Next Article in Journal
COVID-19: Unmasking Emerging SARS-CoV-2 Variants, Vaccines and Therapeutic Strategies
Next Article in Special Issue
Coagulation Abnormalities in Renal Pathology of Chronic Kidney Disease: The Interplay between Blood Cells and Soluble Factors
Previous Article in Journal
Gatekeepers of the Gut: The Roles of Proteasomes at the Gastrointestinal Barrier
Previous Article in Special Issue
Ex Vivo Activation of Red Blood Cell Senescence by Plasma from Sickle-Cell Disease Patients: Correlation between Markers and Adhesion Consequences during Acute Disease Events
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Opinion

Do We Store Packed Red Blood Cells under “Quasi-Diabetic” Conditions?

1
Red Blood Cell Research Group, Institute of Veterinary Physiology, Vetsuisse Faculty, University of Zürich, CH-8057 Zurich, Switzerland
2
Biochemistry Department, The Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91905, Israel
3
Pediatric Surgery Department, Hadassah Hebrew University Medical Center, Jerusalem 91120, Israel
4
Department of Hematology, Hadassah Hebrew University Medical Center, Jerusalem 91120, Israel
5
Pediatric Hematology Unit, Emek Medical Center, Afula 1834111, Israel
6
The Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 32000, Israel
7
Institut de Biologie Valrose, Université Côte d’Azur, CNRS, Inserm, 28 Av. Valrose, 06100 Nice, France
*
Author to whom correspondence should be addressed.
These authors contributed equally to this work.
Biomolecules 2021, 11(7), 992; https://doi.org/10.3390/biom11070992
Submission received: 29 April 2021 / Revised: 21 June 2021 / Accepted: 1 July 2021 / Published: 5 July 2021
(This article belongs to the Special Issue Biochemical and Biophysical Properties of Red Blood Cells in Disease)

Abstract

:
Red blood cell (RBC) transfusion is one of the most common therapeutic procedures in modern medicine. Although frequently lifesaving, it often has deleterious side effects. RBC quality is one of the critical factors for transfusion efficacy and safety. The role of various factors in the cells’ ability to maintain their functionality during storage is widely discussed in professional literature. Thus, the extra- and intracellular factors inducing an accelerated RBC aging need to be identified and therapeutically modified. Despite the extensively studied in vivo effect of chronic hyperglycemia on RBC hemodynamic and metabolic properties, as well as on their lifespan, only limited attention has been directed at the high sugar concentration in RBCs storage media, a possible cause of damage to red blood cells. This mini-review aims to compare the biophysical and biochemical changes observed in the red blood cells during cold storage and in patients with non-insulin-dependent diabetes mellitus (NIDDM). Given the well-described corresponding RBC alterations in NIDDM and during cold storage, we may regard the stored (especially long-stored) RBCs as “quasi-diabetic”. Keeping in mind that these RBC modifications may be crucial for the initial steps of microvascular pathogenesis, suitable preventive care for the transfused patients should be considered. We hope that our hypothesis will stimulate targeted experimental research to establish a relationship between a high sugar concentration in a storage medium and a deterioration in cells’ functional properties during storage.

1. Red Blood Cells Transfusion

Blood components transfusion is a common practice applied globally to more than 5% of hospitalized patients. With more than 100 million human blood units collected each year for therapeutic purposes [1], transfusion of red blood cells (RBCs) is one of the most common life-saving procedures in medicine. Depending on the severity of blood loss or anemia, packed RBC (PRBC) supplemented with a fraction of the storage medium are transfused into the recipient’s bloodstream. Blood donations for transfusion are routinely stored as PRBC, for up to 35 or 42 days, depending on the storage medium [2,3]. However, in recent years, there has been increasing concern about the safety and efficacy of PRBC transfusion [4,5]. A growing number of studies show that it can cause damage rather than benefit its recipients [5,6,7,8].
Despite numerous attempts (such as improved donor screening and patient blood management) to minimize post-procedural risks [8,9], there still exists a long list of possible transfusion-associated immediate or late-onset deleterious effects on the recipient’s health. Among others, transfusion-related febrile non-hemolytic reaction, mild to moderate allergic reaction, and delayed hemolytic transfusion reaction are the most commonly reported [10]. In addition, volume overload, adverse immunomodulation [11], and multiple types of endothelial dysfunction [12,13,14] have also been discussed in the literature. Moreover, patients who receive PRBC transfusions have longer durations of hospital stay and higher rates of infection, spend more time in the intensive care, and are at a higher risk for acute respiratory distress syndrome (ARDS) [15,16,17]. Thus, Hopewell et al. [17], in their systematic review, analyze observational studies published from 2006 to 2010 and conclude that there is a consistent effect of blood transfusion on recipients’ mortality, and that the PRBC associated risks are dose-dependent [18,19].
Several studies have linked the occurrence of complications after PRBC transfusion to the RBC storage lesion [20,21,22,23,24]. However, according to current blood bank regulations, only the immunological characteristics of the stored units (i.e., antibody screening, blood typing, and immune compatibility with the recipient plasma), and the presence of blood-borne infectious agents are consistently tested, while cell functionality parameters are not routinely controlled. In everyday blood banking practice, the storage duration is considered as the primary criterion for inventory management, and except for special cases, such as newborns or multi-transfused patients, the PRBC units are supplied primarily according to the first-in-first-out (FIFO) principle. In this case, the “calendar age” of the unit is accepted as a master parameter, while the actual quality of the cells provided for transfusion, specifically their capacity to provide the expected transfusion outcome, is not addressed. In their review, Koch et al. [25] examined “the evidence of the so-called storage lesion for RBC” and suggested that the storage duration (calendar age) is not an appropriate measure of the PRBC quality, and that “a functional measure of stored RBC quality—real age—may be better than calendar age”. They suggested that using “metrics to measure temporal changes in the quality of the stored RBC product may be more appropriate than the 42-day expiration date” and proposed several potential markers of the RBCs “real age”.

2. Red Blood Cells Aging (In Vitro and In Vivo)

The aging of red blood cells (RBCs) in vivo and in vitro represents a key biomedical issue. Human RBCs have an approximate lifespan of 120 days in vivo [26,27], which is much longer than the 35–42-day shelf life of RBC concentrates stored under blood bank conditions. Human RBCs survive to about the same age, which implies the existence of a molecular countdown that triggers a series of changes leading to their removal by the reticuloendothelial system. It is important to emphasize that although there is much in common in the process of RBC aging under both conditions, a significant difference in the in vivo and in vitro aging of erythrocytes has been documented.

2.1. In Vivo Aging

Several senescence markers are known that tag RBCs as senescent and prime them for clearance from the blood stream [27]. It is currently believed that metabolic changes involving ATP depletion and progressive oxidation, along with a reduction in mechanical stability and increase in cytosolic density and rigidity, are the primary processes triggering clearance [28,29]. These changes are mainly mediated by a progressive decrease in the activity of glycolytic and anti-oxidative enzymes, and by the loss of membrane surface resulting from shear stress. Proteolysis and oxidation are caused by Ca2+ uptake bouts, triggered by shear stress and exposure to inflammatory factors and myokines. Oxidation promotes the changes in tyrosine phosphorylation and clustering of band-3 protein [30], which is subsequently recognized by the naturally occurring antibodies [30,31]. Loss of membrane and an increase in cell density and cytosol’ viscosity due to an elevation in the mean corpuscular hemoglobin concentration (MCHC) are observed with aging [32,33,34]. Finally, the inability to maintain Na+/K+ and Ca2+ gradients contributes to cell dehydration and increases the proteolytic activity of Ca2+-dependent protease calpain [35,36,37,38]. Loss of cell water and an increased MCHC make the cells more rigid and susceptible to mechanic clearance within the splenic sinuses. Furthermore, aging-related vesiculation of RBC membrane [39] induces a decrease in the erythrocyte surface-to-volume ratio [40] and, following transformation from discoid to spherocyte/echinocyte shape [41,42], an accelerated spleen clearance of cells [43,44]. A satisfactory understanding of which are the master regulators of RBC aging, and which are the secondary events, and of the complex interaction between these processes, is still lacking.
In this view, special attention will be focused on the plasma glycemic state’s effect on RBC aging processes. Because of glucose transport specificity via the insulin-independent GLUT1 [45,46], glucose concentration inside the RBCs is directly related to its content in the exterior solution (the blood plasma or storage solution). Therefore, a prolonged exposure to external hyperglycemic conditions may result in undesired modification of RBC constituents (such as non-enzymatic irreversible glycation of RBC proteins and oxidative stress) [47,48] with a consequent negative effect on RBC functionality and life span. Despite some evidence to the contrary [49,50], most studies directly associate hyperglycemia with a diminished RBC lifespan [51,52,53,54,55]. Several hypotheses have been proposed to clarify this phenomenon; among others, an abnormal activity of glycated RBC membrane proteins, resulting in a reduced negative surface electrical charge, an increased fluidity, an abnormal lipid peroxidation, and a high adherence of RBCs to endothelial cells have been offered to explain how abnormal hyperglycemia may accelerate RBC aging [56,57,58,59,60]. This topic has been discussed in detail in the literature and analyzed in several reviews [46,61,62].

2.2. In Vitro Aging (Cold-Storage)

Before considering the problem of the in vitro aging of cells during their storage in a blood bank, it is necessary to take into account that all cells in the donated unit already have a certain (donor specific) “history of aging” in vivo. Donated blood contains RBCs that range from 0 to 120 days of age; “young” cells are relatively stable under cold-storage conditions, but the “old” ones are more sensitive to storage-related stress. It is well documented that the damage caused to the “old” fraction of RBC unit during its cold storage is much more intense than to the “young” fraction [42,63,64,65,66].
During cold storage, in addition to their aging in vivo, RBCs undergo slow detrimental changes, collectively termed “storage lesion”. Oxidative stress and ATP-depleted metabolism are the main driving forces in the development of this lesion. Storage-related processes lead to significant metabolic and structural changes in the erythrocytes, including global biochemical and biophysical alterations, remodeling of cell membrane structure, and of cytoplasm composition (see also Table 1).
The best-known changes include ATP and DPG depletion [32]; loss of cellular antioxidant capability [296,297]; changes in the K+ and Na+ concentrations [298,299]); Ca2+ influx [282]; loss of membrane and skeleton proteins [300,301]; loss of membrane lipids and changes in their in/out distribution; massive vesicle generation [302,303]); oxidation and remodeling of skeleton proteins [304]; clustering of the band-3 proteins [305]; and more. Visually, these changes are expressed as an alteration of the cell shape [287], i.e., transformation from a discoid form to echinocyte.
Some of these changes are interrelated and initiate a cascade of biochemical and structural alterations, which lead to impairment in the RBC functionality, specifically an alteration in the biophysical/mechanical properties of the cells. Therefore, in order for the RBC to become rigid [275,306,307,308,309] and fragile [301,310,311], having lost its ability to deform and survive in the bloodstream after transfusion [312,313,314], multiple changes listed above need to occur.

3. Sugar as a Potential Factor of RBC Lesion

The literature discusses the possible causes and mechanisms leading to the above changes. However, paradoxically, one of the possible factors leading to PRBCs lesions is the storage medium’s high glucose content, required to provide energy to maintain red cell viability and functionality throughout the entire weeks’ long storage. The concentration of sugar (dextrose or glucose) in different storage media (see Table 2) varied greatly [82,315,316,317,318,319]. These concentrations are significantly higher than the physiological ones (around 5 mM). Similar to in vivo chronic hyperglycemic conditions, the prolonged exposure to such external hyperglycemic conditions during the cold storage may result in significant abnormalities in RBC hemodynamic and metabolic properties [73]. HbA1c, the glycosylated form of the most abundant RBC protein, adult hemoglobin, is used to reflect the average blood glucose level over the preceding 60 days [320] and thus may serve as a measure of the glycemic status of the stored RBCs. The scarce and inconsistent data describing the change of HbA1c concentrations within the packed RBC during prolonged storage do not provide an unequivocal answer whether the effect of glycosylation is harmful to the stored RBCs [98,99,101,103,321,322,323]. This lack of data has prompted the conclusion that HbA1c values of patients receiving transfusions must be considered uninterpretable [324]. In parallel, the excess of glucose in the storage medium may lead to an elevated metabolism by RBC accompanied by increased lactate release and the medium’s acidity. Consequently, high acidity may result in partial hemolysis associated with enhanced transmembrane ion and water transport. Most of these processes have been previously reported [73].
This mini-review compares the biophysical and biochemical changes in the RBCs that occur under cold-storage conditions and in patients with non-insulin-dependent diabetes. Diabetes mellitus is a group of complex and multifactorial metabolic diseases affecting almost half of a billion individuals in the world (IDF Diabetes Atlas. Ninth Edition; 2019.). Insulin resistance associated with blood hyperglycemia and hyperlipidemia [325,326] induces a decreased glucose utilization by most tissues and impaired insulin secretion by the pancreas and hepatic glucose production. Hyperglycemia is probably a key trigger for the disease pathogenesis and the progression of diabetic complications. In addition to the acute stress for patients, hyperglycemia is linked to the development of long-term diabetic complications, which include nephropathy, retinopathy, neuropathy, cardiovascular disease, peripheral vascular problems, tooth and gum disease, and sexual dysfunction [327,328,329,330,331]. This is the main reason that preventing end-organ damage by preventing hyperglycemia (i.e., keeping blood glucose levels near the normal range) is the most crucial part of diabetes treatment.
Organ, and specifically end-organ, damage can be provoked by the disturbance of blood circulation/microcirculation [332,333,334] and, respectively, by RBC abnormalities [335,336]. The role of RBCs morphology and deformability in blood microcirculation has been strongly documented [277,286,337,338]. Unsurprisingly, most macro and, mainly, microvascular abnormalities in diabetic patients are directly associated with RBCs’ pathological features, a primary and most abundant target for glucose exposure [119,284,339,340,341]. Table 1 summarizes several (but, necessarily, not all) of the RBC features altered with the progression of non-insulin-dependent diabetes (NIDDM), which may associate with the aforementioned complications.
During cold storage, PRBCs undergo changes induced by (1) high glucose-mediated exposure, resultant glycation, and associated ROS elevation [104]; (2) by products of RBC metabolism, including elevated external acidity [70,73,75,104,157,200,342,343,344]; and (3) free hemoglobin levels elevation due to the partial hemolysis of stored red cells. Given the well-described corresponding RBC alterations in NIDDM and during cold storage, we may regard the stored (especially long-stored) RBCs as “quasi-diabetic.” Keeping in mind that these RBC modifications may be crucial for the initial steps of microvascular pathogenesis [345], suitable preventive care for the transfused patients should be considered.
The patients requiring multiple and frequent transfusions as a therapeutic intervention are especially at risk from such RBCs modifications. This relates to several pathologies associated with severe anemia, such as some blood cancers and chronic kidney disease, and most congenital hemoglobinopathies.
For many years, chronic kidney disease (CKD) has been considered as one of the main public health problems. For example, only in the USA, ~15% of adults suffer various forms of CKD, and, amongst them, around 800,000 people (i.e., 2 in every 1000) are currently living with end-stage renal disease (ESRD) (https://www.cdc.gov/kidneydisease/pdf/Chronic-Kidney-Disease-in-the-US-2021-h.pdf). In China, with its population of almost 1.5 billion, the prevalence of chronic kidney disease in the population aged 18 years or older is less, but still very significant (10.8%) [346]. One of the common complications of moderate-to-severe CKD is anemia [347,348,349,350,351] and its correction is known to have beneficial effects on cardiac function [352,353,354]. For decades, RBC transfusion has been considered a main therapeutic solution for these patients, especially before the development of erythropoiesis-stimulating agents [355,356,357,358,359]. Numerous studies dealt with possible risks and complications of chronic transfusion in CKD patients, such as the transmission of blood-borne diseases, iron and potassium overload [360,361,362], and also sensitization (the development of antibodies to foreign antigens) [363,364]. To the best of our knowledge, no study has examined the interrelated connections between the transfusion frequency, glucose-induced changes of blood cells, and further complications in the CKD patients. This is in view of the peripheral neuropathy [365,366,367,368,369,370,371], retinopathy [372,373,374,375,376,377,378,379,380,381], as well as other macro-and microvascular complications associated with hyperglycemia that are well known in patients with CKD. It is currently impossible to evaluate the part of the storage-associated alteration of PRBC on the development of CKD complications, especially the role of high glucose in these processes.
The standard of care for patients with severe hemoglobinopathies (including Sickle cell anemia and major β-thalassemia) is mainly based on PRBC transfusions [382,383]. The frequency of transfusions may reach one per every two weeks and even more often. In other words, a large fraction of “quasi-diabetic” RBC with the hemodynamic and metabolic alterations are frequently infused into the bloodstream of these patients. Despite the fact that immediate as well as accumulative deleterious effects of blood transfusion are hard to evaluate, the development of microvascular complications such as peripheral neuropathy [384,385,386,387,388,389,390,391,392,393,394,395,396,397], retinopathy [398,399,400,401,402,403,404,405,406,407,408,409,410], leg ulcers [411,412,413,414,415,416,417,418,419,420,421,422], and kidney dysfunction [34,423,424,425,426,427,428,429,430,431,432,433,434,435,436,437,438,439,440,441,442,443,444] are well known in these patients. It is accepted in the literature that these changes may occur mainly due to iron overload secondary to blood transfusion or as a side-effect of the treatment with iron chelators. Barshtein et al. [312,445] demonstrated that transfusion of PRBC with a high portion of low-deformable cells causes decreased skin-blood-flow in beta-thalassemia patients [312,445]. Nevertheless, as a possible support for our hypothesis, several authors recently reported an increase in plasma levels of advanced glycation end-products (AGE) and their potential contribution to the pathophysiology of chronic hemolysis and organ damage in major β-thalassemic and sickle cell patients [446,447,448,449].

