Overcoming TRAIL Resistance for Glioblastoma Treatment
Abstract
:1. Introduction
2. Targeting the TRAIL Receptor/Ligand System: An Emerging Opportunity for GBM Treatment
2.1. GBM Treatment Is a Formidable Challenge in Clinical Oncology
2.2. TRAIL-Induced Apoptotic Signaling
2.3. TRAIL Receptor/Ligand System Is a Promising Therapeutic Target for GBM
2.4. The Expression Patterns of TRAIL/TRAIL Death Receptors and Implications in GBM Treatment
3. Aberrations in TRAIL-Induced Apoptotic Signaling in GBM
4. Advances in Mechanisms of TRAIL-Induced Apoptotic Signaling in GBM
4.1. Mechanisms That Promote TRAIL-Induced Apoptosis in GBM
4.1.1. NF-κB
4.1.2. miR-7
4.2. Mechanisms That Inhibit TRAIL-Induced Apoptosis in GBM
4.2.1. c-FLIP
4.2.2. Caspase-8 Inhibitors
4.2.3. DISC Modification
4.2.4. miRNAs
4.2.5. Others
5. Sensitizing GBM to TRAIL-Induced Apoptosis
5.1. Nanoparticle Delivery
5.2. Combination with Chemotherapeutic Drugs
5.3. Combination with Non-Chemotherapeutic Drugs
5.4. Combination with Other Inhibitors
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Letai, A. Apoptosis and Cancer. Annu. Rev. Cancer Biol. 2017, 1, 275–294. [Google Scholar] [CrossRef]
- Hanahan, D.; Weinberg, R.A. Hallmarks of Cancer: The Next Generation. Cell 2011, 144, 646–674. [Google Scholar] [CrossRef] [Green Version]
- Cullen, S.P.; Martin, S.J. Fas and TRAIL ‘Death Receptors’ as Initiators of Inflammation: Implications for Cancer. Semin. Cell Dev. Biol. 2015, 39, 26–34. [Google Scholar] [CrossRef]
- Walczak, H.; Miller, R.E.; Ariail, K.; Gliniak, B.; Griffith, T.S.; Kubin, M.; Chin, W.; Jones, J.; Woodward, A.; Le, T.; et al. Tumoricidal Activity of Tumor Necrosis Factor-related Apoptosis-inducing Ligand in vivo. Nat. Med. 1999, 5, 157–163. [Google Scholar] [CrossRef]
- Ashkenazi, A.; Pai, R.C.; Fong, S.; Leung, S.; Lawrence, D.A.; Marsters, S.A.; Blackie, C.; Chang, L.; McMurtrey, A.E.; Hebert, A.; et al. Safety and Antitumor Activity of Recombinant Soluble Apo2 Ligand. J. Clin. Investig. 1999, 104, 155–162. [Google Scholar] [CrossRef] [PubMed]
- Pan, G.; O’Rourke, K.; Chinnaiyan, A.M.; Gentz, R.; Ebner, R.; Ni, J.; Dixit, V.M. The Receptor for the Cytotoxic Ligand TRAIL. Science 1997, 276, 111–113. [Google Scholar] [CrossRef] [PubMed]
- Pan, G.; Ni, J.; Wei, Y.F.; Yu, G.; Gentz, R.; Dixit, V.M. An Antagonist Decoy Receptor and a Death Domain-containing Receptor for TRAIL. Science 1997, 277, 815–818. [Google Scholar] [CrossRef] [PubMed]
- Schneider, P.; Bodmer, J.L.; Thome, M.; Hofmann, K.; Holler, N.; Tschopp, J. Characterization of Two Receptors for TRAIL. FEBS Lett. 1997, 416, 329–334. [Google Scholar] [CrossRef] [Green Version]
- Sheridan, J.P.; Marsters, S.A.; Pitti, R.M.; Gurney, A.; Skubatch, M.; Baldwin, D.; Ramakrishnan, L.; Gray, C.L.; Baker, K.; Wood, W.I.; et al. Control of TRAIL-induced Apoptosis by a Family of Signaling and Decoy Receptors. Science 1997, 277, 818–821. [Google Scholar] [CrossRef] [PubMed]
- Pennarun, B.; Meijer, A.; de Vries, E.G.; Kleibeuker, J.H.; Kruyt, F.; de Jong, S. Playing the DISC: Turning on TRAIL Death Receptor-mediated Apoptosis in Cancer. Biochim. Biophys. Acta 2010, 1805, 123–140. [Google Scholar] [CrossRef]
- Fulda, S.; Wick, W.; Weller, M.; Debatin, K.M. Smac Agonists Sensitize for Apo2L/TRAIL- or Anticancer Drug-induced Apoptosis and Induce Regression of Malignant Glioma in vivo. Nat. Med. 2002, 8, 808–815. [Google Scholar] [CrossRef] [PubMed]
- Weyhenmeyer, B.C.; Noonan, J.; Wurstle, M.L.; Lincoln, F.A.; Johnston, G.; Rehm, M.; Murphy, B.M. Predicting the Cell Death Responsiveness and Sensitization of Glioma Cells to TRAIL and Temozolomide. Oncotarget 2016, 7, 61295–61311. [Google Scholar] [CrossRef] [Green Version]
- Muller Bark, J.; Kulasinghe, A.; Chua, B.; Day, B.W.; Punyadeera, C. Circulating Biomarkers in Patients with Glioblastoma. Br. J. Cancer 2020, 122, 295–305. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ghosh, D.; Nandi, S.; Bhattacharjee, S. Combination Therapy to Checkmate Glioblastoma: Clinical Challenges and Advances. Clin. Transl. Med. 2018, 7, 33. [Google Scholar] [CrossRef] [Green Version]
- Zanders, E.D.; Svensson, F.; Bailey, D.S. Therapy for Glioblastoma: Is It Working? Drug Discov. Today 2019, 24, 1193–1201. [Google Scholar] [CrossRef] [PubMed]
- Tan, A.C.; Ashley, D.M.; Lopez, G.Y.; Malinzak, M.; Friedman, H.S.; Khasraw, M. Management of Glioblastoma: State of the Art and Future Directions. CA Cancer J. Clin. 2020, 70, 299–312. [Google Scholar] [CrossRef]
- Ladomersky, E.; Scholtens, D.M.; Kocherginsky, M.; Hibler, E.A.; Bartom, E.T.; Otto-Meyer, S.; Zhai, L.; Lauing, K.L.; Choi, J.; Sosman, J.A.; et al. The Coincidence between Increasing Age, Immunosuppression, and the Incidence of Patients with Glioblastoma. Front. Pharmacol. 2019, 10, 200. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Sun, D.; Chen, Y.J.; Xie, X.; Shi, Y.; Tabar, V.; Brennan, C.W.; Bale, T.A.; Jayewickreme, C.D.; Laks, D.R.; et al. Cell Lineage-Based Stratification for Glioblastoma. Cancer Cell 2020, 38, 366–379 e368. [Google Scholar] [CrossRef]
