 1375–1382. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zaichick, S.; Zaichick, V. The effect of age and gender on 38 chemical element contents in human iliac crest investigated by instrumental neutron activation analysis. J. Trace Elem. Med. Biol. 2010, 24, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Maguire, M.E.; Cowan, J.A. Magnesium chemistry and biochemistry. Biometals 2002, 15, 203–210. [Google Scholar] [CrossRef]
- Swaminathan, R. Magnesium metabolism and its disorders. Clin. Biochem. Rev. 2003, 24, 47–67. [Google Scholar] [PubMed]
- Sun-Edelstein, C.; Mauskop, A. Role of magnesium in the pathogenesis and treatment of migraine. Expert Rev. Neurother. 2009, 9, 369–379. [Google Scholar] [CrossRef]
- Guerrera, M.P.; Volpe, S.L.; Mao, J.J. Therapeutic uses of magnesium. Am. Fam. Phys. 2009, 80, 157–162. [Google Scholar]
- Zawadzka, M.; Pilarska, E. Magnesium preparations for the treatment of migrane- review of selected literature. Neurologia Dziecięca 2012, 21, 35–39. (In polish) [Google Scholar]
- Pardutz, A.; Vecsei, L. Should magnesium be given to every migraineur? J. Neural. Transm. 2012, 119, 581–585. [Google Scholar] [CrossRef]
- Van Orden, R.; Eggett, D.L.; Franz, K.B. Influence of graded magnesium deficiencies on white blood cell counts and lymphocyte subpopulations in rats. Magnes. Res. 2006, 19, 93–101. [Google Scholar]
- Bancerz, B.; Duś-Żuchowska, M.; Cichy, W.; Matusiewicz, H. The effects of magnesium on human health. Prz. Gastroenterol. 2012, 7, 359–366. (In polish) [Google Scholar] [CrossRef] [Green Version]
- Saris, N.E.; Mervaala, E.; Karppanen, H.; Khawaja, J.A.; Lewenstam, A. Magnesium. An update on physiological, clinical and analytical aspects. Clin. Chim. Acta 2000, 294, 1–26. [Google Scholar] [CrossRef]
- Leidi, M.; Dellera, F.; Mariotti, M.; Maier, J.A. High magnesium inhibits human osteoblast differentiation in vitro. Magnes. Res. 2011, 24, 1–6. [Google Scholar] [CrossRef]
- Castiglioni, S.; Cazzaniga, A.; Albisetti, W.; Maier, J. Magnesium and Osteoporosis: Current State of Knowledge and Future Research Directions. Nutrients 2013, 5, 3022–3033. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Belluci, M.M.; Giro, G.; del Barrio, R.A.; Pereira, R.M.; Marcantonio, E.; Orrico, S.R. Effects of magnesium intake deficiency on bone metabolism and bone tissue around osseointegrated implants. Clin. Oral Impl Res. 2011, 716–721. [Google Scholar] [CrossRef]
- Buda, A.; Püsküllüogˇlu, M. Mechanisms of magnesium loss during treatment with cetuximab and panitumumab. Onkologia w Praktyce Klinicznej 2012, 8, 143–150. (In polish) [Google Scholar]
- Tucker, K.L.; Hannan, M.T.; Chen, H.; Cupples, L.A.; Wilson, P.W.F.; Kiel, D.P. Potassium, magnesium, and fruit and vegetable intakes are associated with greater mineral density in elderly men and women. Am. J. Clin. Nutr. 1999, 69, 727–736. [Google Scholar] [CrossRef] [PubMed]
- Orchard, T.S.; Larson, J.C.; Alghothani, N.; Bout-Tabaku, S.; Cauley, J.A.; Chen, Z.; LaCroix, A.; Wactawski-Wende, J.; Jackson, R.D. Magnesium intake, bonemineral density, and fractures: Results from the Women’s Health Initiative Observational Study. Am. J. Clin. Nutr. 2014, 99, 926–933. [Google Scholar] [CrossRef] [Green Version]
- Astor, M.; Løvås, K.; Wolff, A.; Nedrebø, B.; Bratland, E.; Steen-Johnsen, J.; Husebye, E. Hypomagnesemia and functional hypoparathyroidism due to novel mutations in the Mg-channel TRPM6. Endocr. Connect. 2015, 1, 215–222. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sahota, O.; Mundey, M.K.; San, P.; Godber, I.M.; Hosking, D.J. Vitamin D insufficiency and the blunted PTH response in established osteoporosis: The role of magnesium deficiency. Osteoporos. Int. 2006, 17, 1013–1021. [Google Scholar] [CrossRef] [PubMed]
- Saggese, G.; Federico, G.; Bertelloni, S.; Baroncelli, G.I.; Calisti, L. Hypomagnesemia and the parathyroid hormone-vitamin D endocrine system in children with insulin-dependent diabetes mellitus: Effects of Mg administration. J. Pediatr. 1991, 118, 220–225. [Google Scholar] [CrossRef]
- Nielsen, F.H. Magnesium deficiency and increased inflammation: Current perspectives. J. Inflamm. Res. 2018, 11, 25–34. [Google Scholar] [CrossRef] [Green Version]
- Amarasekara, D.S.; Yu, J.; Rho, J. Bone Loss Triggered by the Cytokine Network in Inflammatory Autoimmune Diseases. J. Immunol. Res. 2015, 2015, 832127. [Google Scholar] [CrossRef]
- Mazur, A.; Maier, J.A.; Rock, E.; Gueux, E.; Nowacki, W.; Rayssiguier, Y. Magnesium and the inflammatory response: Potential physiopathological implications. Arch. Biochem. Biophys. 2007, 458, 48–56. [Google Scholar] [CrossRef]
- Ginaldi, L.; Di Benedetto, M.; De Martinis, M. Osteoporosis, inflammation and ageing. Immun. Ageing 2005, 2, 14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wei, S.; Kitaura, H.; Zhou, P.; Ross, F.P.; Teitelbaum, S.L. IL-1 mediates TNF-induced osteoclastogenesis. J. Clin. Invest. 2005, 115, 282–290. [Google Scholar] [CrossRef] [Green Version]
- Moffett, S.P.; Zmuda, J.M.; Oakley, J.I.; Beck, T.J.; Cauley, J.A.; Stone, K.L.; Lui, L.Y.; Ensrud, K.E.; Hillier, T.A.; Hochberg, M.C.; et al. Tumor necrosis factor-alpha polymorphism, bone strength phenotypes, and the risk of fracture in older women. J. Clin. Endocrinol. Metab. 2005, 90, 3491–3497. [Google Scholar] [CrossRef] [Green Version]
- Scheidt-Nave, C.; Bismar, H.; Leidig-Bruckner, G.; Woitge, H.; Seibel, M.J.; Ziegler, R.; Pfeilschifter, J. Serum interleukin 6 is a major predictor of bone loss in women specific to the first decade post menopause. J. Clin. Endocrinol. Metab. 2001, 86, 2032–2042. [Google Scholar] [CrossRef]
- Armour, K.J.; Armour, K.E.; van’t Hof, R.J.; Reid, D.M.; Wei, X.Q.; Liew, F.Y.; Ralston, S.H. Activation of the inducible nitric oxide synthase pathway contributes to inflammation-induced osteoporosis by suppressing bone formation and causing osteoblast apoptosis. Arthritis Rheum. 2001, 44, 2790–2796. [Google Scholar] [CrossRef]