4. Limitation

The authors want to draw readers’ attention to the fact that the approach they have presented has a significant limitation. As is well known, the properties of cells are determined by a wide range of factors. These include the mineral and protein composition of the medium, temperature, and external mechanical influences. There is a significant difference between the existence of erythrocytes in the PRBC unit and circulating blood. For example, under storage conditions, cells are suspended in storage-medium rather than plasma. In addition, under storage conditions, the cells are immobile at a temperature of 4 °C, while in the body, they are constantly circulating, and the blood temperature is 37 °C. In the presented text, from all the influencing factors, we singled out for consideration one single indicator, a high concentration of sugar. This undoubtedly dilutes the proposed conclusions. However, our analogies (in the two discussed states) of the behavior of erythrocytes indicate the adequacy (qualitative) of the presented approach.

5. Conclusions

In conclusion, we speculate that much of the damage to packed red blood cells during cold storage can be triggered by the presence of glucose or dextrose in the storage-medium, with these components acting in this respect as “double agents”. As far as we know, the fact that the storage medium is a concentrated sugar solution has not yet been considered a factor capable of affecting PRBCs properties negatively. We hope that our hypothesis will stimulate targeted experimental research to establish a relationship between a high concentration of sugar in a storage medium and a deterioration in cells’ functional properties during storage. Moreover, the almost uninvestigated alterations in glucose uptake, glycolysis, and associated regulative processes during cold storage should certainly be addressed in the future. In our opinion, these data are necessary to optimize storage medium formulation to reduce damage to red blood cells occurring during prolonged storage.

Funding

This research received no external funding.

Institutional Review Board Statement

Not applicable.

Informed Consent Statement

Not applicable.

Data Availability Statement

Not applicable.