- Geraldo, L.H.M.; Garcia, C.; da Fonseca, A.C.C.; Dubois, L.G.F.; de Sampaio, E.S.T.C.L.; Matias, D.; de Camargo Magalhaes, E.S.; do Amaral, R.F.; da Rosa, B.G.; Grimaldi, I.; et al. Glioblastoma Therapy in the Age of Molecular Medicine. Trends Cancer 2019, 5, 46–65. [Google Scholar] [CrossRef]
- Le Rhun, E.; Preusser, M.; Roth, P.; Reardon, D.A.; van den Bent, M.; Wen, P.; Reifenberger, G.; Weller, M. Molecular Targeted Therapy of Glioblastoma. Cancer Treat. Rev. 2019, 80, 101896. [Google Scholar] [CrossRef]
- Alexander, B.M.; Cloughesy, T.F. Adult Glioblastoma. J. Clin. Oncol. 2017, 35, 2402–2409. [Google Scholar] [CrossRef]
- Fulda, S. Cell Death-based Treatment of Glioblastoma. Cell Death Dis. 2018, 9, 121. [Google Scholar] [CrossRef] [Green Version]
- Ashkenazi, A. Targeting the Extrinsic Apoptotic Pathway in Cancer: Lessons Learned and Future Directions. J. Clin. Investig. 2015, 125, 487–489. [Google Scholar] [CrossRef] [PubMed]
- Carneiro, B.A.; El-Deiry, W.S. Targeting Apoptosis in Cancer Therapy. Nat. Rev. Clin. Oncol. 2020, 17, 395–417. [Google Scholar] [CrossRef] [PubMed]
- Annibaldi, A.; Walczak, H. Death Receptors and Their Ligands in Inflammatory Disease and Cancer. Cold Spring Harb. Perspect. Biol. 2020, 12. [Google Scholar] [CrossRef] [PubMed]
- Pitti, R.M.; Marsters, S.A.; Ruppert, S.; Donahue, C.J.; Moore, A.; Ashkenazi, A. Induction of Apoptosis by Apo-2 ligand, a New Member of the Tumor Necrosis Factor Cytokine Family. J. Biol Chem 1996, 271, 12687–12690. [Google Scholar] [CrossRef] [Green Version]
- Wiley, S.R.; Schooley, K.; Smolak, P.J.; Din, W.S.; Huang, C.P.; Nicholl, J.K.; Sutherland, G.R.; Smith, T.D.; Rauch, C.; Smith, C.A.; et al. Identification and Characterization of a New Member of the TNF Family That Induces Apoptosis. Immunity 1995, 3, 673–682. [Google Scholar] [CrossRef] [Green Version]
- Ashkenazi, A.; Dixit, V.M. Death Receptors: Signaling and Modulation. Science 1998, 281, 1305–1308. [Google Scholar] [CrossRef] [Green Version]
- Dianat-Moghadam, H.; Heidarifard, M.; Mahari, A.; Shahgolzari, M.; Keshavarz, M.; Nouri, M.; Amoozgar, Z. TRAIL in Oncology: From Recombinant TRAIL to Nano- and Self-targeted TRAIL-based Therapies. Pharmacol. Res. 2020, 155, 104716. [Google Scholar] [CrossRef]
- von Karstedt, S.; Montinaro, A.; Walczak, H. Exploring the TRAILs Less Travelled: TRAIL in Cancer Biology and Therapy. Nat. Rev. Cancer 2017, 17, 352–366. [Google Scholar] [CrossRef]
- Yuan, X.; Gajan, A.; Chu, Q.; Xiong, H.; Wu, K.; Wu, G.S. Developing TRAIL/TRAIL Death Receptor-based Cancer Therapies. Cancer Metastasis Rev. 2018, 37, 733–748. [Google Scholar] [CrossRef]
- Merino, D.; Lalaoui, N.; Morizot, A.; Schneider, P.; Solary, E.; Micheau, O. Differential Inhibition of TRAIL-mediated DR5-DISC Formation by Decoy Receptors 1 and 2. Mol. Cell. Biol. 2006, 26, 7046–7055. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dubuisson, A.; Micheau, O. Antibodies and Derivatives Targeting DR4 and DR5 for Cancer Therapy. Antibodies 2017, 6, 16. [Google Scholar] [CrossRef] [Green Version]
- Jouan-Lanhouet, S.; Arshad, M.I.; Piquet-Pellorce, C.; Martin-Chouly, C.; Le Moigne-Muller, G.; Van Herreweghe, F.; Takahashi, N.; Sergent, O.; Lagadic-Gossmann, D.; Vandenabeele, P.; et al. TRAIL Induces Necroptosis Involving RIPK1/RIPK3-dependent PARP-1 Activation. Cell Death Differ. 2012, 19, 2003–2014. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eisele, G.; Weller, M. Targeting Apoptosis Pathways in Glioblastoma. Cancer Lett. 2013, 332, 335–345. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kubicek, G.J.; Werner-Wasik, M.; Machtay, M.; Mallon, G.; Myers, T.; Ramirez, M.; Andrews, D.; Curran, W.J., Jr.; Dicker, A.P. Phase I Trial Using Proteasome Inhibitor Bortezomib and Concurrent Temozolomide and Radiotherapy for Central Nervous System Malignancies. Int. J. Radiat. Oncol. Biol. Phys. 2009, 74, 433–439. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Phuphanich, S.; Supko, J.G.; Carson, K.A.; Grossman, S.A.; Burt Nabors, L.; Mikkelsen, T.; Lesser, G.; Rosenfeld, S.; Desideri, S.; Olson, J.J. Phase 1 Clinical Trial of Bortezomib in Adults with Recurrent Malignant Glioma. J. Neurooncol. 2010, 100, 95–103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Unterkircher, T.; Cristofanon, S.; Vellanki, S.H.; Nonnenmacher, L.; Karpel-Massler, G.; Wirtz, C.R.; Debatin, K.M.; Fulda, S. Bortezomib Primes Glioblastoma, Including Glioblastoma Stem Cells, for TRAIL by Increasing tBid Stability and Mitochondrial Apoptosis. Clin. Cancer Res. 2011, 17, 4019–4030. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rohn, T.A.; Wagenknecht, B.; Roth, W.; Naumann, U.; Gulbins, E.; Krammer, P.H.; Walczak, H.; Weller, M. CCNU-dependent Potentiation of TRAIL/Apo2L-induced Apoptosis in Human Glioma Cells is p53-independent but May Involve Enhanced Cytochrome c Release. Oncogene 2001, 20, 4128–4137. [Google Scholar] [CrossRef] [Green Version]