- Nieves, J.W. Skeletal effects of nutrients and nutraceuticals, beyond calcium and vitamin D. Osteoporos. Int. 2013, 24, 771–786. [Google Scholar] [CrossRef] [PubMed]
- Navarro-González, J.F.; Mora-Fernández, C.; García-Pérez, J. Clinical implications of disordered magnesium homeostasis in chronic renal failure and dialysis. Semin. Dial. 2009, 22, 37–44. [Google Scholar] [CrossRef] [PubMed]
- Havaldar, R.; Pilli, S.C.; Putti, B.B. Effects of magnesium on mechanical properties of human bone. J. Pharm. Biol. Sci. 2013, 7, 8–14. [Google Scholar]
- Rude, R.K.; Gruber, H.E. Magnesium deficiency and osteoporosis: Animal and human observations. J. Nutr. Biochem. 2004, 15, 710–716. [Google Scholar] [CrossRef] [PubMed]
- Dąbrowski, M.; Zioła-Frankowska, A.; Kubaszewski, Ł.; Rogala, P.; Frankowski, M. Urban and rural area differences in the interaction between oxidative process elements in human femoral bone. In Environ. Sci. Pollut. Res.; 2018; Volume 25, pp. 30475–30487. [Google Scholar]
- Romani, A.M. Magnesium homeostasis and alcohol consumption. Magnes Res. 2008, 21, 197–204. [Google Scholar]
- Jabłecka, A.; Korzeniowska, K.; Skołuda, A.; Cieślewicz, A. Magnesium preparations. Farmacja Współcz 2011, 4, 29–32. (In polish) [Google Scholar]
- Kosik-Bogacka, D.I.; Lanocha-Arendarczyk, N.; Kot, K.; Zietek, P.; Karaczun, M.; Prokopowicz, A.; Kupnicka, P.; Ciosek, Z. Calcium, magnesium, zinc and lead concentrations in the structures forming knee joint in patients with osteoarthritis. J. Trace Elem. Med. Biol. 2018, 50, 409–414. [Google Scholar] [CrossRef]
- Soetan, K.O.; Olaiya, C.O.; Oyewole, O.E. The importance of mineral elements for humans, domestic animals and plants: A review. Afr. J. Food Sci. 2010, 4, 200–222. [Google Scholar]
- Butusov, M.; Jernelöv, A. Phosphorus: An Element that Could have been Called Lucifer; Springer-Verlag: New York, NY, USA, 2013. [Google Scholar]
- Penido, M.; Alon, U. Phosphate homeostasis and its role in bone health. Pediatr. Nephrol. 2012, 27, 2039–2048. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Magne, D.; Bluteau, G.; Faucheux, C.; Palmer, G.; Vignes-Colombeix, C.; Pilet, P.; Rouillon, T.; Caverzasio, J.; Weiss, P.; Daculsi, G.; et al. Phosphate is a specific signal for ATDC5 chondrocyte maturation and apoptosis-associated mineralization: Possible implication of apoptosis in the regulation of endochondral ossification. J. Bone Miner. Res. 2003, 18, 1430–1442. [Google Scholar] [CrossRef]
- Pastore, S.M.; Gomes, P.C.; Rostagno, H.S.; Albino, L.F.T.; Calderano, A.A.; Vellasco, C.R.; Viana, G.D.; Almeida, R.L.D. Calcium levels and calcium: Available phosphorus ratios in diets for white egg layers from 42 to 58 weeks of age. Rev. Bras. Zootec. 2012, 41, 2424–2432. [Google Scholar] [CrossRef] [Green Version]
- Kemi, V.E.; Kärkkäinen, M.U.; Lamberg-Allardt, C.J. High phosphorus intakes acutely and negatively affect Ca and bone metabolism in a dose-dependent manner in healthy young females. Br. J. Nutr 2006, 96, 545–552. [Google Scholar]
- Kemi, V.E.; Rita, H.J.; Kärkkäinen, M.U.; Viljakainen, H.T.; Laaksonen, M.M.; Outila, T.A.; Lamberg- Allardt, C.J. Habitual high phosphorus intakes and foods with phosphate additives negatively affect serum parathyroid hormone concentration: A cross-sectional study on healthy premenopausal women. Public Health Nutr. 2009, 12, 1885–1892. [Google Scholar] [CrossRef] [Green Version]
- Heaney, R.P. Dietary protein and phosphorus do not affect calcium absorption. Am. J. Clin. Nutr. 2000, 72, 758–761. [Google Scholar] [CrossRef]
- Rafferty, K.; Heaney, R.P. Nutrient effects on the calcium economy: Emphasizing the potassium controversy. J. Nutr. 2008, 138, 166–171. [Google Scholar] [CrossRef] [Green Version]
- Heaney, R.P.; Recker, R.R.; Watson, P.; Lappe, J.M. Phosphate and carbonate salts of calcium support robust bone building in osteoporosis. Am. J. Clin. Nutr. 2010, 92, 101–105. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kanatani, M.; Sugimoto, T.; Kano, J.; Kanzawa, M.; Chihara, K. Effect of high phosphate concentration on osteoclast differentiation as well as bone-resorbing activity. J. Cell Physiol. 2003, 196, 180–189. [Google Scholar] [CrossRef]
- Fenton, T.R.; Lyon, A.W.; Eliasziw, M.; Tough, S.C.; Hanley, D.A. Phosphate decreases urine calcium and increases calcium balance: A meta-analysis of the osteoporosis acid-ash diet hypothesis. Nutr. J. 2009, 15, 41. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, A.W.; Cho, S.S. Association between phosphorus intake and bone health in the NHANES population. Nutr. J. 2015, 14, 28. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, K.J.; Kim, K.S.; Kim, H.N.; Seo, J.A.; Song, S.W. Association between dietary calcium and phosphorus intakes, dietary calcium/phosphorus ratio and bone mass in the Korean population. Nutr. J. 2014, 13, 114. [Google Scholar] [CrossRef] [Green Version]
- Brot, C.; Jørgensen, N.; Madsen, O.; Jensen, L.; Sørensen, O. Relationships between bone mineral density, serum vitamin D metabolites and calcium: Phosphorus intake in healthy perimenopausal women. J. Intern. Med. 1999, 245, 509–516. [Google Scholar] [CrossRef]
- Pinheiro, M.M.; Schuch, N.J.; Genaro, P.S.; Ciconelli, R.M.; Ferraz, M.B.; Martini, L.A. Nutrient intakes related to osteoporotic fractures in men and women–The Brazilian Osteoporosis Study (BRAZOS). Nutr. J. 2009, 8, 6. [Google Scholar] [CrossRef]
- Heeok, H.; Eun-Kyung, K.; Jung-Sug, L. Effects of calcium intake, milk and dairy product intake, and blood vitamin D level on osteoporosis risk in Korean adults: Analysis of the 2008 and 2009 Korea National Health and Nutrition Examination Survey. Nutr. Res. Pract. 2013, 7, 409–417. [Google Scholar]
- Draper, H.; Sie, T.L.; Bergan, J. Osteoporosis in aging rats induced by high phosphorus diets. J. Nutr. 1972, 102, 1133–1141. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koyama, Y.; Rittling, S.R.; Tsuji, K.; Hino, K.; Salincarnboriboon, R.; Yano, T.; Taketani, Y.; Nifuji, A.; Denhardt, D.T.; Noda, M. Osteopontin deficiency suppresses high phosphate load-induced bone loss via specific modulation of osteoclasts. Endocrinology 2006, 147, 3040–3049. [Google Scholar] [CrossRef] [Green Version]