Acknowledgments

We thank Olga Fredman for her technical assistance.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Slonim, R.; Wang, C.; Garbarino, E. The Market for Blood. J. Econ. Perspect. 2014, 28, 177–196. [Google Scholar] [CrossRef] [PubMed]
  2. Hess, J.R. An update on solutions for red cell storage. Vox Sang. 2006, 91, 13–19. [Google Scholar] [CrossRef] [PubMed]
  3. Zehnder, L.; Schulzki, T.; Goede, J.S.; Hayes, J.; Reinhart, W.H. Erythrocyte storage in hypertonic (SAGM) or isotonic (PAGGSM) conservation medium: Influence on cell properties. Vox Sang. 2008, 95, 280–287. [Google Scholar] [CrossRef] [PubMed]
  4. Koch, C.G.; Sessler, D.I.; Duncan, A.E.; Mascha, E.J.; Li, L.; Yang, D.; Figueroa, P.; Sabik, J.F., 3rd; Mihaljevic, T.; Svensson, L.G.; et al. Effect of red blood cell storage duration on major postoperative complications in cardiac surgery: A randomized trial. J. Thorac. Cardiovasc. Surg. 2020, 160, 1505–1514.e1503. [Google Scholar] [CrossRef] [PubMed]
  5. Koch, C.G.; Li, L.; Duncan, A.I.; Mihaljevic, T.; Cosgrove, D.M.; Loop, F.D.; Starr, N.J.; Blackstone, E.H. Morbidity and mortality risk associated with red blood cell and blood-component transfusion in isolated coronary artery bypass grafting. Crit. Care Med. 2006, 34, 1608–1616. [Google Scholar] [CrossRef]
  6. Koch, C.G.; Li, L.; Duncan, A.I.; Mihaljevic, T.; Loop, F.D.; Starr, N.J.; Blackstone, E.H. Transfusion in coronary artery bypass grafting is associated with reduced long-term survival. Ann. Thorac. Surg. 2006, 81, 1650–1657. [Google Scholar] [CrossRef]
  7. Kuduvalli, M.; Oo, A.Y.; Newall, N.; Grayson, A.D.; Jackson, M.; Desmond, M.J.; Fabri, B.M.; Rashid, A. Effect of peri-operative red blood cell transfusion on 30-day and 1-year mortality following coronary artery bypass surgery. Eur. J. Cardiothorac. Surg. 2005, 27, 592–598. [Google Scholar] [CrossRef]
  8. Zuckerman, J.; Coburn, N.; Callum, J.; Mahar, A.L.; Acuna, S.A.; Guttman, M.P.; Zuk, V.; Lin, Y.; Turgeon, A.F.; Martel, G.; et al. Association of perioperative red blood cell transfusions with all-cause and cancer-specific death in patients undergoing surgery for gastrointestinal cancer: Long-term outcomes from a population-based cohort. Surgery 2021. [Google Scholar] [CrossRef]
  9. Sapiano, M.R.P.; Savinkina, A.A.; Ellingson, K.D.; Haass, K.A.; Baker, M.L.; Henry, R.A.; Berger, J.J.; Kuehnert, M.J.; Basavaraju, S.V. Supplemental findings from the National Blood Collection and Utilization Surveys, 2013 and 2015. Transfusion 2017, 57 (Suppl. S2), 1599–1624. [Google Scholar] [CrossRef]
  10. Goel, R.; Tobian, A.A.R.; Shaz, B.H. Noninfectious transfusion-associated adverse events and their mitigation strategies. Blood 2019, 133, 1831–1839. [Google Scholar] [CrossRef] [Green Version]
  11. Rohde, J.M.; Dimcheff, D.E.; Blumberg, N.; Saint, S.; Langa, K.M.; Kuhn, L.; Hickner, A.; Rogers, M.A. Health care-associated infection after red blood cell transfusion: A systematic review and meta-analysis. JAMA 2014, 311, 1317–1326. [Google Scholar] [CrossRef] [PubMed]
  12. Rother, R.P.; Bell, L.; Hillmen, P.; Gladwin, M.T. The clinical sequelae of intravascular hemolysis and extracellular plasma hemoglobin: A novel mechanism of human disease. JAMA 2005, 293, 1653–1662. [Google Scholar] [CrossRef]
  13. Risbano, M.G.; Kanias, T.; Triulzi, D.; Donadee, C.; Barge, S.; Badlam, J.; Jain, S.; Belanger, A.M.; Kim-Shapiro, D.B.; Gladwin, M.T. Effects of Aged Stored Autologous Red Blood Cells on Human Endothelial Function. Am. J. Respir. Crit. Care Med. 2015, 192, 1223–1233. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  14. Gladwin, M.T.; Kim-Shapiro, D.B. Storage lesion in banked blood due to hemolysis-dependent disruption of nitric oxide homeostasis. Curr. Opin. Hematol. 2009, 16, 515–523. [Google Scholar] [CrossRef]
  15. Corwin, H.L.; Gettinger, A.; Pearl, R.G.; Fink, M.P.; Levy, M.M.; Abraham, E.; MacIntyre, N.R.; Shabot, M.M.; Duh, M.S.; Shapiro, M.J. The CRIT Study: Anemia and blood transfusion in the critically ill--current clinical practice in the United States. Crit. Care Med. 2004, 32, 39–52. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  16. Madjdpour, C.; Spahn, D.R. Allogeneic red blood cell transfusions: Efficacy, risks, alternatives and indications. Br. J. Anaesth 2005, 95, 33–42. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  17. Hopewell, S.; Omar, O.; Hyde, C.; Yu, L.M.; Doree, C.; Murphy, M.F. A systematic review of the effect of red blood cell transfusion on mortality: Evidence from large-scale observational studies published between 2006 and 2010. BMJ Open 2013, 3, e002154. [Google Scholar] [CrossRef]
  18. Bernard, A.C.; Davenport, D.L.; Chang, P.K.; Vaughan, T.B.; Zwischenberger, J.B. Intraoperative transfusion of 1 U to 2 U packed red blood cells is associated with increased 30-day mortality, surgical-site infection, pneumonia, and sepsis in general surgery patients. J. Am. Coll. Surg. 2009, 208, 931–937, 937 e931–932; discussion 938–939. [Google Scholar] [CrossRef]
  19. Isbister, J.P.; Shander, A.; Spahn, D.R.; Erhard, J.; Farmer, S.L.; Hofmann, A. Adverse blood transfusion outcomes: Establishing causation. Transfus. Med. Rev. 2011, 25, 89–101. [Google Scholar] [CrossRef]
  20. Spieth, P.M.; Zhang, H. Storage injury and blood transfusions in trauma patients. Curr. Opin. Anaesthesiol. 2018, 31, 234–237. [Google Scholar] [CrossRef]
  21. Sparrow, R.L. Red blood cell storage duration and trauma. Transfus. Med. Rev. 2015, 29, 120–126. [Google Scholar] [CrossRef] [PubMed]
  22. Aubron, C.; Syres, G.; Nichol, A.; Bailey, M.; Board, J.; Magrin, G.; Murray, L.; Presneill, J.; Sutton, J.; Vallance, S.; et al. A pilot feasibility trial of allocation of freshest available red blood cells versus standard care in critically ill patients. Transfusion 2012, 52, 1196–1202. [Google Scholar] [CrossRef] [PubMed]
  23. Lacroix, J.; Hebert, P.; Fergusson, D.; Tinmouth, A.; Blajchman, M.A.; Callum, J.; Cook, D.; Marshall, J.C.; McIntyre, L.; Turgeon, A.F.; et al. The Age of Blood Evaluation (ABLE) randomized controlled trial: Study design. Transfus. Med. Rev. 2011, 25, 197–205. [Google Scholar] [CrossRef]
  24. Shah, A.; Brunskill, S.J.; Desborough, M.J.; Doree, C.; Trivella, M.; Stanworth, S.J. Transfusion of red blood cells stored for shorter versus longer duration for all conditions. Cochrane Database Syst. Rev. 2018, 12, CD010801. [Google Scholar] [CrossRef]
  25. Koch, C.G.; Duncan, A.I.; Figueroa, P.; Dai, L.; Sessler, D.I.; Frank, S.M.; Ness, P.M.; Mihaljevic, T.; Blackstone, E.H. Real Age: Red Blood Cell Aging During Storage. Ann. Thorac. Surg. 2019, 107, 973–980. [Google Scholar] [CrossRef] [PubMed]
  26. De Back, D.Z.; Kostova, E.B.; van Kraaij, M.; van den Berg, T.K.; van Bruggen, R. Of macrophages and red blood cells; a complex love story. Front. Physiol. 2014, 5, 9. [Google Scholar] [CrossRef] [Green Version]
  27. Lutz, H.U.; Bogdanova, A. Mechanisms tagging senescent red blood cells for clearance in healthy humans. Front. Physiol. 2013, 4, 387. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  28. Bosman, G.J. Survival of red blood cells after transfusion: Processes and consequences. Front. Physiol. 2013, 4, 376. [Google Scholar] [CrossRef] [Green Version]
  29. Lang, E.; Pozdeev, V.I.; Xu, H.C.; Shinde, P.V.; Behnke, K.; Hamdam, J.M.; Lehnert, E.; Scharf, R.E.; Lang, F.; Haussinger, D.; et al. Storage of Erythrocytes Induces Suicidal Erythrocyte Death. Cell Physiol. Biochem. 2016, 39, 668–676. [Google Scholar] [CrossRef]
  30. Bordin, L.; Fiore, C.; Bragadin, M.; Brunati, A.M.; Clari, G. Regulation of membrane band 3 Tyr-phosphorylation by proteolysis of p72(Syk) and possible involvement in senescence process. Acta Biochim. Biophys. Sin. 2009, 41, 846–851. [Google Scholar] [CrossRef] [Green Version]
  31. Lutz, H.U. Naturally occurring autoantibodies in mediating clearance of senescent red blood cells. Adv. Exp. Med. Biol. 2012, 750, 76–90. [Google Scholar] [CrossRef] [PubMed]
  32. Hess, J.R. RBC storage lesions. Blood 2016, 128, 1544–1545. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  33. Hess, J.R. Measures of stored red blood cell quality. Vox Sang. 2014, 107, 1–9. [Google Scholar] [CrossRef]
  34. Antonelou, M.H.; Kriebardis, A.G.; Stamoulis, K.E.; Economou-Petersen, E.; Margaritis, L.H.; Papassideri, I.S. Red blood cell aging markers during storage in citrate-phosphate-dextrose-saline-adenine-glucose-mannitol. Transfusion 2010, 50, 376–389. [Google Scholar] [CrossRef]
  35. Bogdanova, A.; Makhro, A.; Wang, J.; Lipp, P.; Kaestner, L. Calcium in red blood cells-a perilous balance. Int. J. Mol. Sci. 2013, 14, 9848–9872. [Google Scholar] [CrossRef] [Green Version]
  36. Brugnara, C.; de Franceschi, L.; Alper, S.L. Inhibition of Ca(2+)-dependent K+ transport and cell dehydration in sickle erythrocytes by clotrimazole and other imidazole derivatives. J. Clin. Investig. 1993, 92, 520–526. [Google Scholar] [CrossRef] [Green Version]
  37. Foller, M.; Huber, S.M.; Lang, F. Erythrocyte programmed cell death. IUBMB Life 2008, 60, 661–668. [Google Scholar] [CrossRef]
  38. McGoron, A.J.; Joiner, C.H.; Palascak, M.B.; Claussen, W.J.; Franco, R.S. Dehydration of mature and immature sickle red blood cells during fast oxygenation/deoxygenation cycles: Role of KCl cotransport and extracellular calcium. Blood 2000, 95, 2164–2168. [Google Scholar] [CrossRef]
  39. Bosman, G.J.; Lasonder, E.; Groenen-Dopp, Y.A.; Willekens, F.L.; Werre, J.M.; Novotny, V.M. Comparative proteomics of erythrocyte aging in vivo and in vitro. J. Proteom. 2010, 73, 396–402. [Google Scholar] [CrossRef] [PubMed]
  40. Park, H.; Lee, S.; Ji, M.; Kim, K.; Son, Y.; Jang, S.; Park, Y. Measuring cell surface area and deformability of individual human red blood cells over blood storage using quantitative phase imaging. Sci. Rep. 2016, 6, 34257. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  41. Kampf, S.; Seiler, E.; Bujok, J.; Hofmann-Lehmann, R.; Riond, B.; Makhro, A.; Bogdanova, A. Aging Markers in Equine Red Blood Cells. Front. Physiol. 2019, 10, 893. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  42. Mykhailova, O.; Olafson, C.; Turner, T.R.; D’Alessandro, A.; Acker, J.P. Donor-dependent aging of young and old red blood cell subpopulations: Metabolic and functional heterogeneity. Transfusion 2020, 60, 2633–2646. [Google Scholar] [CrossRef] [PubMed]
  43. Kaestner, L.; Bogdanova, A.; Egee, S. Calcium Channels and Calcium-Regulated Channels in Human Red Blood Cells. Adv. Exp. Med. Biol. 2020, 1131, 625–648. [Google Scholar] [CrossRef]
  44. Bernhardt, I.; Nguyen, D.B.; Wesseling, M.C.; Kaestner, L. Intracellular Ca(2+) Concentration and Phosphatidylserine Exposure in Healthy Human Erythrocytes in Dependence on in vivo Cell Age. Front. Physiol. 2019, 10, 1629. [Google Scholar] [CrossRef]
  45. Carruthers, A.; DeZutter, J.; Ganguly, A.; Devaskar, S.U. Will the original glucose transporter isoform please stand up! Am. J. Physiol. Endocrinol. Metab. 2009, 297, E836–E848. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  46. Guizouarn, H.; Allegrini, B. Erythroid glucose transport in health and disease. Pflug. Arch. 2020, 472, 1371–1383. [Google Scholar] [CrossRef] [PubMed]
  47. Clark, S.L.; Santin, A.E.; Bryant, P.A.; Holman, R.; Rodnick, K.J. The initial noncovalent binding of glucose to human hemoglobin in nonenzymatic glycation. Glycobiology 2013, 23, 1250–1259. [Google Scholar] [CrossRef] [Green Version]
  48. Stevens, V.J.; Vlassara, H.; Abati, A.; Cerami, A. Nonenzymatic glycosylation of hemoglobin. J. Biol. Chem. 1977, 252, 2998–3002. [Google Scholar] [CrossRef]
  49. Sayinalp, S.; Sozen, T.; Usman, A.; Dundar, S. Investigation of the effect of poorly controlled diabetes mellitus on erythrocyte life. J. Diabetes Complicat. 1995, 9, 190–193. [Google Scholar] [CrossRef]
  50. Cohen, R.M.; Franco, R.S.; Khera, P.K.; Smith, E.P.; Lindsell, C.J.; Ciraolo, P.J.; Palascak, M.B.; Joiner, C.H. Red cell life span heterogeneity in hematologically normal people is sufficient to alter HbA1c. Blood 2008, 112, 4284–4291. [Google Scholar] [CrossRef] [Green Version]
  51. Chandramouli, V.; Carter, J.R., Jr. Cell membrane changes in chronically diabetic rats. Diabetes 1975, 24, 257–262. [Google Scholar] [CrossRef]
  52. Bizjak, D.A.; Brinkmann, C.; Bloch, W.; Grau, M. Increase in Red Blood Cell-Nitric Oxide Synthase Dependent Nitric Oxide Production during Red Blood Cell Aging in Health and Disease: A Study on Age Dependent Changes of Rheologic and Enzymatic Properties in Red Blood Cells. PLoS ONE 2015, 10, e0125206. [Google Scholar] [CrossRef] [Green Version]
  53. Brinkmann, C.; Bizjak, D.A.; Bischof, S.; Latsch, J.; Brixius, K.; Bloch, W.; Grau, M. Endurance training alters enzymatic and rheological properties of red blood cells (RBC) in type 2 diabetic men during in vivo RBC aging. Clin. Hemorheol. Microcirc. 2016, 63, 173–184. [Google Scholar] [CrossRef] [PubMed]
  54. Virtue, M.A.; Furne, J.K.; Nuttall, F.Q.; Levitt, M.D. Relationship between GHb concentration and erythrocyte survival determined from breath carbon monoxide concentration. Diabetes Care 2004, 27, 931–935. [Google Scholar] [CrossRef] [Green Version]
  55. Peterson, C.M.; Jones, R.L.; Koenig, R.J.; Melvin, E.T.; Lehrman, M.L. Reversible hematologic sequelae of diabetes mellitus. Ann. Intern. Med. 1977, 86, 425–429. [Google Scholar] [CrossRef] [PubMed]
  56. Mazzanti, L.; Faloia, E.; Rabini, R.A.; Staffolani, R.; Kantar, A.; Fiorini, R.; Swoboda, B.; de Pirro, R.; Bertoli, E. Diabetes mellitus induces red blood cell plasma membrane alterations possibly affecting the aging process. Clin. Biochem. 1992, 25, 41–46. [Google Scholar] [CrossRef]