- Saito, R.; Bringas, J.R.; Panner, A.; Tamas, M.; Pieper, R.O.; Berger, M.S.; Bankiewicz, K.S. Convection-enhanced Delivery of Tumor Necrosis Factor-related Apoptosis-inducing Ligand with Systemic Administration of Temozolomide Prolongs Survival in an Intracranial Glioblastoma Xenograft Model. Cancer Res. 2004, 64, 6858–6862. [Google Scholar] [CrossRef] [Green Version]
- Arrillaga-Romany, I.; Chi, A.S.; Allen, J.E.; Oster, W.; Wen, P.Y.; Batchelor, T.T. A Phase 2 Study of the First Imipridone ONC201, a Selective DRD2 Antagonist for Oncology, Administered Every Three Weeks in Recurrent Glioblastoma. Oncotarget 2017, 8, 79298–79304. [Google Scholar] [CrossRef] [Green Version]
- Ralff, M.D.; Lulla, A.R.; Wagner, J.; El-Deiry, W.S. ONC201: A New Treatment Option Being Tested Clinically for Recurrent Glioblastoma. Transl. Cancer Res. 2017, 6, S1239–S1243. [Google Scholar] [CrossRef]
- Karpel-Massler, G.; Siegelin, M.D. TIC10/ONC201-a Potential Therapeutic in Glioblastoma. Transl. Cancer Res. 2017, 6, S1439–S1440. [Google Scholar] [CrossRef] [PubMed]
- Singh, D.; Tewari, M.; Singh, S.; Narayan, G. Revisiting the Role of TRAIL/TRAIL-R in Cancer Biology and Therapy. Future Oncol. 2021, 17, 581–596. [Google Scholar] [CrossRef]
- Thapa, B.; Kc, R.; Uludag, H. TRAIL Therapy and Prospective Developments For cancer Treatment. J. Control. Release 2020, 326, 335–349. [Google Scholar] [CrossRef] [PubMed]
- Knight, M.J.; Riffkin, C.D.; Muscat, A.M.; Ashley, D.M.; Hawkins, C.J. Analysis of FasL and TRAIL Induced Apoptosis Pathways in Glioma Cells. Oncogene 2001, 20, 5789–5798. [Google Scholar] [CrossRef] [Green Version]
- Dorr, J.; Waiczies, S.; Wendling, U.; Seeger, B.; Zipp, F. Induction of TRAIL-mediated Glioma Cell Death by Human T Cells. J. Neuroimmunol. 2002, 122, 117–124. [Google Scholar] [CrossRef]
- Frank, S.; Kohler, U.; Schackert, G.; Schackert, H.K. Expression of TRAIL and Its Receptors in Human Brain Tumors. Biochem. Biophys. Res. Commun. 1999, 257, 454–459. [Google Scholar] [CrossRef] [PubMed]
- Kuijlen, J.M.; Mooij, J.J.; Platteel, I.; Hoving, E.W.; van der Graaf, W.T.; Span, M.M.; Hollema, H.; den Dunnen, W.F. TRAIL-receptor Expression is an Independent Prognostic Factor for Survival in Patients with a Primary Glioblastoma Multiforme. J. Neurooncol. 2006, 78, 161–171. [Google Scholar] [CrossRef]
- Muhlenbeck, F.; Schneider, P.; Bodmer, J.L.; Schwenzer, R.; Hauser, A.; Schubert, G.; Scheurich, P.; Moosmayer, D.; Tschopp, J.; Wajant, H. The Tumor Necrosis Factor-related Apoptosis-inducing Ligand Receptors TRAIL-R1 and TRAIL-R2 Have Distinct Cross-linking Requirements for Initiation of Apoptosis and Are Non-redundant in JNK Activation. J. Biol. Chem. 2000, 275, 32208–32213. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bremer, E.; Kuijlen, J.; Samplonius, D.; Walczak, H.; de Leij, L.; Helfrich, W. Target Cell-restricted and -enhanced Apoptosis Induction by a scFv:sTRAIL Fusion Protein with Specificity for the Pancarcinoma-associated Antigen EGP2. Int. J. Cancer 2004, 109, 281–290. [Google Scholar] [CrossRef]
- Wajant, H.; Moosmayer, D.; Wuest, T.; Bartke, T.; Gerlach, E.; Schonherr, U.; Peters, N.; Scheurich, P.; Pfizenmaier, K. Differential Activation of TRAIL-R1 and -2 by Soluble and Membrane TRAIL Allows Selective Surface Antigen-directed Activation of TRAIL-R2 by a Soluble TRAIL Derivative. Oncogene 2001, 20, 4101–4106. [Google Scholar] [CrossRef] [Green Version]
- Hao, C.; Beguinot, F.; Condorelli, G.; Trencia, A.; Van Meir, E.G.; Yong, V.W.; Parney, I.F.; Roa, W.H.; Petruk, K.C. Induction and Intracellular Regulation of Tumor Necrosis Factor-related Apoptosis-inducing Ligand (TRAIL) Mediated Apotosis in Human Malignant Glioma Cells. Cancer Res. 2001, 61, 1162–1170. [Google Scholar]
- Hetschko, H.; Voss, V.; Horn, S.; Seifert, V.; Prehn, J.H.; Kogel, D. Pharmacological Inhibition of Bcl-2 Family Members Reactivates TRAIL-induced Apoptosis in Malignant Glioma. J. Neurooncol. 2008, 86, 265–272. [Google Scholar] [CrossRef]
- Didenko, V.V.; Ngo, H.N.; Minchew, C.; Baskin, D.S. Apoptosis of T Lymphocytes Invading Glioblastomas Multiforme: A Possible Tumor Defense Mechanism. J. Neurosurg. 2002, 96, 580–584. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eramo, A.; Pallini, R.; Lotti, F.; Sette, G.; Patti, M.; Bartucci, M.; Ricci-Vitiani, L.; Signore, M.; Stassi, G.; Larocca, L.M.; et al. Inhibition of DNA Methylation Sensitizes Glioblastoma for Tumor Necrosis Factor-related Apoptosis-inducing Ligand-mediated Destruction. Cancer Res. 2005, 65, 11469–11477. [Google Scholar] [CrossRef] [Green Version]