- Gruszka, M.; Odrowąż-Sypniewska, G.; Pater, A. The importance of phosphorus and phosphates in the body. Przegląd Medycyny Laboratoryjnej 2005, 2, 9–12. (In polish) [Google Scholar]
- Ciosek, Ż.; Kosik-Bogacka, D.; Łanocha-Arendarczyk, N.; Kot, K.; Karaczun, M.; Ziętek, P.; Kupnicka, P.; Szylińska, A.; Bosiacki, M.; Rotter, I. Phosphorus concentration in knee joint structures of patients following knee replacement surgery. Int J. Environ. Res. Public Health 2019, 16, 525. [Google Scholar]
- Fordyce, F.M. Encyclopedia of Environmental Health. In Fluorine: Human Health Risks, 2nd ed.; Nriagu, J.O., Ed.; Elsevier: Amsterdam, The Netherlands, 2011; Volume 2, pp. 776–785. [Google Scholar]
- Everett, E.T. Fluoride’s Effects on the Formation of Teeth and Bones, and the Influence of Genetics. J. Dent. Res. 2011, 90, 552–560. [Google Scholar] [CrossRef] [Green Version]
- Liu, S.; Zhou, H.; Liu, H.; Ji, H.; Fei, W.; Luo, E. Fluorine-contained hydroxyapatite suppresses bone resorption through inhibiting osteoclasts differentiation and function in vitro and in vivo. Cell Prolif. 2019, 52, e12613. [Google Scholar] [CrossRef]
- Yamaguchi, M. Fluoride and bone metabolism. Clin. Calcium 2007, 17, 217–223. [Google Scholar]
- Vestergaard, P.; Jorgensen, N.R.; Schwarz, P.; Mosekilde, L. Effects of treatment with fluoride on bone mineral density and fracture risk—A meta-analysis. Osteoporos. Int. 2008, 19, 257–268. [Google Scholar] [CrossRef] [PubMed]
- DePaula, C.A.; Abjornson, C.; Pan, Y.; Kotha, S.P.; Koike, K.; Guzelsu, N. Changing the structurally effective mineral content of bone with in vitro fluoride treatment. J. Biomech. 2002, 35, 355–361. [Google Scholar] [CrossRef]
- Weivoda, M.M.; Chew, C.K.; Monroe, D.G.; Farr, J.N.; Atkinson, E.J.; Geske, J.R.; Eckhardt, B.; Thicke, B.; Ruan, M.; Tweed, A.; et al. Identification of osteoclast-osteoblast coupling factors in humans reveals links between bone and energy metabolism. Nat. Commun. 2020, 11, 87. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, H.W.; Lee, E.J.; Kim, H.E.; Salih, V.; Knowles, J.C. Effect of fluoridation of hydroxyapatite in hydroxyapatite polycaprolactone composites on osteoblast activity. Biomaterials 2005, 26, 4395–4404. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.; Wang, Y.; Xu, H. Fluoride Regulate Osteoblastic Transforming Growth Factor-â1 Signaling by Mediating Recycling of the Type I Receptor ALK5. PLoS ONE 2017, 12, e0170674. [Google Scholar]
- Ringe, J.D. Nutrition and Bone Health. In Fluoride and Bone Health; Holick, M.F., Dawson-Hughes, B., Eds.; Humana Press: Totowa, NJ, USA, 2004. [Google Scholar] [CrossRef]
- Pan, L.; Shi, X.; Liu, S.; Guo, X.; Zhao, M.; Cai, R.; Sun, G. Fluoride promotes osteoblastic differentiation through canonical wnt/β-catenin signaling pathway. Toxicol. Lett. 2014, 225, 34–42. [Google Scholar] [CrossRef]
- Zofkova, I.; Davis, M.; Blahos, J. Trace elements have beneficial, as well as detrimental effects on bone homeostasis. Physiol. Res. 2017, 66, 391–402. [Google Scholar] [CrossRef]
- Kurdi, M.S. Chronic fluorosis: The disease and its anaesthetic implications. Indian J. Anaesth. 2016, 60, 157–162. [Google Scholar] [CrossRef]
- Florencio-Silva, R.; da Silva Sasso, G.R.; Sasso-Cerri, E.; Simões, M.J.; Cerri, P.S. Biology of bone tissue: Structure, function, and factors that influence bone cells. Biomed. Res. Int. 2015, 2015, 421746. [Google Scholar] [CrossRef] [Green Version]
- Simon, M.; Beil, F.; Riedel, C. Deterioration of teeth and alveolar bone loss due to chronic Environmental high- level fluoride and low calcium exposure. Clin. Oral Investig. 2016, 28, 2361–2370. [Google Scholar] [CrossRef]
- Gupta, N.; Gupta, N.; Chhabra, P. Imaging diagnosis: Dental and skeletal fluorosis. Prem. J. 2016, 20, 107–116. [Google Scholar]
- Chen, Y.; Yan, W.; Hui, X. Treatment and prevention of skeletal fluorosis. Biomed. Environ. Sci. 2017, 30, 147–149. [Google Scholar]
- Mousny, M.; Omelon, S.; Wise, L.; Everett, E.T.; Dumitriu, M.; Holmyard, D.P.; Banse, X.; Devogelaer, J.P.; Grynpas, M. Fluoride effects on bone formation and mineralization are influenced by genetics. Bone 2008, 43, 1067–1074. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Puranik, C.P.; Ryan, K.A.; Yin, Z.; Martinez-Mier, E.A.; Preisser, J.S.; Everett, E.T. Fluoride modulates parathyroid hormone secretion in vivo and in vitro. Cells Tissues Organs 2015, 200, 413–423. [Google Scholar] [CrossRef] [Green Version]
- Koroglu, B.K.; Ersoy, I.H.; Koroglu, M.; Bakali, A.; Ersoy, S.; Varol, S.; Tamer, M.N. Serum parathyroid hormone levels in chronic endemic fluorosis. Biol. Trace Elem. Res. 2011, 143, 79–86. [Google Scholar] [CrossRef] [PubMed]
- Zierold, D.; Chauviere, M. Hydrogen fluoride inhalation injury because of a fire suppression system. Mil. Med. 2012, 177, 108–112. [Google Scholar] [CrossRef] [Green Version]
- Tsunoda, M.; Aizawa, Y.; Nakano, K.; Liu, Y.; Horiuchi, T.; Itai, K.; Tsunoda, H. Changes in fluoride levels in the liver, kidney, and brain and in neurotransmitters of mice after subacute administration of fluoride. Fluoride 2005, 38, 284–292. [Google Scholar]
- Dhar, V.; Bhatnagar, M. Physiology and toxicity of fluoride. Indian J. Dent. Res. 2009, 20, 350–355. [Google Scholar] [CrossRef]
- Ullah, R.; Zafar, M.S.; Shahani, N. Potential fluoride toxicity from oral medicaments: A review. Iran. J. Basic Med Sci. 2017, 20, 841–848. [Google Scholar] [PubMed]
- O’Mullane, D.M.; Baez, R.J.; Jones, S.; Lennon, M.A.; Petersen, P.E.; Rugg-Gunn, A.J.; Whelton, H.; Whitford, G.M. Fluoride and oral health. Commun. Dent. Health 2016, 33, 69–99. [Google Scholar]
- Fordyce, F.M.; Vrana, K.; Zhovinsky, E.; Povoroznuk, V.; Toth, G.; Hope, B.C.; Iljinsky, U.; Baker, J.A. A health risk assessment for fluoride in Central Europe. Environ. Geochem. Health 2007, 29, 83–102. [Google Scholar] [CrossRef] [Green Version]