  57. Baba, Y.; Kai, M.; Setoyama, S.; Otsuji, S. The lower levels of erythrocyte surface electric charge in diabetes mellitus. Clin. Chim. Acta 1978, 84, 247–249. [Google Scholar] [CrossRef]
  58. Miller, J.A.; Gravallese, E.; Bunn, H.F. Nonenzymatic glycosylation of erythrocyte membrane proteins. Relevance to diabetes. J. Clin. Investig. 1980, 65, 896–901. [Google Scholar] [CrossRef] [Green Version]
  59. Kamada, T.; McMillan, D.E.; Yamashita, T.; Otsuji, S. Lowered membrane fluidity of younger erythrocytes in diabetes. Diabetes Res. Clin. Pract. 1992, 16, 1–6. [Google Scholar] [CrossRef]
  60. Rattan, V.; Shen, Y.; Sultana, C.; Kumar, D.; Kalra, V.K. Diabetic RBC-induced oxidant stress leads to transendothelial migration of monocyte-like HL-60 cells. Am. J. Physiol. 1997, 273, E369–E375. [Google Scholar] [CrossRef] [PubMed]
  61. Singh, M.; Shin, S. Changes in erythrocyte aggregation and deformability in diabetes mellitus: A brief review. Indian J. Exp. Biol. 2009, 47, 7–15. [Google Scholar] [PubMed]
  62. English, E.; Idris, I.; Smith, G.; Dhatariya, K.; Kilpatrick, E.S.; John, W.G. The effect of anaemia and abnormalities of erythrocyte indices on HbA1c analysis: A systematic review. Diabetologia 2015, 58, 1409–1421. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  63. Buda, P.; Friedman-Gruszczynska, J.; Ksiazyk, J. Congenital diarrhoea. Med. Wieku Rozw. 2011, 15, 477–486. [Google Scholar]
  64. Hsieh, C.; Prabhu, N.C.S.; Rajashekaraiah, V. Age-Related Modulations in Erythrocytes under Blood Bank Conditions. Transfus. Med. Hemother. 2019, 46, 257–266. [Google Scholar] [CrossRef] [PubMed]
  65. Hsieh, C.; Prabhu, N.C.S.; Rajashekaraiah, V. Influence of AS-7 on the storage lesion in young and old circulating erythrocytes. Transfus. Apher. Sci. 2020, 59, 102905. [Google Scholar] [CrossRef] [PubMed]
  66. Hsieh, C.; Rajashekaraiah, V. Effects of rejuvenation on young and old erythrocytes of banked blood towards the end of storage period. Am. J. Blood Res. 2020, 10, 161–171. [Google Scholar] [PubMed]
  67. Lippi, G.; Mercadanti, M.; Aloe, R.; Targher, G. Erythrocyte mechanical fragility is increased in patients with type 2 diabetes. Eur. J. Intern. Med. 2012, 23, 150–153. [Google Scholar] [CrossRef]
  68. Almizraq, R.; Tchir, J.D.; Holovati, J.L.; Acker, J.P. Storage of red blood cells affects membrane composition, microvesiculation, and in vitro quality. Transfusion 2013, 53, 2258–2267. [Google Scholar] [CrossRef]
  69. Bardyn, M.; Rappaz, B.; Jaferzadeh, K.; Crettaz, D.; Tissot, J.D.; Moon, I.; Turcatti, G.; Lion, N.; Prudent, M. Red blood cells ageing markers: A multi-parametric analysis. Blood Transfus. 2017, 15, 239–248. [Google Scholar] [CrossRef]
  70. Bennett-Guerrero, E.; Veldman, T.H.; Doctor, A.; Telen, M.J.; Ortel, T.L.; Reid, T.S.; Mulherin, M.A.; Zhu, H.; Buck, R.D.; Califf, R.M.; et al. Evolution of adverse changes in stored RBCs. Proc. Natl. Acad. Sci. USA 2007, 104, 17063–17068. [Google Scholar] [CrossRef] [Green Version]
  71. Buehler, P.W.; Karnaukhova, E.; Gelderman, M.P.; Alayash, A.I. Blood aging, safety, and transfusion: Capturing the “radical” menace. Antioxid. Redox Signal. 2011, 14, 1713–1728. [Google Scholar] [CrossRef] [PubMed]
  72. Chen, D.; Schubert, P.; Devine, D.V. Proteomic analysis of red blood cells from donors exhibiting high hemolysis demonstrates a reduction in membrane-associated proteins involved in the oxidative response. Transfusion 2017, 57, 2248–2256. [Google Scholar] [CrossRef] [PubMed]
  73. D’Alessandro, A.; Kriebardis, A.G.; Rinalducci, S.; Antonelou, M.H.; Hansen, K.C.; Papassideri, I.S.; Zolla, L. An update on red blood cell storage lesions, as gleaned through biochemistry and omics technologies. Transfusion 2015, 55, 205–219. [Google Scholar] [CrossRef] [PubMed]
  74. Gautam, R.; Oh, J.Y.; Marques, M.B.; Dluhy, R.A.; Patel, R.P. Characterization of Storage-Induced Red Blood Cell Hemolysis Using Raman Spectroscopy. Lab. Med. 2018, 49, 298–310. [Google Scholar] [CrossRef] [PubMed]
  75. Gevi, F.; D’Alessandro, A.; Rinalducci, S.; Zolla, L. Alterations of red blood cell metabolome during cold liquid storage of erythrocyte concentrates in CPD-SAGM. J. Proteom. 2012, 76, 168–180. [Google Scholar] [CrossRef]
  76. Gkoumassi, E.; Dijkstra-Tiekstra, M.J.; Hoentjen, D.; de Wildt-Eggen, J. Hemolysis of red blood cells during processing and storage. Transfusion 2012, 52, 489–492. [Google Scholar] [CrossRef]
  77. Hess, J.R.; Sparrow, R.L.; van der Meer, P.F.; Acker, J.P.; Cardigan, R.A.; Devine, D.V. Red blood cell hemolysis during blood bank storage: Using national quality management data to answer basic scientific questions. Transfusion 2009, 49, 2599–2603. [Google Scholar] [CrossRef]
  78. Horvath, K.A.; Acker, M.A.; Chang, H.; Bagiella, E.; Smith, P.K.; Iribarne, A.; Kron, I.L.; Lackner, P.; Argenziano, M.; Ascheim, D.D.; et al. Blood transfusion and infection after cardiac surgery. Ann. Thorac. Surg. 2013, 95, 2194–2201. [Google Scholar] [CrossRef] [Green Version]
  79. Karon, B.S.; van Buskirk, C.M.; Jaben, E.A.; Hoyer, J.D.; Thomas, D.D. Temporal sequence of major biochemical events during blood bank storage of packed red blood cells. Blood Transfus. 2012, 10, 453–461. [Google Scholar] [CrossRef] [PubMed]
  80. McAteer, M.J.; Dumont, L.J.; Cancelas, J.; Rugg, N.; Vassallo, R.; Whitley, P.; Graminske, S.; Friedman, K. Multi-institutional randomized control study of haemolysis in stored red cell units prepared manually or by an automated system. Vox Sang. 2010, 99, 34–43. [Google Scholar] [CrossRef] [PubMed]
  81. Salzer, U.; Zhu, R.; Luten, M.; Isobe, H.; Pastushenko, V.; Perkmann, T.; Hinterdorfer, P.; Bosman, G.J. Vesicles generated during storage of red cells are rich in the lipid raft marker stomatin. Transfusion 2008, 48, 451–462. [Google Scholar] [CrossRef] [PubMed]
  82. Simon, T.L.; Marcus, C.S.; Myhre, B.A.; Nelson, E.J. Effects of AS-3 nutrient-additive solution on 42 and 49 days of storage of red cells. Transfusion 1987, 27, 178–182. [Google Scholar] [CrossRef] [PubMed]
  83. Sowemimo-Coker, S.O. Red blood cell hemolysis during processing. Transfus. Med. Rev. 2002, 16, 46–60. [Google Scholar] [CrossRef]
  84. Stapley, R.; Owusu, B.Y.; Brandon, A.; Cusick, M.; Rodriguez, C.; Marques, M.B.; Kerby, J.D.; Barnum, S.R.; Weinberg, J.A.; Lancaster, J.R., Jr.; et al. Erythrocyte storage increases rates of NO and nitrite scavenging: Implications for transfusion-related toxicity. Biochem. J. 2012, 446, 499–508. [Google Scholar] [CrossRef] [Green Version]
  85. Van ‘t Erve, T.J.; Wagner, B.A.; Martin, S.M.; Knudson, C.M.; Blendowski, R.; Keaton, M.; Holt, T.; Hess, J.R.; Buettner, G.R.; Ryckman, K.K.; et al. The heritability of hemolysis in stored human red blood cells. Transfusion 2015, 55, 1178–1185. [Google Scholar] [CrossRef] [Green Version]
  86. Calderon-Salinas, J.V.; Munoz-Reyes, E.G.; Guerrero-Romero, J.F.; Rodriguez-Moran, M.; Bracho-Riquelme, R.L.; Carrera-Gracia, M.A.; Quintanar-Escorza, M.A. Eryptosis and oxidative damage in type 2 diabetic mellitus patients with chronic kidney disease. Mol. Cell Biochem. 2011, 357, 171–179. [Google Scholar] [CrossRef]
  87. Nicolay, J.P.; Schneider, J.; Niemoeller, O.M.; Artunc, F.; Portero-Otin, M.; Haik, G., Jr.; Thornalley, P.J.; Schleicher, E.; Wieder, T.; Lang, F. Stimulation of suicidal erythrocyte death by methylglyoxal. Cell Physiol. Biochem. 2006, 18, 223–232. [Google Scholar] [CrossRef]
  88. Boas, F.E.; Forman, L.; Beutler, E. Phosphatidylserine exposure and red cell viability in red cell aging and in hemolytic anemia. Proc. Natl. Acad. Sci. USA 1998, 95, 3077–3081. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  89. Bosman, G.J.; Cluitmans, J.C.; Groenen, Y.A.; Werre, J.M.; Willekens, F.L.; Novotny, V.M. Susceptibility to hyperosmotic stress-induced phosphatidylserine exposure increases during red blood cell storage. Transfusion 2011, 51, 1072–1078. [Google Scholar] [CrossRef] [PubMed]
  90. Dinkla, S.; Peppelman, M.; van der Raadt, J.; Atsma, F.; Novotny, V.M.; van Kraaij, M.G.; Joosten, I.; Bosman, G.J. Phosphatidylserine exposure on stored red blood cells as a parameter for donor-dependent variation in product quality. Blood Transfus. 2014, 12, 204–209. [Google Scholar] [CrossRef] [PubMed]
  91. Roelofsen, B.; Op Den Kamp, J.A.; van Deenen, L.L. Structural and dynamic aspects of red cell phospholipids; featuring phosphatidylcholine. Biomed. Biochim. Acta 1987, 46, S10–S15. [Google Scholar] [PubMed]
  92. Verhoeven, A.J.; Hilarius, P.M.; Dekkers, D.W.; Lagerberg, J.W.; de Korte, D. Prolonged storage of red blood cells affects aminophospholipid translocase activity. Vox Sang. 2006, 91, 244–251. [Google Scholar] [CrossRef] [PubMed]
  93. American Diabetes, A. 6. Glycemic Targets: Standards of Medical Care in Diabetes-2020. Diabetes Care 2020, 43, S66–S76. [Google Scholar] [CrossRef] [PubMed]
  94. Sorensen, B.M.; Houben, A.J.; Berendschot, T.T.; Schouten, J.S.; Kroon, A.A.; van der Kallen, C.J.; Henry, R.M.; Koster, A.; Sep, S.J.; Dagnelie, P.C.; et al. Prediabetes and Type 2 Diabetes Are Associated With Generalized Microvascular Dysfunction: The Maastricht Study. Circulation 2016, 134, 1339–1352. [Google Scholar] [CrossRef] [Green Version]
  95. Schnell, O.; Crocker, J.B.; Weng, J. Impact of HbA1c Testing at Point of Care on Diabetes Management. J. Diabetes Sci. Technol. 2017, 11, 611–617. [Google Scholar] [CrossRef]
  96. Yazdanpanah, S.; Rabiee, M.; Tahriri, M.; Abdolrahim, M.; Rajab, A.; Jazayeri, H.E.; Tayebi, L. Evaluation of glycated albumin (GA) and GA/HbA1c ratio for diagnosis of diabetes and glycemic control: A comprehensive review. Crit. Rev. Clin. Lab. Sci. 2017, 54, 219–232. [Google Scholar] [CrossRef]
  97. Elgart, J.F.; Silvestrini, C.; Prestes, M.; Gonzalez, L.; Rucci, E.; Gagliardino, J.J. Drug treatment of type 2 diabetes: Its cost is significantly associated with HbA1c levels. Int. J. Clin. Pract. 2019, 73, e13336. [Google Scholar] [CrossRef] [PubMed]
  98. Zeller, W.P.; Eyzaguirre, M.; Hannigan, J.; Ozog, K.; Suarez, C.; Silberman, S.; Hoffstadter, A.; Hurley, R.M. Fast hemoglobins and red blood cell metabolites in citrate phosphate dextrose adenine stored blood. Ann. Clin. Lab. Sci. 1985, 15, 61–65. [Google Scholar]
  99. Szelenyi, J.G.; Foldi, J.; Hollan, S.R. Enhanced nonenzymatic glycosylation of blood proteins in stored blood. Transfusion 1983, 23, 11–14. [Google Scholar] [CrossRef]
  100. Savu, O.; Bradescu, O.M.; Serafinceanu, C.; Iosif, L.; Tirgoviste, C.I.; Stoian, I. Erythrocyte caspase-3 and antioxidant defense is activated in red blood cells and plasma of type 2 diabetes patients at first clinical onset. Redox. Rep. 2013, 18, 56–62. [Google Scholar] [CrossRef] [Green Version]
  101. Prosenz, J.; Ohlinger, T.; Mullner, E.W.; Marculescu, R.; Gerner, C.; Salzer, U.; Kiefer, F.W.; Baron, D.M. Glycated hemoglobin concentrations of red blood cells minimally increase during storage under standard blood banking conditions. Transfusion 2019, 59, 454–457. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  102. Dzydzan, O.; Brodyak, I.; Sokol-Letowska, A.; Kucharska, A.Z.; Sybirna, N. Loganic Acid, an Iridoid Glycoside Extracted from Cornus mas L. Fruits, Reduces of Carbonyl/Oxidative Stress Biomarkers in Plasma and Restores Antioxidant Balance in Leukocytes of Rats with Streptozotocin-Induced Diabetes Mellitus. Life 2020, 10, 349. [Google Scholar] [CrossRef]
  103. D’Alessandro, A.; Mirasole, C.; Zolla, L. Haemoglobin glycation (Hb1Ac) increases during red blood cell storage: A MALDI-TOF mass-spectrometry-based investigation. Vox Sang. 2013, 105, 177–180. [Google Scholar] [CrossRef]
  104. D’Alessandro, A.; Nemkov, T.; Hansen, K.C.; Szczepiorkowski, Z.M.; Dumont, L.J. Red blood cell storage in additive solution-7 preserves energy and redox metabolism: A metabolomics approach. Transfusion 2015, 55, 2955–2966. [Google Scholar] [CrossRef] [Green Version]
  105. Silva, C.A.L.; Azevedo Filho, C.A.; Pereira, G.; Silva, D.C.N.; Castro, M.; Almeida, A.F.; Lucena, S.C.A.; Santos, B.S.; Barjas-Castro, M.L.; Fontes, A. Vitamin E nanoemulsion activity on stored red blood cells. Transfus. Med. 2017, 27, 213–217. [Google Scholar] [CrossRef]
  106. Adeshara, K.A.; Diwan, A.G.; Jagtap, T.R.; Advani, K.; Siddiqui, A.; Tupe, R.S. Relationship between plasma glycation with membrane modification, oxidative stress and expression of glucose trasporter-1 in type 2 diabetes patients with vascular complications. J. Diabetes Complicat. 2017, 31, 439–448. [Google Scholar] [CrossRef] [PubMed]
  107. Annadurai, T.; Vasanthakumar, A.; Geraldine, P.; Thomas, P.A. Variations in erythrocyte antioxidant levels and lipid peroxidation status and in serum lipid profile parameters in relation to blood haemoglobin A1c values in individuals with type 2 diabetes mellitus. Diabetes Res. Clin. Pract. 2014, 105, 58–69. [Google Scholar] [CrossRef]
  108. Beard, K.M.; Shangari, N.; Wu, B.; O’Brien, P.J. Metabolism, not autoxidation, plays a role in alpha-oxoaldehyde- and reducing sugar-induced erythrocyte GSH depletion: Relevance for diabetes mellitus. Mol. Cell Biochem. 2003, 252, 331–338. [Google Scholar] [CrossRef]
  109. Blakytny, R.; Harding, J.J. Glycation (non-enzymic glycosylation) inactivates glutathione reductase. Biochem. J. 1992, 288 Pt 1, 303–307. [Google Scholar] [CrossRef] [Green Version]
  110. Bravi, M.C.; Pietrangeli, P.; Laurenti, O.; Basili, S.; Cassone-Faldetta, M.; Ferri, C.; de Mattia, G. Polyol pathway activation and glutathione redox status in non-insulin-dependent diabetic patients. Metabolism 1997, 46, 1194–1198. [Google Scholar] [CrossRef]