- Panner, A.; James, C.D.; Berger, M.S.; Pieper, R.O. mTOR Controls FLIPS Translation and TRAIL Sensitivity in Glioblastoma Multiforme Cells. Mol. Cell Biol. 2005, 25, 8809–8823. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fels, C.; Schafer, C.; Huppe, B.; Bahn, H.; Heidecke, V.; Kramm, C.M.; Lautenschlager, C.; Rainov, N.G. Bcl-2 Expression in Higher-grade Human Glioma: A Clinical and Experimental Study. J. Neurooncol. 2000, 48, 207–216. [Google Scholar] [CrossRef] [PubMed]
- Pareja, F.; Macleod, D.; Shu, C.; Crary, J.F.; Canoll, P.D.; Ross, A.H.; Siegelin, M.D. PI3K and Bcl-2 Inhibition Primes Glioblastoma Cells to Apoptosis Through Downregulation of Mcl-1 and Phospho-BAD. Mol. Cancer Res. 2014, 12, 987–1001. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fulda, S.; Meyer, E.; Debatin, K.M. Inhibition of TRAIL-induced Apoptosis by Bcl-2 Overexpression. Oncogene 2002, 21, 2283–2294. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Watanabe, T.; Hirota, Y.; Arakawa, Y.; Fujisawa, H.; Tachibana, O.; Hasegawa, M.; Yamashita, J.; Hayashi, Y. Frequent LOH at Chromosome 12q22-23 and Apaf-1 Inactivation in Glioblastoma. Brain Pathol. 2003, 13, 431–439. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.C.; Li, Y.C.; Tzeng, C.C.; Song, J.H.; Hsieh, L.J.; Liao, S.J.; Tsia, F.J.; Liao, S.J.; Tsai, C.H.; Hao, C. Genomic Alterations in Glioblastoma Cell Resistance to TRAIL-induced Apoptosis. Cancer Res. 2005, 65, 851. [Google Scholar]
- Skiriute, D.; Vaitkiene, P.; Saferis, V.; Asmoniene, V.; Skauminas, K.; Deltuva, V.P.; Tamasauskas, A. MGMT, GATA6, CD81, DR4, and CASP8 Gene Promoter Methylation in Glioblastoma. BMC Cancer 2012, 12, 218. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martinez, R.; Setien, F.; Voelter, C.; Casado, S.; Quesada, M.P.; Schackert, G.; Esteller, M. CpG Island Promoter Hypermethylation of the Pro-apoptotic Gene Caspase-8 is a Common Hallmark of Relapsed Glioblastoma Multiforme. Carcinogenesis 2007, 28, 1264–1268. [Google Scholar] [CrossRef] [Green Version]
- Capper, D.; Gaiser, T.; Hartmann, C.; Habel, A.; Mueller, W.; Herold-Mende, C.; von Deimling, A.; Siegelin, M.D. Stem-cell-like Glioma Cells are Resistant to TRAIL/Apo2L and Exhibit Down-regulation of Caspase-8 by Promoter Methylation. Acta Neuropathol. 2009, 117, 445–456. [Google Scholar] [CrossRef]
- Eckert, A.; Bock, B.C.; Tagscherer, K.E.; Haas, T.L.; Grund, K.; Sykora, J.; Herold-Mende, C.; Ehemann, V.; Hollstein, M.; Chneiweiss, H.; et al. The PEA-15/PED Protein Protects Glioblastoma Cells from Glucose Deprivation-induced Apoptosis via the ERK/MAP Kinase Pathway. Oncogene 2008, 27, 1155–1166. [Google Scholar] [CrossRef] [Green Version]
- Trencia, A.; Perfetti, A.; Cassese, A.; Vigliotta, G.; Miele, C.; Oriente, F.; Santopietro, S.; Giacco, F.; Condorelli, G.; Formisano, P.; et al. Protein Kinase B/Akt Binds and Phosphorylates PED/PEA-15, Stabilizing Its Antiapoptotic Action. Mol. Cell. Biol. 2003, 23, 4511–4521. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Strik, H.; Deininger, M.; Streffer, J.; Grote, E.; Wickboldt, J.; Dichgans, J.; Weller, M.; Meyermann, R. BCL-2 Family Protein Expression in Initial and Recurrent Glioblastomas: Modulation by Radiochemotherapy. J. Neurol. Neurosurg. Psychiatry 1999, 67, 763–768. [Google Scholar] [CrossRef]
- Nagane, M.; Levitzki, A.; Gazit, A.; Cavenee, W.K.; Huang, H.J. Drug Resistance of Human Glioblastoma Cells Conferred by a Tumor-specific Mutant Epidermal Growth Factor Receptor through Modulation of Bcl-XL and Caspase-3-like Proteases. Proc. Natl. Acad. Sci. USA 1998, 95, 5724–5729. [Google Scholar] [CrossRef] [Green Version]
- Murphy, A.C.; Weyhenmeyer, B.; Noonan, J.; Kilbride, S.M.; Schimansky, S.; Loh, K.P.; Kogel, D.; Letai, A.G.; Prehn, J.H.; Murphy, B.M. Modulation of Mcl-1 Sensitizes Glioblastoma to TRAIL-induced Apoptosis. Apoptosis 2014, 19, 629–642. [Google Scholar] [CrossRef] [Green Version]
- Day, B.W.; Stringer, B.W.; Spanevello, M.D.; Charmsaz, S.; Jamieson, P.R.; Ensbey, K.S.; Carter, J.C.; Cox, J.M.; Ellis, V.J.; Brown, C.L.; et al. ELK4 Neutralization Sensitizes Glioblastoma to Apoptosis through Downregulation of the Anti-apoptotic Protein Mcl-1. Neuro. Oncol. 2011, 13, 1202–1212. [Google Scholar] [CrossRef] [Green Version]
- Tirapelli, D.; Lustosa, I.L.; Menezes, S.B.; Franco, I.M.; Rodrigues, A.R.; Peria, F.M.; Marinho, A.; Serafini, L.N.; Carlotti, C.G., Jr.; Tirapelli, L.F. High Expression of XIAP and Bcl-2 May Inhibit Programmed Cell Death in Glioblastomas. Arq. Neuropsiquiatr. 2017, 75, 875–880. [Google Scholar] [CrossRef] [Green Version]