- Palczewska-Komsa, M.; Kalisińska, E.; Stogiera, A.; Szmidt, M. Fluorides in human bones- selected topics. Pomeranian J. Life Sci. 2016, 62, 53–59. (In polish) [Google Scholar]
- Ishiguro, K.; Nakagaki, H.; Tsuboi, S.; Narita, N.; Kato, K.; Li, J.; Kamei, H.; Yoshioka, I.; Miyauchi, K.; Hosoe, H.; et al. Distribution of fluoride in cortical bone of human rib. Calcif. Tissue Int. 1993, 52, 278–282. [Google Scholar] [CrossRef]
- Suzuki, Y. The normal levels of fluorine in the bone tissue of Japanese subjects. Tohoku J. Exp. Med. 1979, 129, 327–336. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hac, E.; Czarnowski, W.; Gos, T.; Krechniak, J. Lead and fluoride content in human bone and hair in the Gdańsk region. Sci. Total Environ. 1997, 206, 249–254. [Google Scholar]
- Richards, A.; Mosekilde, L.; Sřgaard, C.H. Normal age-related changes in fluoride content of vertebral trabecular bone-relation to bone quality. Bone 1994, 15, 21–26. [Google Scholar] [CrossRef]
- Aaseh, J.; Boivin, G.; Andersen, O. Osteoporosis and trace elements—An overview. J. Trace Elem. Med. Biol. 2012, 26, 149–152. [Google Scholar] [CrossRef]
- Chachra, D.; Limeback, H.; Willett, T.L.; Grynpas, M.D. The long-term effects of water fluoridation on the human skeleton. J. Dent. Res. 2010, 89, 1219–1223. [Google Scholar] [CrossRef]
- Łanocha-Arendarczyk, N.; Kosik-Bogacka, D.I.; Kalisinska, E.; Sokolowski, S.; Lebiotkowski, M.; Baranowska-Bosiacka, I.; Gutowska, I.; Chlubek, D. Bone fluoride content in patient after hip and knee joint surgery. Fluoride 2015, 48, 223–233. [Google Scholar]
- Łanocha-Arendarczyk, N.; Kosik-Bogacka, D.I.; Prokopowicz, A.; Kalisinska, E.; Sokolowski, S.; Karaczun, M.; Zietek, P.; Podlasińska, J.; Pilarczyk, B.; Tomza-Marciniak, A.; et al. The effect of risk factors on the levels of chemical elements in the tibial plateau of patients with osteoarthritis following knee surgery. Biomed. Res. Int. 2015, 2015, 650282. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kot, K.; Ciosek, Ż.; Łanocha-Arendarczyk, N.; Kosik-Bogacka, D.; Ziętek, P.; Karaczun, M.; Baranowska-Bosiacka, I.; Gutowska, I.; Kalisińska, E.; Chlubek, D. Fluoride ion concentrations in cartilage, spongy bone, anterior cruciate ligament, meniscus, and infrapatellar fat pad of patients undergoing primary knee joint arthroplasty. Fluoride 2017, 50, 175–181. [Google Scholar]
- Patočka, J.; Černý, K. Inorganic lead toxicology. Acta Med. 2003, 46, 65–72. [Google Scholar] [CrossRef] [Green Version]
- Gilbert, M.E.; Lasley, S.M. Developmental lead (Pb) exposure reduces the ability of the NMDA antagonist MK801 to suppress long-term potentiation (LTP) in the rat dentate gyrus, in vivo. Neurotoxicol. Teratol. 2007, 29, 385–393. [Google Scholar] [CrossRef]
- Ahamed, M.; Siddiqui, M.K. Low level lead exposure and oxidative stress: Current opinions. Clin. Chim. Acta 2007, 383, 57–64. [Google Scholar] [CrossRef]
- Sabolić, I. Common mechanisms in nephropathy induced by toxic metals. Nephron. Physiol. 2006, 104, 107–114. [Google Scholar] [CrossRef]
- Bijelic, R.; Milicevic, S.; Balaban, J. Risk factors for osteoporosis in postmenopausal women. Med. Arch. 2017, 71, 25–28. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vahter, M.; Berglund, M.; Akesson, A.; Lidén, C. Metals and women's health. Environ. Res. 2002, 88, 145–155. [Google Scholar] [CrossRef] [Green Version]
- Rodríguez, J.; Mandalunis, P.M. A Review of Metal Exposure and Its Effects on Bone Health. J. Toxicol 2018, 2018, 4854152. [Google Scholar] [CrossRef] [PubMed]
- Monir, A.U.; Gundberg, C.M.; Yagerman, S.E.; van der Meulen, M.C.H.; Budell, W.C.; Boskey, A.L.; Dowd, T.L. The effect of lead on bone mineral properties from female adult C57/BL6 mice. Bone 2010, 47, 888–894. [Google Scholar] [CrossRef] [Green Version]
- Beier, E.E.; Sheu, T.J.; Dang, D.; Holz, J.D.; Ubayawardena, R.; Babij, P.; Puzas, J.E. Heavy metal ion regulation of gene expression: Mechanisms by which lead inhibits osteoblastic bone-forming activity through modulation of the wnt/Â-catenin signaling pathway. J. Biol. Chem. 2015, 290, 18216–18226. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, Y.; Fu, D.; Liu, Z. Effect of lead on apoptosis in cultured rat primary osteoblasts. Toxicol. Ind. Health 2012, 28, 136–146. [Google Scholar] [CrossRef] [PubMed]
- Al-Ghafari, A.; Elmorsy, E.; Fikry, E.; Alrowaili, M.; Carter, W.G. The heavy metals lead and cadmium are cytotoxic to human bone osteoblasts via induction of redox stress. PLoS ONE 2019, 14, e0225341. [Google Scholar] [CrossRef] [Green Version]
- Moser, S.C.; van der Eerden, B.C.J. Osteocalcin-A Versatile Bone-Derived Hormone. Front. Endocrinol. 2018, 9, 794. [Google Scholar] [CrossRef] [Green Version]
- Dowd, T.L.; Rosen, J.F.; Mints, L.; Gundberg, C.M. The effect of Pb(2+) on the structure and hydroxyapatite binding properties of osteocalcin. Biochim. Biophys. Acta 2001, 1535, 153–163. [Google Scholar] [CrossRef] [Green Version]
- Wani, A.A.; Ara, A.; Usmani, J.A. Lead toxicity: A review. Interdiscip. Toxicol. 2015, 8, 55–64. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Simons, T.J. Passive transport and binding of lead by human red blood cells. J. Physiol. 1986, 378, 267–286. [Google Scholar] [CrossRef] [Green Version]
- Charkiewicz, A.; Backstrand, J. Lead Toxicity and Pollution in Poland. Int J. Environ. Res. Public Health 2020, 17, 4385. [Google Scholar] [CrossRef] [PubMed]
- Flora, G.; Gupta, D.; Tiwari, A. Toxicity of lead: A review with recent updates. Interdiscip. Toxicol. 2012, 5, 47–58. [Google Scholar] [CrossRef] [PubMed]
- Gulson, B.; Taylor, A.; Eisman, J. Bone remodeling during pregnancy and post-partum assessed by metal lead levels and isotopic concentrations. Bone 2016, 89, 40–51. [Google Scholar] [CrossRef]
- Brodziak-Dopierała, B.; Kwapuliński, J.; Kosterska, E.; Toborek, J. The effect of smoking addiction on cadmium and lead content in the head of a femur cut by two methods. Przegl Lek 2005, 62, 1075–1078. [Google Scholar]
- Bogunia, M.; Brodziak-Dopierała, B.; Kwapuliński, J.; Ahnert, B.; Kowol, J.; Nogaj, E. The presence of lead and cadmium in the hip joint in terms of exposure to tobacco smoke. Przegl Lek 2008, 65, 529–532. (In polish) [Google Scholar]