  111. Choudhuri, S.; Mandal, L.K.; Paine, S.K.; Sen, A.; Dutta, D.; Chowdhury, I.H.; Mukherjee, A.; Saha, A.; Bhadhuri, G.; Bhattacharya, B. Role of hyperglycemia-mediated erythrocyte redox state alteration in the development of diabetic retinopathy. Retina 2013, 33, 207–216. [Google Scholar] [CrossRef]
  112. Dominguez, C.; Ruiz, E.; Gussinye, M.; Carrascosa, A. Oxidative stress at onset and in early stages of type 1 diabetes in children and adolescents. Diabetes Care 1998, 21, 1736–1742. [Google Scholar] [CrossRef]
  113. Fatima, N.; Faisal, S.M.; Zubair, S.; Siddiqui, S.S.; Moin, S.; Owais, M. Emerging role of Interleukins IL-23/IL-17 axis and biochemical markers in the pathogenesis of Type 2 Diabetes: Association with age and gender in human subjects. Int. J. Biol. Macromol. 2017, 105, 1279–1288. [Google Scholar] [CrossRef] [PubMed]
  114. Kocic, R.; Pavlovic, D.; Kocic, G.; Pesic, M. Susceptibility to oxidative stress, insulin resistance, and insulin secretory response in the development of diabetes from obesity. Vojnosanit. Pregl. 2007, 64, 391–397. [Google Scholar] [CrossRef] [PubMed]
  115. Konukoglu, D.; Akcay, T.; Dincer, Y.; Hatemi, H. The susceptibility of red blood cells to autoxidation in type 2 diabetic patients with angiopathy. Metabolism 1999, 48, 1481–1484. [Google Scholar] [CrossRef]
  116. Kotake, M.; Shinohara, R.; Kato, K.; Hayakawa, N.; Hayashi, R.; Uchimura, K.; Makino, M.; Nagata, M.; Kakizawa, H.; Nakagawa, H.; et al. Reduction of activity, but no decrease in concentration, of erythrocyte Cu,Zn-superoxide dismutase by hyperglycaemia in diabetic patients. Diabet. Med. 1998, 15, 668–671. [Google Scholar] [CrossRef]
  117. Kumawat, M.; Sharma, T.K.; Singh, I.; Singh, N.; Ghalaut, V.S.; Vardey, S.K.; Shankar, V. Antioxidant Enzymes and Lipid Peroxidation in Type 2 Diabetes Mellitus Patients with and without Nephropathy. N. Am. J. Med. Sci. 2013, 5, 213–219. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  118. Lankin, V.Z.; Tikhaze, A.K.; Konovalova, G.G.; Odinokova, O.A.; Doroshchuk, N.A.; Chazova, I.E. Oxidative and carbonyl stress as a factors of the modification of proteins and DNA destruction in diabetes. Ter. Arkh. 2018, 90, 46–50. [Google Scholar] [CrossRef]
  119. Lutchmansingh, F.K.; Hsu, J.W.; Bennett, F.I.; Badaloo, A.V.; McFarlane-Anderson, N.; Gordon-Strachan, G.M.; Wright-Pascoe, R.A.; Jahoor, F.; Boyne, M.S. Glutathione metabolism in type 2 diabetes and its relationship with microvascular complications and glycemia. PLoS ONE 2018, 13, e0198626. [Google Scholar] [CrossRef] [Green Version]
  120. Maschirow, L.; Khalaf, K.; Al-Aubaidy, H.A.; Jelinek, H.F. Inflammation, coagulation, endothelial dysfunction and oxidative stress in prediabetes--Biomarkers as a possible tool for early disease detection for rural screening. Clin. Biochem. 2015, 48, 581–585. [Google Scholar] [CrossRef] [Green Version]
  121. Memisogullari, R.; Taysi, S.; Bakan, E.; Capoglu, I. Antioxidant status and lipid peroxidation in type II diabetes mellitus. Cell Biochem. Funct 2003, 21, 291–296. [Google Scholar] [CrossRef]
  122. Murakami, K.; Kondo, T.; Ohtsuka, Y.; Fujiwara, Y.; Shimada, M.; Kawakami, Y. Impairment of glutathione metabolism in erythrocytes from patients with diabetes mellitus. Metabolism 1989, 38, 753–758. [Google Scholar] [CrossRef]
  123. Nwose, E.U.; Jelinek, H.F.; Richards, R.S.; Kerr, P.G. Changes in the erythrocyte glutathione concentration in the course of diabetes mellitus. Redox Rep. 2006, 11, 99–104. [Google Scholar] [CrossRef]
  124. Nwose, E.U.; Richards, R.S.; Cann, N.G.; Butkowski, E. Cardiovascular risk assessment in prediabetes: A hypothesis. Med. Hypotheses 2009, 72, 271–275. [Google Scholar] [CrossRef]
  125. Oda, A.; Bannai, C.; Yamaoka, T.; Katori, T.; Matsushima, T.; Yamashita, K. Inactivation of Cu,Zn-superoxide dismutase by in vitro glycosylation and in erythrocytes of diabetic patients. Horm. Metab. Res. 1994, 26, 1–4. [Google Scholar] [CrossRef]
  126. Pasaoglu, H.; Sancak, B.; Bukan, N. Lipid peroxidation and resistance to oxidation in patients with type 2 diabetes mellitus. Tohoku J. Exp. Med. 2004, 203, 211–218. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  127. Sailaja, Y.R.; Baskar, R.; Saralakumari, D. The antioxidant status during maturation of reticulocytes to erythrocytes in type 2 diabetics. Free Radic. Biol. Med. 2003, 35, 133–139. [Google Scholar] [CrossRef]
  128. Sampathkumar, R.; Balasubramanyam, M.; Tara, C.; Rema, M.; Mohan, V. Association of hypoglutathionemia with reduced Na+/K+ ATPase activity in type 2 diabetes and microangiopathy. Mol. Cell Biochem. 2006, 282, 169–176. [Google Scholar] [CrossRef]
  129. Sekhar, R.V.; McKay, S.V.; Patel, S.G.; Guthikonda, A.P.; Reddy, V.T.; Balasubramanyam, A.; Jahoor, F. Glutathione synthesis is diminished in patients with uncontrolled diabetes and restored by dietary supplementation with cysteine and glycine. Diabetes Care 2011, 34, 162–167. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  130. Spanidis, Y.; Mpesios, A.; Stagos, D.; Goutzourelas, N.; Bar-Or, D.; Karapetsa, M.; Zakynthinos, E.; Spandidos, D.A.; Tsatsakis, A.M.; Leon, G.; et al. Assessment of the redox status in patients with metabolic syndrome and type 2 diabetes reveals great variations. Exp. Ther. Med. 2016, 11, 895–903. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  131. Vijayalingam, S.; Parthiban, A.; Shanmugasundaram, K.R.; Mohan, V. Abnormal antioxidant status in impaired glucose tolerance and non-insulin-dependent diabetes mellitus. Diabet. Med. 1996, 13, 715–719. [Google Scholar] [CrossRef]
  132. Whillier, S.; Raftos, J.E.; Kuchel, P.W. Glutathione synthesis by red blood cells in type 2 diabetes mellitus. Redox Rep. 2008, 13, 277–282. [Google Scholar] [CrossRef]
  133. Whiting, P.H.; Kalansooriya, A.; Holbrook, I.; Haddad, F.; Jennings, P.E. The relationship between chronic glycaemic control and oxidative stress in type 2 diabetes mellitus. Br. J. Biomed. Sci. 2008, 65, 71–74. [Google Scholar] [CrossRef] [PubMed]
  134. Yoshida, K.; Hirokawa, J.; Tagami, S.; Kawakami, Y.; Urata, Y.; Kondo, T. Weakened cellular scavenging activity against oxidative stress in diabetes mellitus: Regulation of glutathione synthesis and efflux. Diabetologia 1995, 38, 201–210. [Google Scholar] [CrossRef]
  135. Collard, K.; White, D.; Copplestone, A. The influence of storage age on iron status, oxidative stress and antioxidant protection in paediatric packed cell units. Blood Transfus. 2014, 12, 210–219. [Google Scholar] [CrossRef] [PubMed]
  136. Dumaswala, U.J.; Zhuo, L.; Mahajan, S.; Nair, P.N.; Shertzer, H.G.; Dibello, P.; Jacobsen, D.W. Glutathione protects chemokine-scavenging and antioxidative defense functions in human RBCs. Am. J. Physiol. Cell Physiol. 2001, 280, C867–C873. [Google Scholar] [CrossRef] [PubMed]
  137. Van’t Erve, T.J.; Doskey, C.M.; Wagner, B.A.; Hess, J.R.; Darbro, B.W.; Ryckman, K.K.; Murray, J.C.; Raife, T.J.; Buettner, G.R. Heritability of glutathione and related metabolites in stored red blood cells. Free Radic. Biol. Med. 2014, 76, 107–113. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  138. Whillier, S.; Raftos, J.E.; Sparrow, R.L.; Kuchel, P.W. The effects of long-term storage of human red blood cells on the glutathione synthesis rate and steady-state concentration. Transfusion 2011, 51, 1450–1459. [Google Scholar] [CrossRef]
  139. Aoki, S.; Hasegawa, G.; Shigeta, H.; Obayashi, H.; Fujii, M.; Kimura, F.; Moriwaki, A.; Nakamura, N.; Ienaga, K.; Nakamura, K.; et al. Crossline levels in serum and erythrocyte membrane proteins from patients with diabetic nephropathy. Diabetes Res. Clin. Pract. 2000, 48, 119–125. [Google Scholar] [CrossRef]
  140. Cho, S.J.; Roman, G.; Yeboah, F.; Konishi, Y. The road to advanced glycation end products: A mechanistic perspective. Curr. Med. Chem. 2007, 14, 1653–1671. [Google Scholar] [CrossRef]
  141. Gabreanu, G.R.; Angelescu, S. Erythrocyte membrane in type 2 diabetes mellitus. Discoveries 2016, 4, e60. [Google Scholar] [CrossRef] [Green Version]
  142. Goh, S.Y.; Cooper, M.E. Clinical review: The role of advanced glycation end products in progression and complications of diabetes. J. Clin. Endocrinol. Metab. 2008, 93, 1143–1152. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  143. Makita, Z.; Vlassara, H.; Rayfield, E.; Cartwright, K.; Friedman, E.; Rodby, R.; Cerami, A.; Bucala, R. Hemoglobin-AGE: A circulating marker of advanced glycosylation. Science 1992, 258, 651–653. [Google Scholar] [CrossRef] [PubMed]
  144. Takahashi, S.; Uchino, H.; Shimizu, T.; Kanazawa, A.; Tamura, Y.; Sakai, K.; Watada, H.; Hirose, T.; Kawamori, R.; Tanaka, Y. Comparison of glycated albumin (GA) and glycated hemoglobin (HbA1c) in type 2 diabetic patients: Usefulness of GA for evaluation of short-term changes in glycemic control. Endocr. J. 2007, 54, 139–144. [Google Scholar] [CrossRef] [Green Version]
  145. Tupe, R.S.; Diwan, A.G.; Mittal, V.D.; Narayanam, P.S.; Mahajan, K.B. Association of plasma proteins at multiple stages of glycation and antioxidant status with erythrocyte oxidative stress in patients with type 2 diabetes. Br. J. Biomed. Sci. 2014, 71, 93–99; quiz 138. [Google Scholar] [CrossRef] [PubMed]
  146. Wautier, J.L.; Wautier, M.P.; Schmidt, A.M.; Anderson, G.M.; Hori, O.; Zoukourian, C.; Capron, L.; Chappey, O.; Yan, S.D.; Brett, J.; et al. Advanced glycation end products (AGEs) on the surface of diabetic erythrocytes bind to the vessel wall via a specific receptor inducing oxidant stress in the vasculature: A link between surface-associated AGEs and diabetic complications. Proc. Natl. Acad. Sci. USA 1994, 91, 7742–7746. [Google Scholar] [CrossRef] [Green Version]
  147. Yamaguchi, M.; Nakamura, N.; Nakano, K.; Kitagawa, Y.; Shigeta, H.; Hasegawa, G.; Ienaga, K.; Nakamura, K.; Nakazawa, Y.; Fukui, I.; et al. Immunochemical quantification of crossline as a fluorescent advanced glycation endproduct in erythrocyte membrane proteins from diabetic patients with or without retinopathy. Diabet. Med. 1998, 15, 458–462. [Google Scholar] [CrossRef]
  148. Lysenko, L.; Mierzchala, M.; Gamian, A.; Durek, G.; Kubler, A.; Kozlowski, R.; Sliwinski, M. The effect of packed red blood cell storage on arachidonic acid and advanced glycation end-product formation. Arch. Immunol. Ther. Exp. 2006, 54, 357–362. [Google Scholar] [CrossRef]
  149. Mangalmurti, N.S.; Chatterjee, S.; Cheng, G.; Andersen, E.; Mohammed, A.; Siegel, D.L.; Schmidt, A.M.; Albelda, S.M.; Lee, J.S. Advanced glycation end products on stored red blood cells increase endothelial reactive oxygen species generation through interaction with receptor for advanced glycation end products. Transfusion 2010, 50, 2353–2361. [Google Scholar] [CrossRef] [Green Version]
  150. Ramirez-Zamora, S.; Mendez-Rodriguez, M.L.; Olguin-Martinez, M.; Sanchez-Sevilla, L.; Quintana-Quintana, M.; Garcia-Garcia, N.; Hernandez-Munoz, R. Increased erythrocytes by-products of arginine catabolism are associated with hyperglycemia and could be involved in the pathogenesis of type 2 diabetes mellitus. PLoS ONE 2013, 8, e66823. [Google Scholar] [CrossRef] [PubMed]
  151. Grau, M.; Friederichs, P.; Krehan, S.; Koliamitra, C.; Suhr, F.; Bloch, W. Decrease in red blood cell deformability is associated with a reduction in RBC-NOS activation during storage. Clin. Hemorheol. Microcirc. 2015, 60, 215–229. [Google Scholar] [CrossRef]
  152. Alberti, K.G.; Emerson, P.M.; Darley, J.H.; Hockaday, T.D. 2,3-Diphosphoglycerate and tissue oxygenation in uncontrolled diabetes mellitus. Lancet 1972, 2, 391–395. [Google Scholar] [CrossRef]
  153. Ditzel, J. Impaired oxygen release caused by alterations of the metabolism in the erythrocytes in diabetes. Lancet 1972, 1, 721–723. [Google Scholar] [CrossRef]
  154. Resnick, L.M.; Gupta, R.K.; Barbagallo, M.; Laragh, J.H. Is the higher incidence of ischemic disease in patients with hypertension and diabetes related to intracellular depletion of high energy metabolites? Am. J. Med. Sci. 1994, 307 (Suppl. 1), S66–S69. [Google Scholar] [PubMed]
  155. Standl, E.; Kolb, H.J. 2,3-Diphosphoglycerate fluctuations in erythrocytes reflecting pronounced blood glucose variation. In-vivo and in-vitro studies in normal, diabetic and hypoglycaemic subjects. Diabetologia 1973, 9, 461–466. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  156. Almizraq, R.J.; Holovati, J.L.; Acker, J.P. Characteristics of Extracellular Vesicles in Red Blood Concentrates Change with Storage Time and Blood Manufacturing Method. Transfus. Med. Hemother. 2018, 45, 185–193. [Google Scholar] [CrossRef]
  157. De Korte, D.; Kleine, M.; Korsten, H.G.; Verhoeven, A.J. Prolonged maintenance of 2,3-diphosphoglycerate acid and adenosine triphosphate in red blood cells during storage. Transfusion 2008, 48, 1081–1089. [Google Scholar] [CrossRef] [PubMed]
  158. Hamasaki, N.; Yamamoto, M. Red blood cell function and blood storage. Vox Sang. 2000, 79, 191–197. [Google Scholar] [CrossRef]
  159. Hogman, C.F.; Knutson, F.; Loof, H. Storage of whole blood before separation: The effect of temperature on red cell 2,3 DPG and the accumulation of lactate. Transfusion 1999, 39, 492–497. [Google Scholar] [CrossRef] [Green Version]
  160. Knutson, F.; Loof, H.; Hogman, C.F. Pre-separation storage of whole blood: The effect of temperature on red cell 2,3-diphosphoglycerate and myeloperoxidase in plasma. Transfus. Sci. 1999, 21, 111–115. [Google Scholar] [CrossRef]
  161. Li, Y.; Xiong, Y.; Wang, R.; Tang, F.; Wang, X. Blood banking-induced alteration of red blood cell oxygen release ability. Blood Transfus. 2016, 14, 238–244. [Google Scholar] [CrossRef]
  162. Tinmouth, A.; Chin-Yee, I. The clinical consequences of the red cell storage lesion. Transfus. Med. Rev. 2001, 15, 91–107. [Google Scholar] [CrossRef] [PubMed]