- Roa, W.H.; Chen, H.; Fulton, D.; Gulavita, S.; Shaw, A.; Th’ng, J.; Farr-Jones, M.; Moore, R.; Petruk, K. X-linked Inhibitor Regulating TRAIL-induced Apoptosis in Chemoresistant Human Primary Glioblastoma Cells. Clin. Investig. Med. 2003, 26, 231–242. [Google Scholar]
- Jennewein, C.; Karl, S.; Baumann, B.; Micheau, O.; Debatin, K.M.; Fulda, S. Identification of a Novel Pro-apoptotic Role of NF-kappaB in the Regulation of TRAIL- and CD95-mediated Apoptosis of Glioblastoma Cells. Oncogene 2012, 31, 1468–1474. [Google Scholar] [CrossRef] [Green Version]
- Karl, S.; Pritschow, Y.; Volcic, M.; Hacker, S.; Baumann, B.; Wiesmuller, L.; Debatin, K.M.; Fulda, S. Identification of a Novel Pro-apopotic Function of NF-kappaB in the DNA Damage Response. J. Cell. Mol. Med. 2009, 13, 4239–4256. [Google Scholar] [CrossRef] [Green Version]
- Ammann, J.U.; Haag, C.; Kasperczyk, H.; Debatin, K.M.; Fulda, S. Sensitization of Neuroblastoma Cells for TRAIL-induced Apoptosis by NF-kappaB Inhibition. Int. J. Cancer 2009, 124, 1301–1311. [Google Scholar] [CrossRef] [PubMed]
- Liu, P.C.; Lu, G.; Deng, Y.; Wang, C.D.; Su, X.W.; Zhou, J.Y.; Chan, T.M.; Hu, X.; Poon, W.S. Inhibition of NF-kappaB Pathway and Modulation of MAPK Signaling Pathways in Glioblastoma and Implications for Lovastatin and Tumor Necrosis Factor-Related Apoptosis Inducing Ligand (TRAIL) Combination Therapy. PLoS ONE 2017, 12, e0171157. [Google Scholar] [CrossRef]
- La Ferla-Bruhl, K.; Westhoff, M.A.; Karl, S.; Kasperczyk, H.; Zwacka, R.M.; Debatin, K.M.; Fulda, S. NF-kappaB-independent Sensitization of Glioblastoma Cells for TRAIL-induced Apoptosis by Proteasome Inhibition. Oncogene 2007, 26, 571–582. [Google Scholar] [CrossRef] [Green Version]
- Siegelin, M.D.; Gaiser, T.; Siegelin, Y. The XIAP Inhibitor Embelin Enhances TRAIL-mediated Apoptosis in Malignant Glioma Cells by Down-regulation of the Short Isoform of FLIP. Neurochem. Int. 2009, 55, 423–430. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, X.; Hu, S.; Zheng, M.; Zhang, J.; Zhao, J.; Zhang, X.; Yan, B.; Jia, L.; Zhao, J.; et al. Identification of miRNA-7 by Genome-wide Analysis as a Critical Sensitizer for TRAIL-induced Apoptosis in Glioblastoma Cells. Nucleic Acids Res. 2017, 45, 5930–5944. [Google Scholar] [CrossRef] [PubMed]
- Bhere, D.; Tamura, K.; Wakimoto, H.; Choi, S.H.; Purow, B.; Debatisse, J.; Shah, K. microRNA-7 Upregulates Death Receptor 5 and Primes Resistant Brain Tumors to Caspase-mediated Apoptosis. Neuro Oncol. 2018, 20, 215–224. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deng, D.; Shah, K. TRAIL of Hope Meeting Resistance in Cancer. Trends Cancer 2020, 6, 989–1001. [Google Scholar] [CrossRef]
- Steck, P.A.; Pershouse, M.A.; Jasser, S.A.; Yung, W.K.; Lin, H.; Ligon, A.H.; Langford, L.A.; Baumgard, M.L.; Hattier, T.; Davis, T.; et al. Identification of a Candidate Tumour Suppressor Gene, MMAC1, at Chromosome 10q23.3 That is Mutated in Multiple Advanced Cancers. Nat. Genet. 1997, 15, 356–362. [Google Scholar] [CrossRef]
- Panner, A.; Crane, C.A.; Weng, C.; Feletti, A.; Parsa, A.T.; Pieper, R.O. A Novel PTEN-dependent Link to Ubiquitination Controls FLIPS Stability and TRAIL Sensitivity in Glioblastoma Multiforme. Cancer Res. 2009, 69, 7911–7916. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Panner, A.; Crane, C.A.; Weng, C.; Feletti, A.; Fang, S.; Parsa, A.T.; Pieper, R.O. Ubiquitin-specific Protease 8 Links the PTEN-Akt-AIP4 Pathway to the Control of FLIPS Stability and TRAIL Sensitivity in Glioblastoma Multiforme. Cancer Res. 2010, 70, 5046–5053. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Z.C.; Liu, J.W.; Yang, C.; Li, M.J.; Wu, R.J.; Xiong, Z.Q. Targeting KPNB1 Overcomes TRAIL Resistance by Regulating DR5, Mcl-1 and FLIP in Glioblastoma Cells. Cell Death Dis. 2019, 10, 118. [Google Scholar] [CrossRef] [Green Version]
- Navarro, M.; Camprubi, D.; Requena-Mendez, A.; Buonfrate, D.; Giorli, G.; Kamgno, J.; Gardon, J.; Boussinesq, M.; Munoz, J.; Krolewiecki, A. Safety of High-dose Ivermectin: A Systematic Review and Meta-analysis. J. Antimicrob. Chemother. 2020, 75, 827–834. [Google Scholar] [CrossRef]
- An, S.; Fu, L. Small-molecule PROTACs: An Emerging and Promising Approach for the Development of Targeted Therapy Drugs. EBioMedicine 2018, 36, 553–562. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qi, L.; Bellail, A.C.; Rossi, M.R.; Zhang, Z.; Pang, H.; Hunter, S.; Cohen, C.; Moreno, C.S.; Olson, J.J.; Li, S.; et al. Heterogeneity of Primary Glioblastoma Cells in the Expression of Caspase-8 and the Response to TRAIL-induced Apoptosis. Apoptosis 2011, 16, 1150–1164. [Google Scholar] [CrossRef] [Green Version]