- Cirillo, T.; Fasano, E.; Viscardi, V.; Arnese, A.; Amodio-Cocchieri, R. Survey of lead, cadmium, mercury and arsenic in seafood purchased in Campania, Italy. Food Addit. Contam. Part B Surveill. 2010, 3, 30–38. [Google Scholar] [CrossRef]
- Pastorelli, A.A.; Baldini, M.; Stacchini, P.; Baldini, G.; Morelli, S.; Sagratella, E.; Zaza, S.; Ciardullo, S. Human exposure to lead, cadmium and mercury through fish and seafood product consumption in Italy: A pilot evaluation. Food Addit. Contam. Part A Chem. Anal. Control. Expo. Risk Assess. 2012, 29, 1913–1921. [Google Scholar] [CrossRef]
- Łanocha, N.; Kalisinska, E.; Kosik-Bogacka, D.; Budis, H.; Sokolowski, S.; Bohatyrewicz, A.; Łanocha, A. The effect of environmental factors on concentration of trace elements in hip joint bones of patients after hip replacement surgery. Ann. Agric. Environ. Med. 2013, 20, 487–493. [Google Scholar]
- García, F.; Ortega, A.; Domingo, J.L.; Corbella, J. Accumulation of metals in autopsy tissues of subjects living in Tarragona County, Spain. J. Environ. Sci. Health 2001, 36, 1767–1786. [Google Scholar] [CrossRef] [PubMed]
- Bocio, A.; Nadal, M.; Garcia, F.; Domingo, J.L. Monitoring metals in the population living in the vicinity of a hazardous waste incinerator: Concentrations in autopsy tissues. Biol. Trace Elem. Res. 2005, 106, 41–50. [Google Scholar] [CrossRef]
- Mari, M.; Nadal, M.; Schuhmacher, M.; Barbería, E.; Garcia, F.; Domingo, J.L. Human exposure to metals: Levels in autopsy tissues of individuals living near a hazardous waste incinerator. Biol. Trace Elem. Res. 2014, 159, 15–21. [Google Scholar] [CrossRef] [PubMed]
- Zaichick, S.; Zaichick, V.; Karandashev, V.K.; Moskvina, I.R. The effect of age and gender on 59 trace-element contents in human rib bone investigat-ed by inductively coupled plasma mass spectrometry. Biol. Trace Elem. Res. 2011, 143, 41–57. [Google Scholar] [CrossRef]
- Hess, C.A.; Cooper, M.J.; Smith, M.J.; Trueman, C.N.; Schutkowski, H. Lead Exposure in Adult Males in Urban Transvaal Province, South Africa, during the Apartheid Era. PLoS ONE 2013, 8, e58146. [Google Scholar] [CrossRef] [Green Version]
- Łanocha, N.; Kalisińska, E.; Kosik-Bogacka, D.; Budis, H.; Sokołowski, S.; Bohatyrewicz, A. Comparison of concentrations of lead and cadmium in various parts of the femur head in patients after arthroplasty of the hip joint in norwest Poland. Biomed. Environ. Sci. 2012, 25, 577–582. [Google Scholar] [PubMed]
- Jurkiewicz, A.; Wiechuła, D.; Nowak, R.; Loska, K. Lead content in the femoral heads of inhabitants of Silesia (Poland). J. Trace Elem. Med. Biol. 2005, 19, 165–170. [Google Scholar] [CrossRef]
The Studied Area | Age | Sex | N | Ca Level | Additional Information | Reference |
---|---|---|---|---|---|---|
Vertebra | ||||||
USA, Philadelphia | 48 | M | 1 | 290,100.00 | Chronic F poisoning | [37] |
Ribs | ||||||
Japan, Tokyo | 61–96 | F + M | 45 | 246,000.00 | [38] | |
F | 28 | 245,000.00 | ||||
M | 17 | 248,000.00 | ||||
Russia, Obninsk | 15–55 | F + M | 80 | 171,395.00 | [39] | |
F | 38 | 182,183.00 | ||||
M | 42 | 161,397.00 | ||||
USA, Philadelphia | 48 | M | 1 | 292,400.00 | Chronic F poisoning | [37] |
Ribs (Spongy Bone) | ||||||
USA, Kentucky | 69 ± 6.3 | F + M | 12 | 190,000.00 | [40] | |
F | 4 | - | ||||
M | 8 | - | ||||
Ribs (Cortical Bone) | ||||||
USA, Kentucky | 60–82 | F + M | 12 | 210,000.00 | [40] | |
Femur | ||||||
Poland, Upper Silesia | 67.5 | F + M | 50 | 107,000.00 | [41] | |
67.2 | F | 36 | 104,200.00 | |||
68.1 | M | 14 | 122,500.00 | |||
USA, Philadelphia | 48 | M | 1 | 293,700.00 | Chronic F poisoning | [37] |
Femoral Head | ||||||
Poland, Greater Poland Voivodeship | 63.8 | F + M | 96 | 136,705.60 | [42] | |
64.5 ± 14.2 | F | 57 | 132,738.00 | |||
63.2 ± 10.2 | M | 39 | 142,503.00 | |||
Poland, Upper Silesia | 71 ± 6 | F | 64 | 28,512.42 | [43] | |
M | 39 | 29,099.37 | ||||
Poland, Upper Silesia | 65.6 | F + M | 53 | 49,485.45 | [44] | |
Poland, Silesia, Łódź, Cracow | 65.8 ± 12.5 | F + M | 197 | 170,100.00 | [45] | |
Taiwan | - | F + M | 70 | 82,007.90 | [46] | |
41–60 | F | 17 | 77,115.00 | |||
61–80 | M | 53 | 84,649.00 | |||
Head of the Femur (Spongy Bone) | ||||||
Poland, Upper Silesia | 71 ± 6 | F + M | 103 | 25,244.65 | [43] | |
Poland, Upper Silesia | 68 ± 9.9 | F + M | 13 | 174,400.00 | None of the patients had ever been occupationally exposed to heavy metals | [47] |
F | 9 | 177,200.00 | ||||
M | 4 | 168,900.00 | ||||
Poland, Łódź | 68.3 ± 7.3 | F + M | 12 | 169,500.00 | None of the patients had ever been occupationally exposed to heavy metals | [47] |
F | 10 | 170,600.00 | ||||
M | 2 | 164,100.00 | ||||
Poland, Cracow | 69.2 ± 9.6 | F + M | 13 | 207,000.00 | None of the patients had ever been occupationally exposed to heavy metals | [47] |
F | 10 | 198,600.00 | ||||
M | 3 | 234,700.00 | ||||
Poland, Lower Silesian Voivodeship | 65.9 ± 10.8 | F + M | 21 | 159,900.00 | NS | [48] |
62.8 ± 17.2 | 22 | 156,000.00 | S | |||
Poland, Upper Silesia | 77 ± 5 | F + M | 110 | 27,929.17 | [49] | |
Poland, Upper Silesia | 65.6 | F + M | 53 | - | [44] | |
67.2 | F | 43 | 160,730.00 | |||
58.4 | M | 10 | 160,120.00 | |||
Poland, Upper Silesia | 65.7 | F + M | 91 | 127,480.00 | [36] | |
China, Shanghai | 62 | F | 1 | 97,700.00 | [50] | |
Poland, West Pomeranian Voivodeship | 52–84 | F + M | 37 | 243,700.00 | [35] | |
69.90 ± 77 | F | 24 | 242,040.00 | |||
62.6 ± 15.4 | M | 13 | 249,460.00 | |||
Poland, West Pomeranian Voivodeship | F + M | 29 | 263,990.00 | A diet exclusive of game meat | [35] | |
8 | 228,440.00 | A diet inclusive of game meat | ||||
Poland, Upper Silesia | 71.6 | F + M | 103 | 30,216.83 | Patients living in the industrial area | [51] |
F | 69 | 28,512.42 | ||||
M | 39 | 29,099.37 | ||||
Poland, Upper Silesia | 65.7 | F + M | 91 | 43,520.00 | [40] | |
Poland, Upper Silesia | 65.6 | F + M | 53 | 39,460.00 | [44] | |
67.2 | F | 43 | 48,970.00 | |||
58.4 | M | 10 | 49,610.00 | |||