  163. Weiskopf, R.B.; Feiner, J.; Hopf, H.; Lieberman, J.; Finlay, H.E.; Quah, C.; Kramer, J.H.; Bostrom, A.; Toy, P. Fresh blood and aged stored blood are equally efficacious in immediately reversing anemia-induced brain oxygenation deficits in humans. Anesthesiology 2006, 104, 911–920. [Google Scholar] [CrossRef] [PubMed]
  164. De La Tour, D.D.; Raccah, D.; Jannot, M.F.; Coste, T.; Rougerie, C.; Vague, P. Erythrocyte Na/K ATPase activity and diabetes: Relationship with C-peptide level. Diabetologia 1998, 41, 1080–1084. [Google Scholar] [CrossRef]
  165. Kherd, A.A.; Helmi, N.; Balamash, K.S.; Kumosani, T.A.; Al-Ghamdi, S.A.; Qari, M.; Huwait, E.A.; Yaghmoor, S.S.; Nabil, A.; Al-Ghamdi, M.A.; et al. Changes in erythrocyte ATPase activity under different pathological conditions. Afr. Health Sci. 2017, 17, 1204–1210. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  166. Kiziltunc, A.; Akcay, F.; Polat, F.; Kuskay, S.; Sahin, Y.N. Reduced lecithin: Cholesterol acyltransferase (LCAT) and Na+, K+, ATPase activity in diabetic patients. Clin. Biochem. 1997, 30, 177–182. [Google Scholar] [CrossRef]
  167. Koc, B.; Erten, V.; Yilmaz, M.I.; Sonmez, A.; Kocar, I.H. The relationship between red blood cell Na/K-ATPase activities and diabetic complications in patients with type 2 diabetes mellitus. Endocrine 2003, 21, 273–278. [Google Scholar] [CrossRef]
  168. Kumar, R. Biochemical changes in erythrocyte membrane in type 2 diabetes mellitus. Indian J. Med. Sci. 2012, 66, 131–135. [Google Scholar] [CrossRef] [PubMed]
  169. Mazzanti, L.; Rabini, R.A.; Salvolini, E.; Tesei, M.; Martarelli, D.; Venerando, B.; Curatola, G. Sialic acid, diabetes, and aging: A study on the erythrocyte membrane. Metabolism 1997, 46, 59–61. [Google Scholar] [CrossRef]
  170. Mazzanti, L.; Rabini, R.A.; Testa, I.; Bertoli, E. Modifications induced by diabetes on the physicochemical and functional properties of erythrocyte plasma membrane. Eur. J. Clin. Investig. 1989, 19, 84–89. [Google Scholar] [CrossRef]
  171. Mimura, M.; Makino, H.; Kanatsuka, A.; Asai, T.; Yoshida, S. Reduction of erythrocyte (Na(+)-K+)ATPase activity in type 2 (non-insulin-dependent) diabetic patients with microalbuminuria. Horm. Metab. Res. 1994, 26, 33–38. [Google Scholar] [CrossRef]
  172. Rabini, R.A.; Petruzzi, E.; Staffolani, R.; Tesei, M.; Fumelli, P.; Pazzagli, M.; Mazzanti, L. Diabetes mellitus and subjects’ ageing: A study on the ATP content and ATP-related enzyme activities in human erythrocytes. Eur. J. Clin. Investig. 1997, 27, 327–332. [Google Scholar] [CrossRef]
  173. Scarpini, E.; Bianchi, R.; Moggio, M.; Sciacco, M.; Fiori, M.G.; Scarlato, G. Decrease of nerve Na+,K(+)-ATPase activity in the pathogenesis of human diabetic neuropathy. J. Neurol. Sci. 1993, 120, 159–167. [Google Scholar] [CrossRef]
  174. Shahid, S.M.; Rafique, R.; Mahboob, T. Electrolytes and sodium transport mechanism in diabetes mellitus. Pak. J. Pharm. Sci. 2005, 18, 6–10. [Google Scholar] [PubMed]
  175. Umudum, F.; Yucel, O.; Sahin, Y.; Bakan, E. Erythrocyte membrane glycation and NA(+)-K(+) levels in NIDDM. J. Diabetes Complicat. 2002, 16, 359–362. [Google Scholar] [CrossRef]
  176. Zadhoush, F.; Sadeghi, M.; Pourfarzam, M. Biochemical changes in blood of type 2 diabetes with and without metabolic syndrome and their association with metabolic syndrome components. J. Res. Med. Sci. 2015, 20, 763–770. [Google Scholar] [CrossRef]
  177. Bailey, D.N.; Bove, J.R. Chemical and hematological changes in stored CPD blood. Transfusion 1975, 15, 244–249. [Google Scholar] [CrossRef]
  178. Burger, P.; Kostova, E.; Bloem, E.; Hilarius-Stokman, P.; Meijer, A.B.; van den Berg, T.K.; Verhoeven, A.J.; de Korte, D.; van Bruggen, R. Potassium leakage primes stored erythrocytes for phosphatidylserine exposure and shedding of pro-coagulant vesicles. Br. J. Haematol. 2013, 160, 377–386. [Google Scholar] [CrossRef]
  179. Flatt, J.F.; Bawazir, W.M.; Bruce, L.J. The involvement of cation leaks in the storage lesion of red blood cells. Front. Physiol. 2014, 5, 214. [Google Scholar] [CrossRef] [Green Version]
  180. Marjanovic, M.; Willis, J.S. ATP dependence of Na(+)-K+ pump of cold-sensitive and cold-tolerant mammalian red blood cells. J. Physiol. 1992, 456, 575–590. [Google Scholar] [CrossRef]
  181. Nogueira, D.; Rocha, S.; Abreu, E.; Costa, E.; Santos-Silva, A. Biochemical and cellular changes in leukocyte-depleted red blood cells stored for transfusion. Transfus. Med. Hemother. 2015, 42, 46–51. [Google Scholar] [CrossRef] [Green Version]
  182. Opoku-Okrah, C.; Acquah, B.K.; Dogbe, E.E. Changes in potassium and sodium concentrations in stored blood. Pan. Afr. Med. J. 2015, 20, 236. [Google Scholar] [CrossRef]
  183. Wallas, C.H. Sodium and potassium changes in blood bank stored human erythrocytes. Transfusion 1979, 19, 210–215. [Google Scholar] [CrossRef] [PubMed]
  184. Wallas, C.H.; Harris, A.S.; Wetherall, N.T. Storage and survival of red blood cells with elevated sodium levels. Transfusion 1982, 22, 364–367. [Google Scholar] [CrossRef]
  185. Barbagallo, M.; Gupta, R.K.; Resnick, L.M. Cellular ions in NIDDM: Relation of calcium to hyperglycemia and cardiac mass. Diabetes Care 1996, 19, 1393–1398. [Google Scholar] [CrossRef]
  186. Bookchin, R.M.; Etzion, Z.; Lew, V.L.; Tiffert, T. Preserved function of the plasma membrane calcium pump of red blood cells from diabetic subjects with high levels of glycated haemoglobin. Cell Calcium 2009, 45, 260–263. [Google Scholar] [CrossRef]
  187. Fujita, J.; Tsuda, K.; Takeda, T.; Yu, L.; Fujimoto, S.; Kajikawa, M.; Nishimura, M.; Mizuno, N.; Hamamoto, Y.; Mukai, E.; et al. Nisoldipine improves the impaired erythrocyte deformability correlating with elevated intracellular free calcium-ion concentration and poor glycaemic control in NIDDM. Br. J. Clin. Pharm. 1999, 47, 499–506. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  188. Gonzalez Flecha, F.L.; Castello, P.R.; Gagliardino, J.J.; Rossi, J.P. Molecular characterization of the glycated plasma membrane calcium pump. J. Membr. Biol. 1999, 171, 25–34. [Google Scholar] [CrossRef]
  189. Lang, F.; Abed, M.; Lang, E.; Foller, M. Oxidative stress and suicidal erythrocyte death. Antioxid. Redox Signal. 2014, 21, 138–153. [Google Scholar] [CrossRef] [PubMed]
  190. Raftos, J.E.; Edgley, A.; Bookchin, R.M.; Etzion, Z.; Lew, V.L.; Tiffert, T. Normal Ca2+ extrusion by the Ca2+ pump of intact red blood cells exposed to high glucose concentrations. Am J. Physiol. Cell Physiol. 2001, 280, C1449–C1454. [Google Scholar] [CrossRef]
  191. Resnick, L.M.; Barbagallo, M.; Gupta, R.K.; Laragh, J.H. Ionic basis of hypertension in diabetes mellitus. Role of hyperglycemia. Am. J. Hypertens. 1993, 6, 413–417. [Google Scholar] [CrossRef]
  192. Antonelou, M.H.; Tzounakas, V.L.; Velentzas, A.D.; Stamoulis, K.E.; Kriebardis, A.G.; Papassideri, I.S. Effects of pre-storage leukoreduction on stored red blood cells signaling: A time-course evaluation from shape to proteome. J. Proteom. 2012, 76, 220–238. [Google Scholar] [CrossRef]
  193. Wiley, J.S.; McCulloch, K.E.; Bowden, D.S. Increased calcium permeability of cold-stored erythrocytes. Blood 1982, 60, 92–98. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  194. Cancelas, J.A.; Dumont, L.J.; Maes, L.A.; Rugg, N.; Herschel, L.; Whitley, P.H.; Szczepiokowski, Z.M.; Siegel, A.H.; Hess, J.R.; Zia, M. Additive solution-7 reduces the red blood cell cold storage lesion. Transfusion 2015, 55, 491–498. [Google Scholar] [CrossRef]
  195. Doctor, A.; Spinella, P. Effect of processing and storage on red blood cell function in vivo. Semin. Perinatol. 2012, 36, 248–259. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  196. Hess, J.R. Red cell storage. J. Proteom. 2010, 73, 368–373. [Google Scholar] [CrossRef]
  197. Hess, J.R.; Greenwalt, T.G. Storage of red blood cells: New approaches. Transfus. Med. Rev. 2002, 16, 283–295. [Google Scholar] [CrossRef]
  198. Hess, J.R.; Hill, H.R.; Oliver, C.K.; Lippert, L.E.; Rugg, N.; Joines, A.D.; Gormas, J.F.; Pratt, P.G.; Silverstein, E.B.; Greenwalt, T.J. Twelve-week RBC storage. Transfusion 2003, 43, 867–872. [Google Scholar] [CrossRef]
  199. Kirby, B.S.; Hanna, G.; Hendargo, H.C.; McMahon, T.J. Restoration of intracellular ATP production in banked red blood cells improves inducible ATP export and suppresses RBC-endothelial adhesion. Am. J. Physiol. Heart Circ. Physiol. 2014, 307, H1737–H1744. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  200. Leonart, M.S.; Nascimento, A.J.; Nonoyama, K.; Pelissari, C.B.; Stinghen, A.E.; Barretto, O.C. Correlation of discocyte frequency and ATP concentration in preserved blood. A morphological indicator of red blood cell viability. Braz. J. Med. Biol. Res. 1997, 30, 745–747. [Google Scholar] [CrossRef] [Green Version]
  201. Meyer, E.K.; Dumont, D.F.; Baker, S.; Dumont, L.J. Rejuvenation capacity of red blood cells in additive solutions over long-term storage. Transfusion 2011, 51, 1574–1579. [Google Scholar] [CrossRef] [PubMed]
  202. Paglia, G.; Sigurjonsson, O.E.; Bordbar, A.; Rolfsson, O.; Magnusdottir, M.; Palsson, S.; Wichuk, K.; Gudmundsson, S.; Palsson, B.O. Metabolic fate of adenine in red blood cells during storage in SAGM solution. Transfusion 2016, 56, 2538–2547. [Google Scholar] [CrossRef]
  203. Yoshida, T.; AuBuchon, J.P.; Tryzelaar, L.; Foster, K.Y.; Bitensky, M.W. Extended storage of red blood cells under anaerobic conditions. Vox Sang. 2007, 92, 22–31. [Google Scholar] [CrossRef] [PubMed]
  204. Zimmermann, R.; Heidenreich, D.; Weisbach, V.; Zingsem, J.; Neidhardt, B.; Eckstein, R. In vitro quality control of red blood cell concentrates outdated in clinical practice. Transfus. Clin. Biol. 2003, 10, 275–283. [Google Scholar] [CrossRef]
  205. Ansarihadipour, H.; Dorostkar, H. Comparison of plasma oxidative biomarkers and conformational modifications of hemoglobin in patients with diabetes on hemodialysis. Iran. Red Crescent Med. J. 2014, 16, e22045. [Google Scholar] [CrossRef] [Green Version]
  206. Constantin, A.; Constantinescu, E.; Dumitrescu, M.; Calin, A.; Popov, D. Effects of ageing on carbonyl stress and antioxidant defense in RBCs of obese Type 2 diabetic patients. J. Cell Mol. Med. 2005, 9, 683–691. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  207. Hussein, O.A.; Gefen, Y.; Zidan, J.M.; Karochero, E.Y.; Luder, A.S.; Assy, N.N.; Sror, E.S.; Aviram, M.Y. LDL oxidation is associated with increased blood hemoglobin A1c levels in diabetic patients. Clin. Chim. Acta 2007, 377, 114–118. [Google Scholar] [CrossRef]
  208. Konukoglu, D.; Kemerli, G.D.; Sabuncu, T.; Hatemi, H.H. Protein carbonyl content in erythrocyte membranes in type 2 diabetic patients. Horm. Metab. Res. 2002, 34, 367–370. [Google Scholar] [CrossRef]
  209. Margetis, P.I.; Antonelou, M.H.; Petropoulos, I.K.; Margaritis, L.H.; Papassideri, I.S. Increased protein carbonylation of red blood cell membrane in diabetic retinopathy. Exp. Mol. Pathol. 2009, 87, 76–82. [Google Scholar] [CrossRef]
  210. Pandey, K.B.; Mishra, N.; Rizvi, S.I. Myricetin may provide protection against oxidative stress in type 2 diabetic erythrocytes. Z Nat. C J. Biosci. 2009, 64, 626–630. [Google Scholar] [CrossRef]
  211. Schwartz, R.S.; Madsen, J.W.; Rybicki, A.C.; Nagel, R.L. Oxidation of spectrin and deformability defects in diabetic erythrocytes. Diabetes 1991, 40, 701–708. [Google Scholar] [CrossRef]
  212. Watala, C.; Golanski, J.; Witas, H.; Gurbiel, R.; Gwozdzinski, K.; Trojanowski, Z. The effects of in vivo and in vitro non-enzymatic glycosylation and glycoxidation on physico-chemical properties of haemoglobin in control and diabetic patients. Int. J. Biochem. Cell Biol. 1996, 28, 1393–1403. [Google Scholar] [CrossRef]
  213. Berlett, B.S.; Stadtman, E.R. Protein oxidation in aging, disease, and oxidative stress. J. Biol. Chem. 1997, 272, 20313–20316. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  214. Bosman, G.J.; Lasonder, E.; Luten, M.; Roerdinkholder-Stoelwinder, B.; Novotny, V.M.; Bos, H.; de Grip, W.J. The proteome of red cell membranes and vesicles during storage in blood bank conditions. Transfusion 2008, 48, 827–835. [Google Scholar] [CrossRef] [PubMed]
  215. Chaudhary, R.; Katharia, R. Oxidative injury as contributory factor for red cells storage lesion during twenty eight days of storage. Blood Transfus. 2012, 10, 59–62. [Google Scholar] [CrossRef] [PubMed]
  216. Cluitmans, J.C.; Hardeman, M.R.; Dinkla, S.; Brock, R.; Bosman, G.J. Red blood cell deformability during storage: Towards functional proteomics and metabolomics in the Blood Bank. Blood Transfus. 2012, 10 (Suppl. 2), s12–s18. [Google Scholar] [CrossRef]
  217. D’Alessandro, A.; D’Amici, G.M.; Vaglio, S.; Zolla, L. Time-course investigation of SAGM-stored leukocyte-filtered red bood cell concentrates: From metabolism to proteomics. Haematologica 2012, 97, 107–115. [Google Scholar] [CrossRef] [Green Version]
  218. Delobel, J.; Prudent, M.; Crettaz, D.; ElHajj, Z.; Riederer, B.M.; Tissot, J.D.; Lion, N. Cysteine redox proteomics of the hemoglobin-depleted cytosolic fraction of stored red blood cells. Proteom. Clin. Appl. 2016, 10, 883–893. [Google Scholar] [CrossRef]
  219. Delobel, J.; Prudent, M.; Rubin, O.; Crettaz, D.; Tissot, J.D.; Lion, N. Subcellular fractionation of stored red blood cells reveals a compartment-based protein carbonylation evolution. J. Proteom. 2012, 76, 181–193. [Google Scholar] [CrossRef]
  220. Delobel, J.; Prudent, M.; Tissot, J.D.; Lion, N. Proteomics of the red blood cell carbonylome during blood banking of erythrocyte concentrates. Proteom. Clin. Appl. 2016, 10, 257–266. [Google Scholar] [CrossRef]