- Serrano-Saenz, S.; Palacios, C.; Delgado-Bellido, D.; Lopez-Jimenez, L.; Garcia-Diaz, A.; Soto-Serrano, Y.; Casal, J.I.; Bartolome, R.A.; Fernandez-Luna, J.L.; Lopez-Rivas, A.; et al. PIM Kinases Mediate Resistance of Glioblastoma Cells to TRAIL by a p62/SQSTM1-dependent Mechanism. Cell Death Dis. 2019, 10, 51. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Song, M.; Kundu, J.K.; Lee, M.H.; Liu, Z.Z. PIM Kinase as an Executional Target in Cancer. J. Cancer Prev. 2018, 23, 109–116. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jeyapal, G.P.; Chandrasekar, M.J.N.; Krishnasamy, R.; Selvaraj, J.; Mohammad, M.; Nanjan, M.J. Potential Pharmacological Inhibitors of Pim Kinase Under Clinical Trials. Anticancer Agents Med. Chem 2018, 18, 1100–1114. [Google Scholar] [CrossRef]
- Bellail, A.C.; Olson, J.J.; Yang, X.; Chen, Z.J.; Hao, C. A20 Ubiquitin Ligase-mediated Polyubiquitination of RIP1 Inhibits Caspase-8 Cleavage and TRAIL-induced Apoptosis in Glioblastoma. Cancer Discov. 2012, 2, 140–155. [Google Scholar] [CrossRef] [Green Version]
- Bellail, A.C.; Tse, M.C.; Song, J.H.; Phuphanich, S.; Olson, J.J.; Sun, S.Y.; Hao, C. DR5-mediated DISC Controls Caspase-8 Cleavage and Initiation of Apoptosis in Human Glioblastomas. J. Cell. Mol. Med. 2010, 14, 1303–1317. [Google Scholar] [CrossRef] [PubMed]
- Corsten, M.F.; Miranda, R.; Kasmieh, R.; Krichevsky, A.M.; Weissleder, R.; Shah, K. MicroRNA-21 Knockdown Disrupts Glioma Growth in vivo and Displays Synergistic Cytotoxicity with Neural Precursor Cell Delivered S-TRAIL in Human Gliomas. Cancer Res. 2007, 67, 8994–9000. [Google Scholar] [CrossRef] [Green Version]
- Quintavalle, C.; Donnarumma, E.; Iaboni, M.; Roscigno, G.; Garofalo, M.; Romano, G.; Fiore, D.; De Marinis, P.; Croce, C.M.; Condorelli, G. Effect of miR-21 and miR-30b/c on TRAIL-induced Apoptosis in Glioma Cells. Oncogene 2013, 32, 4001–4008. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.S.; Feng, L.; Hu, B.G.; Lu, Y.F.; Wang, W.M.; Guo, W.; Suen, C.W.; Jiao, B.H.; Pang, J.X.; Fu, W.M.; et al. miR-133a Promotes TRAIL Resistance in Glioblastoma via Suppressing Death Receptor 5 and Activating NF-kappaB Signaling. Mol. Ther. Nucleic Acids 2017, 8, 482–492. [Google Scholar] [CrossRef] [Green Version]
- England, B.; Huang, T.; Karsy, M. Current Understanding of the Role and Targeting of Tumor Suppressor p53 in Glioblastoma Multiforme. Tumor Biol. 2013, 34, 2063–2074. [Google Scholar] [CrossRef] [PubMed]
- Dorsey, J.F.; El-Deiry, W.S. Role of p53 in TRAIL-induced Apoptosis in Glioblastoma Multiforme and Modulation by Taxol, Rapamycin or Temozolomide. Cancer Res. 2006, 66, 1167–1168. [Google Scholar]
- Niu, T.K.; Cheng, Y.; Ren, X.; Yang, J.M. Interaction of Beclin 1 with Survivin Regulates Sensitivity of Human Glioma Cells to TRAIL-induced Apoptosis. FEBS Lett. 2010, 584, 3519–3524. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- He, W.; Wang, Q.; Xu, J.; Xu, X.; Padilla, M.T.; Ren, G.; Gou, X.; Lin, Y. Attenuation of TNFSF10/TRAIL-induced Apoptosis by an Autophagic Survival Pathway Involving TRAF2- and RIPK1/RIP1-mediated MAPK8/JNK Activation. Autophagy 2012, 8, 1811–1821. [Google Scholar] [CrossRef] [Green Version]
- Fassl, A.; Tagscherer, K.E.; Richter, J.; Berriel Diaz, M.; Alcantara Llaguno, S.R.; Campos, B.; Kopitz, J.; Herold-Mende, C.; Herzig, S.; Schmidt, M.H.H.; et al. Notch1 Signaling Promotes Survival of Glioblastoma Cells via EGFR-mediated Induction of Anti-apoptotic Mcl-1. Oncogene 2012, 31, 4698–4708. [Google Scholar] [CrossRef]
- Hosoya, N.; Miyagawa, K. Targeting DNA Damage Response in Cancer Therapy. Cancer Sci. 2014, 105, 370–388. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sur, I.; Muslu, K.; Cingöz, A.; Önder, T.B. Abstract 4164: TRAIL Resistance of Glioblastoma Cells is Associated with DNA Damage Signalling Network. Cancer Res. 2017, 77, 4164. [Google Scholar] [CrossRef]
- Elmallah, M.I.Y.; Micheau, O. Epigenetic Regulation of TRAIL Signaling: Implication for Cancer Therapy. Cancers 2019, 11, 850. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kurt, I.C.; Sur, I.; Kaya, E.; Cingoz, A.; Kazancioglu, S.; Kahya, Z.; Toparlak, O.D.; Senbabaoglu, F.; Kaya, Z.; Ozyerli, E.; et al. KDM2B, an H3K36-specific Demethylase, Regulates Apoptotic Response of GBM Cells to TRAIL. Cell Death Dis. 2017, 8, e2897. [Google Scholar] [CrossRef] [Green Version]
- Thakor, N.; Holcik, M. IRES-mediated Translation of Cellular Messenger RNA Operates in eIF2alpha- independent Manner during Stress. Nucleic Acids Res. 2012, 40, 541–552. [Google Scholar] [CrossRef] [Green Version]
- Ross, J.A.; Dungen, K.V.; Bressler, K.R.; Fredriksen, M.; Khandige Sharma, D.; Balasingam, N.; Thakor, N. Eukaryotic Initiation Factor 5B (eIF5B) Provides a Critical Cell Survival Switch to Glioblastoma Cells via Regulation of Apoptosis. Cell Death Dis. 2019, 10, 57. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wong, H.L.; Wu, X.Y.; Bendayan, R. Nanotechnological Advances for the Delivery of CNS Therapeutics. Adv. Drug Deliv. Rev. 2012, 64, 686–700. [Google Scholar] [CrossRef]