Poland, Upper Silesia | 77.0 ± 5.0 | F + M | 110 | 25,212.61 | [49] | |
China, Shanghai | 62 | F | 1 | 216,500.00 | [50] | |
Poland, West Pomeranian Voivodeship | 52–84 | F + M | 37 | 225,520.00 | People with osteoarthritis | [35] |
69.90 ± 77 | F | 24 | 225,520.00 | |||
62.6 ± 15.4 | M | 13 | 223,830.00 | |||
Poland, West Pomeranian Voivodeship | F + M | 29 | 212,000.00 | A diet exclusive of game meat | [35] | |
8 | 267,440.00 | A diet inclusive of game meat | ||||
Head of the Femur (Cortical Bone) | ||||||
Poland, Upper Silesia | 71 ± 6 | F + M | 103 | 30,216.83 | [43] | |
Femoral Neck | ||||||
Poland, Greater Poland Voivodeship | 63.8 | F + M | 96 | 157,212.30 | [42] | |
64.5 ± 14.2 | F | 57 | 158,841.00 | |||
63.2 ± 10.2 | M | 39 | 154,831.00 | |||
Russia, Obninsk | 15-55 | F | 38 | 158,000.00 | [52] | |
M | 47 | 149,500.00 | ||||
Turkey, Erciyes | 73.9 ± 9.7 | F + M | 30 | 9.7 | Fracture group Osteoarthritis | [53] |
72.8 ± 6.0 | ||||||
Turkey, Erciyes | 60.5 ± 5.1 | F + M | 30 | 9.7 | Fracture group | [53] |
63.2 ± 6.6 | ||||||
Tibia | ||||||
Poland, Upper Silesia | 67.5 | F + M | 50 | 124,500.00 | [41] | |
67.2 | F | 36 | 121,900.00 | |||
68.1 | M | 14 | 131,700.00 | |||
Russia, Obninsk | 15-55 | F | 38 | 176,000.00 | Within 24 h of death, healthy humans | [54] |
15-55 | M | 46 | 164,000.00 | |||
15-35 | F | - | 182,000.00 | |||
15-35 | M | - | 173,000.00 | |||
15-35 | F + M | - | 177,000.00 | |||
36-55 | F | - | 168,000.00 | |||
36-55 | M | - | 157,000.00 | |||
36-55 | F + M | - | 162,000.00 | |||
USA, Philadelphia | 48 | M | 1 | 293,200.00 | Chronic F poisoning | [37] |
The Studied Area | Age | Sex | N | Mg Level | Additional Information | Reference |
---|---|---|---|---|---|---|
Ribs | ||||||
Japan, Tokyo | 61–96 | F + M | 45 | 2,850.00 | [38] | |
F | 28 | 2,920.00 | ||||
M | 17 | 2,730.00 | ||||
Russia, Obninsk | 15–55 | F + M | 80 | 2,139.00 | [39] | |
F | 38 | 2,218.00 | ||||
M | 42 | 2,067.00 | ||||
Ribs (Spongy Bone) | ||||||
USA, Kentucky | 69 ± 6.3 | F + M | 12 | 2,700.00 | [40] | |
Ribs (Cortical Bone) | ||||||
USA, Kentucky | 60–82 | F + M | 12 | 2,500.00 | [40] | |
Femur | ||||||
Poland, Upper Silesia | 67.5 | F + M | 50 | 1,443.62 | [41] | |
67.2 | F | 36 | 1,437.11 | |||
68.1 | M | 14 | 1,471.24 | |||
Femoral Head | ||||||
Poland, Greater Poland Voivodeship | 63.8 | F + M | 96 | 1,446.76 | [42] | |
64.5 ± 14.2 | F | 57 | 1,415.20 | |||
63.2 ± 10.2 | M | 39 | 1,492.90 | |||
Poland, Upper Silesia | 71 ± 6 | F | 64 | 1,352.49 | [43] | |
M | 39 | 1,818.91 | ||||
Poland, Upper Silesia | 65.6 | F + M | 53 | 1,306.20 | [44] | |
Poland, Silesia, Łódź, Cracow | 65.8 ± 12.5 | F + M | 197 | 1,765.00 | [45] | |
Taiwan | - | F + M | 70 | 3,005.20 | [46] | |
41–60 | F | 17 | 3,304.00 | |||
61–80 | M | 53 | 2,843.00 | |||
Femoral Head (Spongy Bone) | ||||||
Poland, Upper Silesia | 68 ± 9.9 | F + M | 13 | 1,813.30 | None of the patients had ever been occupationally exposed to heavy metals | [47] |
F | 9 | 1,874.90 | ||||
M | 4 | 1,689.90 | ||||
Poland, Łódź | 68.3 ± 7.3 | F + M | 12 | 1,792.90 | None of the patients had ever been occupationally exposed to heavy metals | [47] |
F | 10 | 1,824.00 | ||||
M | 2 | 1,637.40 | ||||
Poland, Cracow | 69.2 ± 9.6 | F + M | 13 | 2,032.00 | None of the patients had ever been occupationally exposed to heavy metals | [47] |
F | 10 | 1,996.70 | ||||
M | 3 | 2,149.50 | ||||
Poland, Silesian Voivodeship | 65.9 ± 10.8 | F + M | 21 | 1,798.47 | NS | [48] |
62.8 ± 17.2 | F + M | 22 | 1,614.61 | S | ||
Poland, Upper Silesia | 77 ± 5 | F + M | 110 | 873.22 | [49] | |
Poland, Upper Silesia | 71 ± 6 | F + M | 103 | 1,650.85 | [43] | |
Poland, Upper Silesia | 65.7 | F + M | 91 | 3,040.00 | [36] | |
Femoral Head (Cortical Bone) | ||||||
Poland, Upper Silesia | 71.6 | F + M | 103 | 1,376.14 | [51] | |
F | 69 | 1,352.49 | ||||
M | 39 | 1,818.91 | ||||
Poland, Upper Silesia | 65.7 | F + M | 91 | 910.00 | [36] | |
Poland, Upper Silesia | 77 ± 5 | F + M | 110 | 1,028.59 | [49] | |
Poland, Upper Silesia | 71 ± 6 | F + M | 103 | 1,376.14 | [43] | |
Femoral Neck | ||||||
Poland, Greater Poland Voivodeship | 63.8 | F + M | 96 | 1,585.80 | [42] | |
64.5 ± 14.2 | F | 57 | 1,599.30 | |||
63.2 ± 10.2 | M | 39 | 1,566.10 | |||
Russia, Obninsk | 15–55 | F | 38 | 2,058.50 | [52] | |
M | 47 | 1,850.50 | ||||
Turkey, Erciyes | 73.9 ± 9.7 | F | 30 | 2,183.30 | Patients with fractures | [53] |
72.8 ± 6.0 | M | |||||
Turkey, Erciyes | 60.5 ± 5.1 | F | 30 | 2,566.70 | Patients with osteoarthritis | |
63.2 ± 6.6 | M | |||||
Tibia | ||||||
Poland, Upper Silesia | 67.5 | F + M | 50 | 1,572.40 | [41] | |
67.2 | F | 36 | 1,562.44 | |||
68.1 | M | 14 | 1,591.00 | |||
Iliac Crest | ||||||
Russia, Obninsk | 15–55 | F | 38 | 1,995.00 | Within 24h of death, healthy humans | [54] |
15–55 | M | 46 | 1,710.00 | |||
15–35 | F | - | 2,138.00 | |||
15–35 | M | - | 1,904.00 | |||
15–35 | F + M | - | 2,009.00 | |||
36–55 | F | - | 1,867.00 | |||
36–55 | M | - | 1,536.00 | |||
36–55 | F + M | - | 1,687.00 |
The Studied Area | Age | Sex | N | P Level | Additional Information | Reference |
---|---|---|---|---|---|---|
Vertebra | ||||||
USA, Philadelphia | 48 | M | 1 | 113,700.00 | Chronic F poisoning | [37] |
Ribs | ||||||
Japan, Tokyo | 61–96 | F + M | 45 | 119,000.00 | [38] | |
F | 28 | 120,000.00 | ||||
M | 17 | 119,000.00 | ||||
Russia, Obninsk | 15–55 | F + M | 80 | 75,137.00 | [39] | |
F | 38 | 78,481.00 | ||||
M | 42 | 72,037.00 | ||||
USA, Philadelphia | 48 | M | 1 | 115,100.00 | Chronic F poisoning | [37] |
Ribs (Spongy Bone) | ||||||
USA, Kentucky | 69 ± 6.3 | F + M | 12 | 96,000.00 | [40] | |
F | 4 | |||||
M | 8 | |||||
Ribs (Cortical Bone) | ||||||
USA, Kentucky | 60–82 | F + M | 12 | 95,000.00 | [40] | |
Femur | ||||||
Poland, Upper Silesia | 67.5 | F + M | 50 | 48,400.00 | [41] | |
67.2 | F | 36 | 47,000.00 | |||
68.1 | M | 14 | 55,100.00 | |||
USA, Philadelphia | 48 | M | 1 | 116,000.00 | Chronic F poisoning | [37] |
Femoral Head | ||||||
Poland, Greater Poland Voivodeship | 63.8 | F + M | 96 | 62,723.00 | [42] | |