  221. Dumaswala, U.J.; Zhuo, L.; Jacobsen, D.W.; Jain, S.K.; Sukalski, K.A. Protein and lipid oxidation of banked human erythrocytes: Role of glutathione. Free Radic. Biol. Med. 1999, 27, 1041–1049. [Google Scholar] [CrossRef]
  222. Harper, V.M.; Oh, J.Y.; Stapley, R.; Marques, M.B.; Wilson, L.; Barnes, S.; Sun, C.W.; Townes, T.; Patel, R.P. Peroxiredoxin-2 recycling is inhibited during erythrocyte storage. Antioxid. Redox Signal. 2015, 22, 294–307. [Google Scholar] [CrossRef] [Green Version]
  223. Jarolim, P.; Lahav, M.; Liu, S.C.; Palek, J. Effect of hemoglobin oxidation products on the stability of red cell membrane skeletons and the associations of skeletal proteins: Correlation with a release of hemin. Blood 1990, 76, 2125–2131. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  224. Kanias, T.; Acker, J.P. Biopreservation of red blood cells--the struggle with hemoglobin oxidation. FEBS J. 2010, 277, 343–356. [Google Scholar] [CrossRef] [PubMed]
  225. Kriebardis, A.G.; Antonelou, M.H.; Stamoulis, K.E.; Economou-Petersen, E.; Margaritis, L.H.; Papassideri, I.S. Progressive oxidation of cytoskeletal proteins and accumulation of denatured hemoglobin in stored red cells. J. Cell Mol. Med. 2007, 11, 148–155. [Google Scholar] [CrossRef] [Green Version]
  226. Mohanty, J.G.; Nagababu, E.; Rifkind, J.M. Red blood cell oxidative stress impairs oxygen delivery and induces red blood cell aging. Front. Physiol. 2014, 5, 84. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  227. Pallotta, V.; Rinalducci, S.; Zolla, L. Red blood cell storage affects the stability of cytosolic native protein complexes. Transfusion 2015, 55, 1927–1936. [Google Scholar] [CrossRef]
  228. Rael, L.T.; Bar-Or, R.; Ambruso, D.R.; Mains, C.W.; Slone, D.S.; Craun, M.L.; Bar-Or, D. The effect of storage on the accumulation of oxidative biomarkers in donated packed red blood cells. J. Trauma. 2009, 66, 76–81. [Google Scholar] [CrossRef]
  229. Reisz, J.A.; Wither, M.J.; Dzieciatkowska, M.; Nemkov, T.; Issaian, A.; Yoshida, T.; Dunham, A.J.; Hill, R.C.; Hansen, K.C.; D’Alessandro, A. Oxidative modifications of glyceraldehyde 3-phosphate dehydrogenase regulate metabolic reprogramming of stored red blood cells. Blood 2016, 128, e32–e42. [Google Scholar] [CrossRef] [Green Version]
  230. Rinalducci, S.; Zolla, L. Biochemistry of storage lesions of red cell and platelet concentrates: A continuous fight implying oxidative/nitrosative/phosphorylative stress and signaling. Transfus. Apher. Sci. 2015, 52, 262–269. [Google Scholar] [CrossRef]
  231. Wagner, G.M.; Chiu, D.T.; Qju, J.H.; Heath, R.H.; Lubin, B.H. Spectrin oxidation correlates with membrane vesiculation in stored RBCs. Blood 1987, 69, 1777–1781. [Google Scholar] [CrossRef] [Green Version]
  232. Wither, M.; Dzieciatkowska, M.; Nemkov, T.; Strop, P.; D’Alessandro, A.; Hansen, K.C. Hemoglobin oxidation at functional amino acid residues during routine storage of red blood cells. Transfusion 2016, 56, 421–426. [Google Scholar] [CrossRef]
  233. Yoshida, T.; Prudent, M.; D’Alessandro, A. Red blood cell storage lesion: Causes and potential clinical consequences. Blood Transfus. 2019, 17, 27–52. [Google Scholar] [CrossRef] [PubMed]
  234. Inouye, M.; Hashimoto, H.; Mio, T.; Sumino, K. Levels of lipid peroxidation product and glycated hemoglobin A1c in the erythrocytes of diabetic patients. Clin. Chim. Acta 1998, 276, 163–172. [Google Scholar] [CrossRef]
  235. Inouye, M.; Mio, T.; Sumino, K. Link between glycation and lipoxidation in red blood cells in diabetes. Clin. Chim. Acta 1999, 285, 35–44. [Google Scholar] [CrossRef]
  236. Inouye, M.; Mio, T.; Sumino, K. Glycated hemoglobin and lipid peroxidation in erythrocytes of diabetic patients. Metabolism 1999, 48, 205–209. [Google Scholar] [CrossRef]
  237. Jain, S.K. Hyperglycemia can cause membrane lipid peroxidation and osmotic fragility in human red blood cells. J. Biol. Chem. 1989, 264, 21340–21345. [Google Scholar] [CrossRef]
  238. Jain, S.K.; McVie, R.; Duett, J.; Herbst, J.J. Erythrocyte membrane lipid peroxidation and glycosylated hemoglobin in diabetes. Diabetes 1989, 38, 1539–1543. [Google Scholar] [CrossRef] [PubMed]
  239. Rabini, R.A.; Fumelli, P.; Galassi, R.; Dousset, N.; Taus, M.; Ferretti, G.; Mazzanti, L.; Curatola, G.; Solera, M.L.; Valdiguie, P. Increased susceptibility to lipid oxidation of low-density lipoproteins and erythrocyte membranes from diabetic patients. Metabolism 1994, 43, 1470–1474. [Google Scholar] [CrossRef]
  240. Silliman, C.C.; Moore, E.E.; Kelher, M.R.; Khan, S.Y.; Gellar, L.; Elzi, D.J. Identification of lipids that accumulate during the routine storage of prestorage leukoreduced red blood cells and cause acute lung injury. Transfusion 2011, 51, 2549–2554. [Google Scholar] [CrossRef] [Green Version]
  241. Tavazzi, B.; Di Pierro, D.; Amorini, A.M.; Fazzina, G.; Tuttobene, M.; Giardina, B.; Lazzarino, G. Energy metabolism and lipid peroxidation of human erythrocytes as a function of increased oxidative stress. Eur. J. Biochem. 2000, 267, 684–689. [Google Scholar] [CrossRef]
  242. Sertoglu, E.; Kurt, I.; Tapan, S.; Uyanik, M.; Serdar, M.A.; Kayadibi, H.; El-Fawaeir, S. Comparison of plasma and erythrocyte membrane fatty acid compositions in patients with end-stage renal disease and type 2 diabetes mellitus. Chem. Phys. Lipids 2014, 178, 11–17. [Google Scholar] [CrossRef]
  243. Montuschi, P.; Barnes, P.J.; Roberts, L.J., 2nd. Isoprostanes: Markers and mediators of oxidative stress. FASEB J. 2004, 18, 1791–1800. [Google Scholar] [CrossRef] [PubMed]
  244. Richards, J.P.; Yosten, G.L.; Kolar, G.R.; Jones, C.W.; Stephenson, A.H.; Ellsworth, M.L.; Sprague, R.S. Low O2-induced ATP release from erythrocytes of humans with type 2 diabetes is restored by physiological ratios of C-peptide and insulin. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2014, 307, R862–R868. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  245. Sprague, R.; Stephenson, A.; Bowles, E.; Stumpf, M.; Ricketts, G.; Lonigro, A. Expression of the heterotrimeric G protein Gi and ATP release are impaired in erythrocytes of humans with diabetes mellitus. Adv. Exp. Med. Biol. 2006, 588, 207–216. [Google Scholar] [CrossRef]
  246. Sprague, R.S.; Goldman, D.; Bowles, E.A.; Achilleus, D.; Stephenson, A.H.; Ellis, C.G.; Ellsworth, M.L. Divergent effects of low-O(2) tension and iloprost on ATP release from erythrocytes of humans with type 2 diabetes: Implications for O(2) supply to skeletal muscle. Am. J. Physiol. Heart Circ. Physiol. 2010, 299, H566–H573. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  247. Subasinghe, W.; Spence, D.M. Simultaneous determination of cell aging and ATP release from erythrocytes and its implications in type 2 diabetes. Anal. Chim. Acta 2008, 618, 227–233. [Google Scholar] [CrossRef] [Green Version]
  248. Wang, Y.; Giebink, A.; Spence, D.M. Microfluidic evaluation of red cells collected and stored in modified processing solutions used in blood banking. Integr. Biol. 2014, 6, 65–75. [Google Scholar] [CrossRef]
  249. Zhu, H.; Zennadi, R.; Xu, B.X.; Eu, J.P.; Torok, J.A.; Telen, M.J.; McMahon, T.J. Impaired adenosine-5′-triphosphate release from red blood cells promotes their adhesion to endothelial cells: A mechanism of hypoxemia after transfusion. Crit. Care Med. 2011, 39, 2478–2486. [Google Scholar] [CrossRef]
  250. Babu, N. Influence of hypercholesterolemia on deformability and shape parameters of erythrocytes in hyperglycemic subjects. Clin. Hemorheol. Microcirc. 2009, 41, 169–177. [Google Scholar] [CrossRef]
  251. Bareford, D.; Jennings, P.E.; Stone, P.C.; Baar, S.; Barnett, A.H.; Stuart, J. Effects of hyperglycaemia and sorbitol accumulation on erythrocyte deformability in diabetes mellitus. J. Clin. Pathol. 1986, 39, 722–727. [Google Scholar] [CrossRef]
  252. Brown, C.D.; Ghali, H.S.; Zhao, Z.; Thomas, L.L.; Friedman, E.A. Association of reduced red blood cell deformability and diabetic nephropathy. Kidney Int. 2005, 67, 295–300. [Google Scholar] [CrossRef] [Green Version]
  253. Buys, A.V.; van Rooy, M.J.; Soma, P.; van Papendorp, D.; Lipinski, B.; Pretorius, E. Changes in red blood cell membrane structure in type 2 diabetes: A scanning electron and atomic force microscopy study. Cardiovasc. Diabetol. 2013, 12, 25. [Google Scholar] [CrossRef] [Green Version]
  254. Cahn, A.; Livshits, L.; Srulevich, A.; Raz, I.; Yedgar, S.; Barshtein, G. Diabetic foot disease is associated with reduced erythrocyte deformability. Int. Wound J. 2016, 13, 500–504. [Google Scholar] [CrossRef]
  255. Caimi, G. Blood viscosity and erythrocyte filterability: Their evaluation in diabetes mellitus. Horm. Metab. Res. 1983, 15, 467–470. [Google Scholar] [CrossRef]
  256. Caimi, G.; Presti, R.L. Techniques to evaluate erythrocyte deformability in diabetes mellitus. Acta Diabetol. 2004, 41, 99–103. [Google Scholar] [CrossRef] [PubMed]
  257. Diamantopoulos, E.J.; Kittas, C.; Charitos, D.; Grigoriadou, M.; Ifanti, G.; Raptis, S.A. Impaired erythrocyte deformability precedes vascular changes in experimental diabetes mellitus. Horm. Metab. Res. 2004, 36, 142–147. [Google Scholar] [CrossRef] [PubMed]
  258. Diamantopoulos, E.J.; Raptis, S.A.; Moulopoulos, S.D. Red blood cell deformability index in diabetic retinopathy. Horm. Metab. Res. 1987, 19, 569–573. [Google Scholar] [CrossRef] [PubMed]
  259. Ernst, E.; Matrai, A. Altered red and white blood cell rheology in type II diabetes. Diabetes 1986, 35, 1412–1415. [Google Scholar] [CrossRef] [PubMed]
  260. Garnier, M.; Attali, J.R.; Valensi, P.; Delatour-Hanss, E.; Gaudey, F.; Koutsouris, D. Erythrocyte deformability in diabetes and erythrocyte membrane lipid composition. Metabolism 1990, 39, 794–798. [Google Scholar] [CrossRef]
  261. Keymel, S.; Heiss, C.; Kleinbongard, P.; Kelm, M.; Lauer, T. Impaired red blood cell deformability in patients with coronary artery disease and diabetes mellitus. Horm. Metab. Res. 2011, 43, 760–765. [Google Scholar] [CrossRef]
  262. Kruchinina, M.V.; Gromov, A.A.; Generalov, V.M.; Kruchinin, V.N. Possible Differential Diagnosis of the Degrees of Rheological Disturbances in Patients with Type 2 Diabetes Mellitus by Dielectrophoresis of Erythrocytes. J. Pers. Med. 2020, 10, 60. [Google Scholar] [CrossRef]
  263. Kung, C.M.; Tseng, Z.L.; Wang, H.L. Erythrocyte fragility increases with level of glycosylated hemoglobin in type 2 diabetic patients. Clin. Hemorheol. Microcirc. 2009, 43, 345–351. [Google Scholar] [CrossRef]
  264. Li, Q.; Yang, L.Z. Hemoglobin A1c Level Higher Than 9.05% Causes A Significant Impairment of Erythrocyte Deformability In Diabetes Mellitus. Acta Endocrinol. 2018, 14, 66–75. [Google Scholar] [CrossRef]
  265. McMillan, D.E.; Utterback, N.G.; La Puma, J. Reduced erythrocyte deformability in diabetes. Diabetes 1978, 27, 895–901. [Google Scholar] [CrossRef] [PubMed]
  266. Schmid-Schonbein, H.; Volger, E. Red-cell aggregation and red-cell deformability in diabetes. Diabetes 1976, 25, 897–902. [Google Scholar] [PubMed]
  267. Symeonidis, A.; Athanassiou, G.; Psiroyannis, A.; Kyriazopoulou, V.; Kapatais-Zoumbos, K.; Missirlis, Y.; Zoumbos, N. Impairment of erythrocyte viscoelasticity is correlated with levels of glycosylated haemoglobin in diabetic patients. Clin. Lab. Haematol. 2001, 23, 103–109. [Google Scholar] [CrossRef]
  268. Volger, E. Effect of metabolic control and concomitant diseases upon the rheology of blood in different states of diabetic retinopathy. Horm. Metab. Res. Suppl. 1981, 11, 104–107. [Google Scholar]
  269. Berezina, T.L.; Zaets, S.B.; Morgan, C.; Spillert, C.R.; Kamiyama, M.; Spolarics, Z.; Deitch, E.A.; Machiedo, G.W. Influence of storage on red blood cell rheological properties. J. Surg. Res. 2002, 102, 6–12. [Google Scholar] [CrossRef] [PubMed]
  270. Burns, J.M.; Yoshida, T.; Dumont, L.J.; Yang, X.; Piety, N.Z.; Shevkoplyas, S.S. Deterioration of red blood cell mechanical properties is reduced in anaerobic storage. Blood Transfus. 2016, 14, 80–88. [Google Scholar] [CrossRef] [PubMed]
  271. Card, R.T.; Mohandas, N.; Mollison, P.L. Relationship of post-transfusion viability to deformability of stored red cells. Br. J. Haematol. 1983, 53, 237–240. [Google Scholar] [CrossRef] [PubMed]
  272. Card, R.T.; Mohandas, N.; Perkins, H.A.; Shohet, S.B. Deformability of stored red blood cells. Relationship to degree of packing. Transfusion 1982, 22, 96–101. [Google Scholar] [CrossRef] [PubMed]
  273. De Weerd, P.; Vandenbussche, E.; de Bruyn, B.; Orban, G.A. Illusory contour orientation discrimination in the cat. Behav. Brain Res. 1990, 39, 1–17. [Google Scholar] [CrossRef]
  274. Frank, S.M.; Abazyan, B.; Ono, M.; Hogue, C.W.; Cohen, D.B.; Berkowitz, D.E.; Ness, P.M.; Barodka, V.M. Decreased erythrocyte deformability after transfusion and the effects of erythrocyte storage duration. Anesth. Analg. 2013, 116, 975–981. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  275. Relevy, H.; Koshkaryev, A.; Manny, N.; Yedgar, S.; Barshtein, G. Blood banking-induced alteration of red blood cell flow properties. Transfusion 2008, 48, 136–146. [Google Scholar] [CrossRef]
  276. Salaria, O.N.; Barodka, V.M.; Hogue, C.W.; Berkowitz, D.E.; Ness, P.M.; Wasey, J.O.; Frank, S.M. Impaired red blood cell deformability after transfusion of stored allogeneic blood but not autologous salvaged blood in cardiac surgery patients. Anesth. Analg. 2014, 118, 1179–1187. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  277. Tan, J.K.S.; Wei, X.; Wong, P.A.; Fang, J.; Kim, S.; Agrawal, R. Altered red blood cell deformability-A novel hypothesis for retinal microangiopathy in diabetic retinopathy. Microcirculation 2020, 27, e12649. [Google Scholar] [CrossRef] [PubMed]