- Wang, K.; Kievit, F.M.; Jeon, M.; Silber, J.R.; Ellenbogen, R.G.; Zhang, M. Nanoparticle-Mediated Target Delivery of TRAIL as Gene Therapy for Glioblastoma. Adv. Healthc. Mater. 2015, 4, 2719–2726. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiang, X.; Fitch, S.; Wang, C.; Wilson, C.; Li, J.; Grant, G.A.; Yang, F. Nanoparticle Engineered TRAIL-overexpressing Adipose-derived Stem Cells Target and Eradicate Glioblastoma via Intracranial Delivery. Proc. Natl. Acad. Sci. USA 2016, 113, 13857–13862. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sur-Erdem, I.; Muslu, K.; Pinarbasi, N.; Altunbek, M.; Seker-Polat, F.; Cingoz, A.; Aydin, S.O.; Kahraman, M.; Culha, M.; Solaroglu, I.; et al. TRAIL-conjugated Silver Nanoparticles Sensitize Glioblastoma Cells to TRAIL by Regulating CHK1 in the DNA Repair Pathway. Neurol. Res. 2020, 42, 1061–1069. [Google Scholar] [CrossRef] [PubMed]
- Dorsey, J.F.; Mintz, A.; Tian, X.; Dowling, M.L.; Plastaras, J.P.; Dicker, D.T.; Kao, G.D.; El-Deiry, W.S. Tumor Necrosis Factor-related Apoptosis-inducing Ligand (TRAIL) and Paclitaxel Have Cooperative in vivo Effects Against Glioblastoma Multiforme Cells. Mol. Cancer Ther. 2009, 8, 3285–3295. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhan, C.; Wei, X.; Qian, J.; Feng, L.; Zhu, J.; Lu, W. Co-delivery of TRAIL Gene Enhances the Anti-glioblastoma Effect of Paclitaxel in vitro and in vivo. J. Control. Release 2012, 160, 630–636. [Google Scholar] [CrossRef]
- Chen, J.; Sun, X.; Yang, W.; Jiang, G.; Li, X. Cisplatin-enhanced Sensitivity of Glioblastoma Multiforme U251 Cells to Adenovirus-delivered TRAIL in vitro. Tumor Biol. 2010, 31, 613–622. [Google Scholar] [CrossRef]
- Ding, L.; Yuan, C.; Wei, F.; Wang, G.; Zhang, J.; Bellail, A.C.; Zhang, Z.; Olson, J.J.; Hao, C. Cisplatin Restores TRAIL Apoptotic Pathway in Glioblastoma-derived Stem Cells through Up-regulation of DR5 and Down-regulation of c-FLIP. Cancer Invest. 2011, 29, 511–520. [Google Scholar] [CrossRef] [Green Version]
- Guo, L.; Fan, L.; Pang, Z.; Ren, J.; Ren, Y.; Li, J.; Chen, J.; Wen, Z.; Jiang, X. TRAIL and Doxorubicin Combination Enhances Anti-glioblastoma Effect Based on Passive Tumor Targeting of Liposomes. J. Control. Release 2011, 154, 93–102. [Google Scholar] [CrossRef]
- Senbabaoglu, F.; Cingoz, A.; Kaya, E.; Kazancioglu, S.; Lack, N.A.; Acilan, C.; Bagci-Onder, T. Identification of Mitoxantrone as a TRAIL-sensitizing Agent for Glioblastoma Multiforme. Cancer Biol. Ther. 2016, 17, 546–557. [Google Scholar] [CrossRef] [Green Version]
- Karpel-Massler, G.; Ramani, D.; Shu, C.; Halatsch, M.E.; Westhoff, M.A.; Bruce, J.N.; Canoll, P.; Siegelin, M.D. Metabolic Reprogramming of Glioblastoma Cells by L-asparaginase Sensitizes for Apoptosis in vitro and in vivo. Oncotarget 2016, 7, 33512–33528. [Google Scholar] [CrossRef] [Green Version]
- Chan, D.Y.; Chen, G.G.; Poon, W.S.; Liu, P.C. Lovastatin Sensitized Human Glioblastoma Cells to TRAIL-induced Apoptosis. J. Neuro Oncol. 2008, 86, 273–283. [Google Scholar] [CrossRef] [Green Version]
- Calzolari, A.; Saulle, E.; De Angelis, M.L.; Pasquini, L.; Boe, A.; Pelacchi, F.; Ricci-Vitiani, L.; Baiocchi, M.; Testa, U. Salinomycin Potentiates the Cytotoxic Effects of TRAIL on Glioblastoma Cell Lines. PLoS ONE 2014, 9, e94438. [Google Scholar] [CrossRef] [Green Version]
- Oien, D.B.; Pathoulas, C.L.; Ray, U.; Thirusangu, P.; Kalogera, E.; Shridhar, V. Repurposing Quinacrine for Treatment-refractory Cancer. Semin. Cancer Biol. 2021, 68, 21–30. [Google Scholar] [CrossRef] [PubMed]
- Erkoc, P.; Cingoz, A.; Onder, T.B.; Kizilel, S. Quinacrine Mediated Sensitization of Glioblastoma (GBM) Cells to TRAIL through MMP-Sensitive PEG Hydrogel Carriers. Macromol. Biosci. 2017, 17. [Google Scholar] [CrossRef] [PubMed]
- Tian, X.; Ye, J.; Alonso-Basanta, M.; Hahn, S.M.; Koumenis, C.; Dorsey, J.F. Modulation of CCAAT/Enhancer Binding Protein Homologous Protein (CHOP)-dependent DR5 Expression by Nelfinavir Sensitizes Glioblastoma Multiforme Cells to Tumor Necrosis Factor-related Apoptosis-inducing Ligand (TRAIL). J. Biol. Chem. 2011, 286, 29408–29416. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schultze, K.; Bock, B.; Eckert, A.; Oevermann, L.; Ramacher, D.; Wiestler, O.; Roth, W. Troglitazone Sensitizes Tumor Cells to TRAIL-induced Apoptosis via Down-regulation of FLIP and Survivin. Apoptosis 2006, 11, 1503–1512. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.H.; Lee, C.S.; Kim, D.W.; Ae, J.E.; Lee, T.H. Digitoxin Sensitizes Glioma Cells to TRAIL-mediated Apoptosis by Upregulation of Death Receptor 5 and Downregulation of Survivin. Anticancer Drugs 2014, 25, 44–52. [Google Scholar] [CrossRef]