64.5 ± 14.2 | F | 57 | 60,738.00 | |||
63.2 ± 10.2 | M | 39 | 65,624.00 | |||
Femoral Head (Spongy Bone) | ||||||
Poland, Upper Silesia | 68 ± 9.9 | F + M | 13 | 61,600.00 | None of the patients had ever been occupationally exposed to heavy metals | [47] |
F | 9 | 65,900.00 | ||||
M | 4 | 52,800.00 | ||||
Poland, Łódź | 68.3 ± 7.3 | F + M | 12 | 58,700.00 | None of the patients had ever been occupationally exposed to heavy metals | [47] |
F | 10 | 59,100.00 | ||||
M | 2 | 56,400.00 | ||||
Poland, Cracow | 69.2 ± 9.6 | F + M | 13 | 73,800.00 | None of the patients had ever been occupationally exposed to heavy metals | [47] |
F | 10 | 65,500.00 | ||||
M | 3 | 101,400.00 | ||||
China, Shanghai | 62 | F | 1 | 49,900.00 | [50] | |
Femoral Head (Cortical Bone) | ||||||
China, Shanghai | 62 | F | 1 | 110,000.00 | [50] | |
Femoral Neck | ||||||
Poland, Greater Poland Voivodeship | 63.8 | F + M | 96 | 70,652.30 | [42] | |
64.5 ± 14.2 | F | 57 | 71,697.00 | |||
63.2 ± 10.2 | M | 39 | 69,124.00 | |||
Russia, Obninsk | 15–55 | F | 38 | 75,850.00 | [52] | |
M | 47 | 70,850.00 | ||||
Tibia | ||||||
Poland, Upper Silesia | 67.5 | F + M | 50 | 55,800.00 | [41] | |
67.2 | F | 36 | 55,300.00 | |||
68.1 | M | 14 | 59,600.00 | |||
USA, Philadelphia | 48 | M | 1 | 114,400.00 | Chronic F poisoning | [37] |
Tibia (Spongy Bone) | ||||||
Poland, West Pomeranian Voivodeship | - | F + M | 46 | 72,471.09 | [109] | |
73.1 ± 8.4 | F | 34 | 72,845.40 | |||
73.6 ± 8.7 | M | 12 | 71,663.26 | |||
55–74 | F + M | 26 | 73,880.72 | |||
75–89 | F + M | 20 | 73,171.86 | |||
F + M | 2 | 75,990.78 | Normal weight | |||
F + M | 19 | 73,917.05 | Overweight | |||
F + M | 17 | 70,315.04 | Class I obesity | |||
F + M | 6 | 72,220.95 | Class II obesity | |||
F + M | 2 | 78,862.89 | Class III obesity | |||
F + M | 5 | 65,086.30 | Rural areas | |||
F + M | 6 | 53,621.20 | Up to 100,000 inhabitants | |||
F + M | 35 | 65,490.03 | Over 100,000 inhabitants | |||
F + M | 6 | 70,315.04 | S | |||
F + M | 40 | 72,572.29 | NS | |||
F + M | 6 | 71,365.24 | Regular alcohol | |||
F + M | 40 | 72,543.91 | Consumption | |||
Iliac Crest | ||||||
Russia, Obninsk | 15–55 | F | 38 | 84,500.00 | Within 24h of death, healthy humans | [54] |
15–55 | M | 46 | 75,600.00 | |||
15–35 | F | - | 88,300.00 | |||
15–35 | M | - | 79,800.00 | |||
15–35 | F + M | - | 83,600.00 | |||
36–55 | F | - | 81,200.00 | |||
36–55 | M | - | 71,700.00 | |||
36–55 | F + M | - | 76,000.00 |
The Studied Area | Age | Sex | N | F- Level | Additional Information | Reference |
---|---|---|---|---|---|---|
Vertebra | ||||||
USA, Philadelphia | 48 | M | 1 | 7,000.00 | Chronic F poisoning | [37] |
Japan, Yahaba | 39–79 | F + M | 16 | 100.80 | Cervical vertebra | [138] |
Japan, Yahaba | 39–79 | F + M | 16 | 100.30 | Thoracic vertebra | [138] |
Japan, Yahaba | 39–79 | F + M | 16 | 110.50 | Lumbar vertebra | [138] |
Denmark, Aarhus | 21–91 | F | 36 | 1337.70 | [140] | |
20–82 | M | 37 | 1181.10 | |||
Ribs | ||||||
USA, Philadelphia | 48 | M | 1 | 5,600.00 | Chronic F poisoning | [37] |
Japan, Yahaba | 39–79 | F + M | 16 | 99.90 | [138] | |
Poland, Gdańsk | 17–87 | F + M | 59 | 520.00 | [139] | |
Femur | ||||||
USA, Philadelphia | 48 | M | 1 | 2,900.00 | Chronic F poisoning | [37] |
Japan, Yahaba | 39–79 | F + M | 16 | 140.90 | [138] | |
Femoral Head | ||||||
Canada, Toronto | 66 ± 11 | F + M | 53 | 1030.00 | Fluoridated water supplies | [142] |
Canada, Montreal | 70 ± 13 | F + M | 39 | 643.00 | Nonfluoridated water supplies | |
Femoral Head (Spongy Bone) | ||||||
Poland, West Pomeranian Voivodeship | 62.75 | F + M | 49 | 436.82 | Patients who had been treated with preparations containing F | [143] |
66.9 ± 12.6 | F | 35 | 435.45 | |||
58.6 ± 11.3 | M | 14 | 501.04 | |||
Poland, West Pomeranian Voivodeship | F + M | 29 | 542.13 | Patients who had been treated with preparations containing F | [143] | |
F | 21 | 464.42 | ||||
M | 8 | 765.36 | ||||
Poland, Lubuskie Voivodeship | F + M | 20 | 387.16 | Patients who had been treated with preparations containing F | [143] | |
F | 14 | 370.62 | ||||
M | 6 | 398.94 | ||||
Femoral Head (Cortical Bone) | ||||||
Poland, West Pomeranian Voivodeship | 62.75 | F + M | 49 | 428.26 | Patients who had been treated with preparations containing F | [143] |
66.9 ± 12.6 | F | 35 | 447.01 | |||
58.6 ± 11.3 | M | 14 | 393.99 | |||
Poland, West Pomeranian Voivodeship | F + M | 29 | 456.91 | Patients who had been treated with preparations containing F | [143] | |
F | 21 | 456.91 | ||||
M | 8 | 456.56 | ||||
Poland, Lubuskie Voivodeship | F + M | 20 | 359.23 | Patients who had been treated with preparations containing F | [143] | |
F | 14 | 401.42 | ||||
M | 6 | 321.67 | ||||
Tibia | ||||||
North-western Poland | 65.75 | F + M | 33 | 511.46 | [144] | |
67 | F | 22 | 513.16 | |||
64.5 | M | 11 | 449.31 | |||
USA, Philadelphia | 48 | M | 1 | 1,800.00 | Chronic F poisoning | [37] |
Tibia (Cortical Bone) | ||||||
Poland, north-western part | 62.75 | F + M | 49 | 497.44 | Patients who had been treated with preparations containing F | [143] |
66.9 ± 12.6 | F | 35 | 508.15 | |||
58.6 ± 11.3 | M | 14 | 449.31 | |||
Poland, West Pomeranian Voivodeship | F + M | 29 | 897.83 | Patients who had been treated with preparations containing F | [143] | |
F | 21 | 893.84 | ||||
M | 8 | 1,099.95 | ||||
Poland, Lubuskie Voivodeship | F + M | 20 | 438.34 | Patients who had been treated with preparations containing F | [143] | |
F | 14 | 401.30 | ||||
M | 6 | 438.34 | ||||
Tibia (Spongy Bone) | ||||||
North-western Poland | - | F + M | 20 | 421.36 | [145] | |
70 ± 10.3 | F | 15 | 458.99 | |||
66.3 ± 11.6 | M | 5 | 198.10 |
The Studied Area | Age | Sex | N | Pb Level | Additional Information | Reference |
---|---|---|---|---|---|---|
Ribs | ||||||
Spain, Tarragona | 56 ± 20 | F + M | 78 | 1.79 | [169] | |
Spain, Tarragona | <35 F >65 M | F + M | 22 | 2.11 | People who had lived for ten years near HWI | [170] |
Spain | ~51 | F + M | 20 | 3.99 (in 1998) | People who had lived for ten years near HWI | [171] |
2.11 (in 2003) | ||||||
2.66 (in 2007) | ||||||