- Martin, V.; Garcia-Santos, G.; Rodriguez-Blanco, J.; Casado-Zapico, S.; Sanchez-Sanchez, A.; Antolin, I.; Medina, M.; Rodriguez, C. Melatonin Sensitizes Human Malignant Glioma Cells against TRAIL-induced Cell Death. Cancer Lett. 2010, 287, 216–223. [Google Scholar] [CrossRef]
- Badr, C.E.; Wurdinger, T.; Nilsson, J.; Niers, J.M.; Whalen, M.; Degterev, A.; Tannous, B.A. Lanatoside C Sensitizes Glioblastoma Cells to Tumor Necrosis Factor-related Apoptosis-inducing Ligand and Induces an Alternative Cell Death Pathway. Neuro Oncol. 2011, 13, 1213–1224. [Google Scholar] [CrossRef] [Green Version]
- Bangert, A.; Cristofanon, S.; Eckhardt, I.; Abhari, B.A.; Kolodziej, S.; Hacker, S.; Vellanki, S.H.; Lausen, J.; Debatin, K.M.; Fulda, S. Histone Deacetylase Inhibitors Sensitize Glioblastoma Cells to TRAIL-induced Apoptosis by C-myc-mediated Downregulation of cFLIP. Oncogene 2012, 31, 4677–4688. [Google Scholar] [CrossRef]
- Cristofanon, S.; Fulda, S. ABT-737 Promotes tBid Mitochondrial Accumulation to Enhance TRAIL-induced Apoptosis in Glioblastoma Cells. Cell Death Dis. 2012, 3, e432. [Google Scholar] [CrossRef] [Green Version]
- Lincoln, F.A.; Imig, D.; Boccellato, C.; Juric, V.; Noonan, J.; Kontermann, R.E.; Allgower, F.; Murphy, B.M.; Rehm, M. Sensitization of Glioblastoma Cells to TRAIL-induced Apoptosis by IAP- and Bcl-2 Antagonism. Cell Death Dis. 2018, 9, 1112. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wajant, H.; Haas, E.; Schwenzer, R.; Muhlenbeck, F.; Kreuz, S.; Schubert, G.; Grell, M.; Smith, C.; Scheurich, P. Inhibition of Death Receptor-mediated Gene Induction by a Cycloheximide-sensitive Factor Occurs at the Level of or Upstream of Fas-associated Death Domain Protein (FADD). J. Biol. Chem. 2000, 275, 24357–24366. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jane, E.P.; Premkumar, D.R.; Pollack, I.F. Bortezomib Sensitizes Malignant Human Glioma Cells to TRAIL, Mediated by Inhibition of the NF-{kappa}B Signaling Pathway. Mol. Cancer Ther. 2011, 10, 198–208. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gras Navarro, A.; Espedal, H.; Joseph, J.V.; Trachsel-Moncho, L.; Bahador, M.; Gjertsen, B.T.; Kristoffersen, E.K.; Simonsen, A.; Miletic, H.; Enger, P.O.; et al. Pretreatment of Glioblastoma with Bortezomib Potentiates Natural Killer Cell Cytotoxicity through TRAIL/DR5 Mediated Apoptosis and Prolongs Animal Survival. Cancers 2019, 11, 996. [Google Scholar] [CrossRef] [Green Version]
Genes | Encoded Proteins | Aberrations | Confirmed Resources | Effects | Ref |
---|---|---|---|---|---|
CASP8 | Caspase-8 | Gene promoter methylation | Clinic samples; cell lines | Inhibition of TRAIL-induced apoptosis | [56,63,64,65] |
APAF1 | Apaf-1 | Loss of heterozygosity | Clinic samples | Inhibition of apoptosome assembly | [61] |
TNFRSF10A | TRAIL-R1 | Gene promoter methylation | Clinic samples; cell lines | Inhibition of TRAIL-induced apoptosis | [56,63] |
TNFRSF10B | TRAIL-R2 | Loss or structural aberration of gene | Cell lines | Inhibition of TRAIL-induced apoptosis | [62] |
DIABLO | Smac | Loss or structural aberration of gene | Cell lines | Inhibition of TRAIL-induced apoptosis | [11,62] |
BID | Bid | Loss or structural aberration of gene | Cell lines | Inhibition of TRAIL-induced apoptosis | [62] |
PEA15 | PEA-15 | Possible altered protein stability | Clinic samples; cell lines | Blockage of death receptor activation | [56,66,67] |
CFLAR | c-FLIP | Translational dysregulation | Cell lines | Inhibition of caspase-8 | [57] |
BCL2 | Bcl-2 | Transcriptional dysregulation | Clinic samples; cell lines | Inhibition of TRAIL-induced apoptosis | [58,59,68] |
BCL2L1 | Bcl-xL | Transcriptional dysregulation | Cell lines | Inhibition of TRAIL-induced apoptosis | [69] |
MCL1 | Mcl-1 | Transcriptional dysregulation | Cell lines | Inhibition of TRAIL-induced apoptosis | [70,71] |
XIAP | XIAP | Transcriptional dysregulation | Clinic samples | Inhibition of TRAIL-induced apoptosis | [72,73] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Deng, L.; Zhai, X.; Liang, P.; Cui, H. Overcoming TRAIL Resistance for Glioblastoma Treatment. Biomolecules 2021, 11, 572. https://doi.org/10.3390/biom11040572
Deng L, Zhai X, Liang P, Cui H. Overcoming TRAIL Resistance for Glioblastoma Treatment. Biomolecules. 2021; 11(4):572. https://doi.org/10.3390/biom11040572
Chicago/Turabian StyleDeng, Longfei, Xuan Zhai, Ping Liang, and Hongjuan Cui. 2021. "Overcoming TRAIL Resistance for Glioblastoma Treatment" Biomolecules 11, no. 4: 572. https://doi.org/10.3390/biom11040572
APA StyleDeng, L., Zhai, X., Liang, P., & Cui, H. (2021). Overcoming TRAIL Resistance for Glioblastoma Treatment. Biomolecules, 11(4), 572. https://doi.org/10.3390/biom11040572