1.39 (in 2013) | ||||||
Japan, Tokyo | 61–96 | F + M | 45 | 6.85 | [38] | |
F | 28 | 5.34 | ||||
M | 17 | 7.57 | ||||
Russia, Obninsk | 15–55 | F + M | 80 | 2.24 | [172] | |
F | 38 | 2.10 | ||||
M | 42 | 2.36 | ||||
Poland, Gdańsk | 17–87 | F + M | 59 | 2.70 | [139] | |
Ribs (Spongy Bone) | ||||||
USA, Kentucky | 69 ± 6.3 | F + M | 12 | 5.00 | [40] | |
Ribs (Cortical Bone) | ||||||
USA, Kentucky | 60–82 | F + M | 12 | 13.40 | [40] | |
Femur | ||||||
Poland, Upper Silesia | 67.5 | F + M | 50 | 2.05 | [41] | |
67.2 | F | 36 | 1.74 | |||
68.1 | M | 14 | 2.90 | |||
South Africa, Pretoria area | 20–29 | F + M | 9 | 2.22 | Black individuals who died between 1943–2012 | [173] |
30–39 | 12 | 4.14 | ||||
40–39 | 18 | 3.30 | ||||
50–59 | 12 | 3.67 | ||||
60–69 | 11 | 4.53 | ||||
70–79 | 10 | 7.20 | ||||
80–89 | 1 | 12.95 | ||||
40–49 | F + M | 5 | 10.04 | White individuals who died between 1943–2012 | ||
50–59 | 7 | 10.85 | ||||
60–69 | 9 | 12.70 | ||||
70–79 | 3 | 3.41 | ||||
80–89 | 3 | 7.59 | ||||
90–99 | 2 | 49.07 | ||||
Femoral Head | ||||||
Poland, Greater Poland Voivodeship | 63.8 | F + M | 96 | 1.15 | [42] | |
64.5 ± 14.2 | F | 57 | 0.86 | |||
63.2 ± 10.2 | M | 39 | 1.57 | |||
Poland, Upper Silesia | 63.9 | F + M | 26 | 10.84 | NS | [164] |
15.11 | S | |||||
Poland, Upper Silesia | 71 ± 6 | F | 64 | 11.46 | [43] | |
M | 39 | 10.99 | ||||
Poland, Upper Silesia | 65.6 | F + M | 53 | 3.75 | [44] | |
Poland, Silesia, Łódź, Cracow | 65.8 ± 12.5 | F + M | 197 | 2.76 | [45] | |
Taiwan | - | F + M | 70 | 7.10 | [46] | |
41–60 | F | 17 | 6.76 | |||
61–80 | M | 53 | 6.77 | |||
Femoral Neck | ||||||
Poland, Greater Poland Voivodeship | 63.8 | F + M | 96 | 1.08 | [42] | |
64.5 ± 14.2 | F | 57 | 0.85 | |||
63.2 ± 10.2 | M | 39 | 1.41 | |||
Femoral Head (Spongy Bone) | ||||||
Poland, Upper Silesia | 68 ± 9.9 | F + M | 13 | 1.90 | None of the patients had ever been occupationally exposed to heavy metals | [47] |
F | 9 | 1.62 | ||||
M | 4 | 2.48 | ||||
Poland, Łódź | 68.3 ± 7.3 | F + M | 12 | 1.35 | None of the patients had ever been occupationally exposed to heavy metals | |
F | 10 | 1.19 | ||||
M | 2 | 2.15 | ||||
Poland, Cracow | 69.2 ± 9.6 | F + M | 13 | 2.98 | None of the patients had ever been occupationally exposed to heavy metals | |
F | 10 | 2.43 | ||||
M | 3 | 4.80 | ||||
Poland, Silesian Voivodeship | 65.9 ± 10.8 | F + M | 21 | 2.00 | NS | [48] |
62.8 ± 17.2 | F + M | 22 | 3.09 | S | ||
Poland, Upper Silesia | 63.9 ± 14.4 | F + M | 43 | 2.56 | [109] | |
64.87 ± 13.4 | F | 32 | 2.02 | |||
61.07 ± 17.5 | M | 11 | 4.12 | |||
Poland, Upper Silesia | 77 ± 5 | F + M | 110 | 2.23 | [49] | |
Poland, Upper Silesia | 71 ± 6 | F + M | 103 | 6.22 | [43] | |
Poland, Upper Silesia | 65.6 | F + M | 53 | - | [44] | |
67.2 | F | 43 | 1.75 | |||
58.4 | M | 10 | 1.97 | |||
Poland, Upper Silesia | 71.6 | F + M | 103 | 6.22 | [51] | |
Poland, Upper Silesia | 65.5 | F + M | 19 | 1.53 | NS | [165] |
34 | 2.97 | S | ||||
Poland, northwestern part | 66.25 | F + M | 37 | 0.50 | Patients treated with arthroplasty | [174] |
69.9 ± 10.76 | F | 24 | 0.51 | |||
62.6 ± 15.5 | M | 13 | 0.49 | |||
<60 | M | 13 | 0.48 | |||
>60 | M | 13 | 0.47 | |||
Poland, Szczecin | 65.25 | F + M | 30 | 0.49 | Patients treated with arthroplasty | [174] |
70.1 ± 10.56 | F | 20 | 0.47 | |||
60.41 ± 9.51 | M | 10 | 0.49 | |||
Poland, Szczecin | 64.25 ± 11.93 | F + M | 15 | 0.48 | NS | [168] |
15 | 0.47 | S fewer than 20 cigarettes per day | ||||
7 | 0.48 | S more than 20 cigarettes per day | ||||
32 | 0.50 | Patients without osteoporosis | ||||
5 | 0.51 | Patients with Documented osteoporosis | ||||
4 | 0.53 | Bones from people not consuming fish or seafood | ||||
15 | 0.43 | Patients consuming fish and seafood once a month | ||||
18 | 0.49 | Patients consuming fish and seafood several times a month | ||||
China, Shanghai | 62 | F | 1 | 2.41 | [50] | |
Femoral Head (Cortical Bone) | ||||||
Poland, Upper Silesia | 63.9 ± 14.4 | F + M | 36 | 3.05 | [175] | |
64.87 ± 13.4 | F | 26 | 2.55 | |||
61.07 ± 17.5 | M | 10 | 4.35 | |||
Poland, Upper Silesia | 65.5 | F + M | 34 | 2.13 | S | [165] |
19 | 1.57 | NS | ||||
Poland, Upper Silesia | 71.6 | F + M | 103 | 12.27 | People living in the industrial area | [51] |
F | 69 | 11.46 | ||||
M | 39 | 10.99 | ||||
Poland, Upper Silesia | 65.6 | F + M | 53 | 1.05 | [44] | |
67.2 | F | 43 | 1.62 | |||
58.4 | M | 10 | 1.93 | |||
Poland, Upper Silesia | 77.0 ± 5.0 | F+M | 110 | 6.77 | [49] | |
Poland, Upper Silesia | 71.0 ± 6.0 | F + M | 103 | 12.27 | [43] | |
China, Shanghai | 62 | F | 1 | 4.06 | [50] | |
Poland, Szczecin | 65.25 | F + M | 30 | 0.60 | Patients treated with arthroplasty | [174] |
70.1 ± 10.56 | F | 20 | 0.49 | |||
60.41 ± 9.51 | M | 10 | 0.83 | |||
Tibia | ||||||
Poland, Upper Silesia | 67.5 | F + M | 50 | 2.1 | [41] | |
67.2 | F | 36 | 1.73 | |||
68.1 | M | 14 | 3.29 | |||
Poland, West Pomeranian Voivodeship | 65.75 | F + M | 33 | 1.72 | [35] | |
67 | F | 22 | 1.53 | |||
64.5 | M | 11 | 2.06 | |||
- | F + M | 18 | 2.09 | S | ||
- | F + M | 15 | 1.45 | NS |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ciosek, Ż.; Kot, K.; Kosik-Bogacka, D.; Łanocha-Arendarczyk, N.; Rotter, I. The Effects of Calcium, Magnesium, Phosphorus, Fluoride, and Lead on Bone Tissue. Biomolecules 2021, 11, 506. https://doi.org/10.3390/biom11040506
Ciosek Ż, Kot K, Kosik-Bogacka D, Łanocha-Arendarczyk N, Rotter I. The Effects of Calcium, Magnesium, Phosphorus, Fluoride, and Lead on Bone Tissue. Biomolecules. 2021; 11(4):506. https://doi.org/10.3390/biom11040506
Chicago/Turabian StyleCiosek, Żaneta, Karolina Kot, Danuta Kosik-Bogacka, Natalia Łanocha-Arendarczyk, and Iwona Rotter. 2021. "The Effects of Calcium, Magnesium, Phosphorus, Fluoride, and Lead on Bone Tissue" Biomolecules 11, no. 4: 506. https://doi.org/10.3390/biom11040506
APA StyleCiosek, Ż., Kot, K., Kosik-Bogacka, D., Łanocha-Arendarczyk, N., & Rotter, I. (2021). The Effects of Calcium, Magnesium, Phosphorus, Fluoride, and Lead on Bone Tissue. Biomolecules, 11(4), 506. https://doi.org/10.3390/biom11040506