  278. Grossin, N.; Wautier, M.P.; Wautier, J.L. Red blood cell adhesion in diabetes mellitus is mediated by advanced glycation end product receptor and is modulated by nitric oxide. Biorheology 2009, 46, 63–72. [Google Scholar] [CrossRef]
  279. Kaliyaperumal, R.; Deng, X.; Meiselman, H.J.; Song, H.; Dalan, R.; Leow, M.K.; Neu, B. Depletion interaction forces contribute to erythrocyte-endothelial adhesion in diabetes. Biochem. Biophys. Res. Commun. 2019, 516, 144–148. [Google Scholar] [CrossRef]
  280. Wautier, J.L.; Paton, R.C.; Wautier, M.P.; Pintigny, D.; Abadie, E.; Passa, P.; Caen, J.P. Increased adhesion of erythrocytes to endothelial cells in diabetes mellitus and its relation to vascular complications. N. Engl. J. Med. 1981, 305, 237–242. [Google Scholar] [CrossRef]
  281. Diebel, L.N.; Liberati, D.M. Red blood cell storage and adhesion to vascular endothelium under normal or stress conditions: An in vitro microfluidic study. J. Trauma. Acute Care Surg. 2019, 86, 943–951. [Google Scholar] [CrossRef] [PubMed]
  282. Koshkaryev, A.; Zelig, O.; Manny, N.; Yedgar, S.; Barshtein, G. Rejuvenation treatment of stored red blood cells reverses storage-induced adhesion to vascular endothelial cells. Transfusion 2009, 49, 2136–2143. [Google Scholar] [CrossRef]
  283. Babu, N.; Singh, M. Analysis of aggregation parameters of erythrocytes in diabetes mellitus. Clin. Hemorheol. Microcirc. 2005, 32, 269–277. [Google Scholar]
  284. Demiroglu, H.; Gurlek, A.; Barista, I. Enhanced erythrocyte aggregation in type 2 diabetes with late complications. Exp. Clin. Endocrinol. Diabetes 1999, 107, 35–39. [Google Scholar] [CrossRef] [PubMed]
  285. Li, Q.; Li, L.; Li, Y. Enhanced RBC Aggregation in Type 2 Diabetes Patients. J. Clin. Lab. Anal. 2015, 29, 387–389. [Google Scholar] [CrossRef]
  286. Sheremet’ev, Y.A.; Popovicheva, A.N.; Rogozin, M.M.; Levin, G.Y. Red blood cell aggregation, disaggregation and aggregate morphology in autologous plasma and serum in diabetic foot disease. Clin. Hemorheol. Microcirc. 2019, 72, 221–227. [Google Scholar] [CrossRef]
  287. Hovav, T.; Yedgar, S.; Manny, N.; Barshtein, G. Alteration of red cell aggregability and shape during blood storage. Transfusion 1999, 39, 277–281. [Google Scholar] [CrossRef]
  288. Freeman, D.W.; Noren Hooten, N.; Eitan, E.; Green, J.; Mode, N.A.; Bodogai, M.; Zhang, Y.; Lehrmann, E.; Zonderman, A.B.; Biragyn, A.; et al. Altered Extracellular Vesicle Concentration, Cargo, and Function in Diabetes. Diabetes 2018, 67, 2377–2388. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  289. Card, R.T. Red cell membrane changes during storage. Transfus. Med. Rev. 1988, 2, 40–47. [Google Scholar] [CrossRef]
  290. D’Alessandro, A.; Liumbruno, G.; Grazzini, G.; Zolla, L. Red blood cell storage: The story so far. Blood Transfus. 2010, 8, 82–88. [Google Scholar] [CrossRef] [PubMed]
  291. Greenwalt, T.J. The how and why of exocytic vesicles. Transfusion 2006, 46, 143–152. [Google Scholar] [CrossRef]
  292. Hess, J.R. Red cell changes during storage. Transfus. Apher. Sci. 2010, 43, 51–59. [Google Scholar] [CrossRef]
  293. Kriebardis, A.G.; Antonelou, M.H.; Stamoulis, K.E.; Economou-Petersen, E.; Margaritis, L.H.; Papassideri, I.S. RBC-derived vesicles during storage: Ultrastructure, protein composition, oxidation, and signaling components. Transfusion 2008, 48, 1943–1953. [Google Scholar] [CrossRef]
  294. Oreskovic, R.T.; Dumaswala, U.J.; Greenwalt, T.J. Expression of blood group antigens on red cell microvesicles. Transfusion 1992, 32, 848–849. [Google Scholar] [CrossRef] [PubMed]
  295. Wannez, A.; Devalet, B.; Chatelain, B.; Chatelain, C.; Dogne, J.M.; Mullier, F. Extracellular Vesicles in Red Blood Cell Concentrates: An Overview. Transfus. Med. Rev. 2019, 33, 125–130. [Google Scholar] [CrossRef] [PubMed]
  296. Racek, J.; Herynkova, R.; Holecek, V.; Jerabek, Z.; Slama, V. Influence of antioxidants on the quality of stored blood. Vox Sang. 1997, 72, 16–19. [Google Scholar] [CrossRef]
  297. Dumaswala, U.J.; Wilson, M.J.; Wu, Y.L.; Wykle, J.; Zhuo, L.; Douglass, L.M.; Daleke, D.L. Glutathione loading prevents free radical injury in red blood cells after storage. Free Radic. Res. 2000, 33, 517–529. [Google Scholar] [CrossRef] [PubMed]
  298. Cicha, I.; Suzuki, Y.; Tateishi, N.; Shiba, M.; Muraoka, M.; Tadokoro, K.; Maeda, N. Gamma-ray-irradiated red blood cells stored in mannitol-adenine-phosphate medium: Rheological evaluation and susceptibility to oxidative stress. Vox Sang. 2000, 79, 75–82. [Google Scholar] [CrossRef]
  299. Olivieri, O.; de Franceschi, L.; de Gironcoli, M.; Girelli, D.; Corrocher, R. Potassium loss and cellular dehydration of stored erythrocytes following incubation in autologous plasma: Role of the KCl cotransport system. Vox Sang. 1993, 65, 95–102. [Google Scholar] [CrossRef]
  300. Ciana, A.; Achilli, C.; Minetti, G. Spectrin and Other Membrane-Skeletal Components in Human Red Blood Cells of Different Age. Cell Physiol. Biochem. 2017, 42, 1139–1152. [Google Scholar] [CrossRef] [Green Version]
  301. Orbach, A.; Zelig, O.; Yedgar, S.; Barshtein, G. Biophysical and Biochemical Markers of Red Blood Cell Fragility. Transfus. Med. Hemother. 2017, 44, 183–187. [Google Scholar] [CrossRef] [Green Version]
  302. Bosman, G.J.; Werre, J.M.; Willekens, F.L.; Novotny, V.M. Erythrocyte ageing in vivo and in vitro: Structural aspects and implications for transfusion. Transfus. Med. 2008, 18, 335–347. [Google Scholar] [CrossRef]
  303. McVey, M.J.; Kuebler, W.M.; Orbach, A.; Arbell, D.; Zelig, O.; Barshtein, G.; Yedgar, S. Reduced deformability of stored red blood cells is associated with generation of extracellular vesicles. Transfus. Apher. Sci. 2020, 59, 102851. [Google Scholar] [CrossRef]
  304. Wolfe, L.C.; Byrne, A.M.; Lux, S.E. Molecular defect in the membrane skeleton of blood bank-stored red cells. Abnormal spectrin-protein 4.1-actin complex formation. J. Clin. Investig. 1986, 78, 1681–1686. [Google Scholar] [CrossRef]
  305. Rinalducci, S.; Ferru, E.; Blasi, B.; Turrini, F.; Zolla, L. Oxidative stress and caspase-mediated fragmentation of cytoplasmic domain of erythrocyte band 3 during blood storage. Blood Transfus. 2012, 10 (Suppl. 2), s55–s62. [Google Scholar] [CrossRef]
  306. Barshtein, G.; Rasmusen, T.L.; Zelig, O.; Arbell, D.; Yedgar, S. Inter-donor variability in deformability of red blood cells in blood units. Transfus. Med. 2020, 30, 492–496. [Google Scholar] [CrossRef]
  307. Barshtein, G.; Gural, A.; Zelig, O.; Arbell, D.; Yedgar, S. Unit-to-unit variability in the deformability of red blood cells. Transfus. Apher. Sci. 2020, 59, 102876. [Google Scholar] [CrossRef]
  308. Barshtein, G.; Gural, A.; Manny, N.; Zelig, O.; Yedgar, S.; Arbell, D. Storage-induced damage to red blood cell mechanical properties can be only partially reversed by rejuvenation. Transfus. Med. Hemother. 2014, 41, 197–204. [Google Scholar] [CrossRef] [Green Version]
  309. Matot, I.; Katz, M.; Pappo, O.; Zelig, O.; Corchia, N.; Yedgar, S.; Barshtein, G.; Bennett-Guerrero, E.; Abramovitch, R. Resuscitation with aged blood exacerbates liver injury in a hemorrhagic rat model. Crit. Care Med. 2013, 41, 842–849. [Google Scholar] [CrossRef] [PubMed]
  310. Barshtein, G.; Arbell, D.; Livshits, L.; Gural, A. Is It Possible to Reverse the Storage-Induced Lesion of Red Blood Cells? Front. Physiol. 2018, 9, 914. [Google Scholar] [CrossRef]
  311. Tarasev, M.; Chakraborty, S.; Alfano, K. RBC mechanical fragility as a direct blood quality metric to supplement storage time. Mil Med. 2015, 180, 150–157. [Google Scholar] [CrossRef] [Green Version]
  312. Barshtein, G.; Pries, A.R.; Goldschmidt, N.; Zukerman, A.; Orbach, A.; Zelig, O.; Arbell, D.; Yedgar, S. Deformability of transfused red blood cells is a potent determinant of transfusion-induced change in recipient’s blood flow. Microcirculation 2016, 23, 479–486. [Google Scholar] [CrossRef]
  313. Ehrhart, I.C.; Parker, P.E.; Weidner, W.J.; Dabney, J.M.; Scott, J.B.; Haddy, F.J. Coronary vascular and myocardial responses to carotid body stimulation in the dog. Am. J. Physiol. 1975, 229, 754–760. [Google Scholar] [CrossRef]
  314. Antonelou, M.H.; Seghatchian, J. Insights into red blood cell storage lesion: Toward a new appreciation. Transfus. Apher. Sci. 2016, 55, 292–301. [Google Scholar] [CrossRef]
  315. Beutler, E.; West, C. The storage of hard-packed red blood cells in citrate-phosphate-dextrose (CPD) and CPD-adenine (CPDA-1). Blood 1979, 54, 280–284. [Google Scholar] [CrossRef] [Green Version]
  316. Sivertsen, J.; Braathen, H.; Lunde, T.H.F.; Kristoffersen, E.K.; Hervig, T.; Strandenes, G.; Apelseth, T.O. Cold-stored leukoreduced CPDA-1 whole blood: In vitro quality and hemostatic properties. Transfusion 2020, 60, 1042–1049. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  317. Sparrow, R.L. Time to revisit red blood cell additive solutions and storage conditions: A role for “omics” analyses. Blood Transfus. 2012, 10 (Suppl. 2), s7–s11. [Google Scholar] [CrossRef]
  318. Graminske, S.; Puca, K.; Schmidt, A.; Brooks, S.; Boerner, A.; Heldke, S.; de Arruda Indig, M.; Brucks, M.; Kossor, D. In vitro evaluation of di(2-ethylhexyl)terephthalate-plasticized polyvinyl chloride blood bags for red blood cell storage in AS-1 and PAGGSM additive solutions. Transfusion 2018, 58, 1100–1107. [Google Scholar] [CrossRef]
  319. Heaton, A.; Miripol, J.; Aster, R.; Hartman, P.; Dehart, D.; Rzad, L.; Grapka, B.; Davisson, W.; Buchholz, D.H. Use of Adsol preservation solution for prolonged storage of low viscosity AS-1 red blood cells. Br. J. Haematol. 1984, 57, 467–478. [Google Scholar] [CrossRef]
  320. Sacks, D.B.; John, W.G. Interpretation of hemoglobin A1c values. JAMA 2014, 311, 2271–2272. [Google Scholar] [CrossRef]
  321. Wenk, R.E.; McGann, H.; Gibble, J. Haemoglobin A1c in donor erythrocytes. Transfus. Med. 2011, 21, 349–350. [Google Scholar] [CrossRef]
  322. Spencer, D.H.; Grossman, B.J.; Scott, M.G. Red cell transfusion decreases hemoglobin A1c in patients with diabetes. Clin. Chem. 2011, 57, 344–346. [Google Scholar] [CrossRef]
  323. Weinblatt, M.E.; Kochen, J.A.; Scimeca, P.G. Chronically transfused patients with increased hemoglobin Alc secondary to donor blood. Ann. Clin. Lab. Sci. 1986, 16, 34–37. [Google Scholar]
  324. Radin, M.S. Pitfalls in hemoglobin A1c measurement: When results may be misleading. J. Gen. Intern. Med. 2014, 29, 388–394. [Google Scholar] [CrossRef] [PubMed]
  325. Rehman, K.; Akash, M.S.H. Mechanism of Generation of Oxidative Stress and Pathophysiology of Type 2 Diabetes Mellitus: How Are They Interlinked? J. Cell Biochem. 2017, 118, 3577–3585. [Google Scholar] [CrossRef]
  326. Akash, M.S.; Rehman, K.; Chen, S. Role of inflammatory mechanisms in pathogenesis of type 2 diabetes mellitus. J. Cell Biochem. 2013, 114, 525–531. [Google Scholar] [CrossRef]
  327. Sobel, B.E.; Schneider, D.J. Cardiovascular complications in diabetes mellitus. Curr. Opin. Pharm. 2005, 5, 143–148. [Google Scholar] [CrossRef]
  328. Faselis, C.; Katsimardou, A.; Imprialos, K.; Deligkaris, P.; Kallistratos, M.; Dimitriadis, K. Microvascular Complications of Type 2 Diabetes Mellitus. Curr. Vasc. Pharm. 2020, 18, 117–124. [Google Scholar] [CrossRef]
  329. Avogaro, A.; Fadini, G.P. Microvascular complications in diabetes: A growing concern for cardiologists. Int. J. Cardiol. 2019, 291, 29–35. [Google Scholar] [CrossRef] [PubMed]
  330. Brownlee, M. Biochemistry and molecular cell biology of diabetic complications. Nature 2001, 414, 813–820. [Google Scholar] [CrossRef] [PubMed]
  331. Almdal, T.; Scharling, H.; Jensen, J.S.; Vestergaard, H. The independent effect of type 2 diabetes mellitus on ischemic heart disease, stroke, and death: A population-based study of 13,000 men and women with 20 years of follow-up. Arch. Intern. Med. 2004, 164, 1422–1426. [Google Scholar] [CrossRef] [Green Version]
  332. Lockhart, C.J.; McCann, A.J.; Pinnock, R.A.; Hamilton, P.K.; Harbinson, M.T.; McVeigh, G.E. Multimodal functional and anatomic imaging identifies preclinical microvascular abnormalities in type 1 diabetes mellitus. Am. J. Physiol. Heart Circ. Physiol. 2014, 307, H1729–H1736. [Google Scholar] [CrossRef] [Green Version]
  333. Querfeld, U.; Mak, R.H.; Pries, A.R. Microvascular disease in chronic kidney disease: The base of the iceberg in cardiovascular comorbidity. Clin. Sci. 2020, 134, 1333–1356. [Google Scholar] [CrossRef]
  334. Rizzoni, D.; de Ciuceis, C.; Salvetti, M.; Paini, A.; Rossini, C.; Agabiti-Rosei, C.; Muiesan, M.L. Interactions between macro- and micro-circulation: Are they relevant? High Blood Press Cardiovasc. Prev. 2015, 22, 119–128. [Google Scholar] [CrossRef]
  335. Kor, D.J.; van Buskirk, C.M.; Gajic, O. Red blood cell storage lesion. Bosn. J. Basic Med. Sci. 2009, 9 (Suppl. 1), 21–27. [Google Scholar] [CrossRef] [Green Version]
  336. Radosinska, J.; Vrbjar, N. The role of red blood cell deformability and Na,K-ATPase function in selected risk factors of cardiovascular diseases in humans: Focus on hypertension, diabetes mellitus and hypercholesterolemia. Physiol. Res. 2016, 65 (Suppl. 1), S43–S54. [Google Scholar] [CrossRef]
  337. Agrawal, R.; Sherwood, J.; Chhablani, J.; Ricchariya, A.; Kim, S.; Jones, P.H.; Balabani, S.; Shima, D. Red blood cells in retinal vascular disorders. Blood Cells Mol. Dis. 2016, 56, 53–61. [Google Scholar] [CrossRef] [Green Version]
  338. Barshtein, G.; Arbell, D.; Yedgar, S. Hemodynamic Functionality of Transfused Red Blood Cells in the Microcirculation of Blood Recipients. Front. Physiol. 2018, 9, 41. [Google Scholar] [CrossRef]
  339. Wang, Z.S.; Song, Z.C.; Bai, J.H.; Li, F.; Wu, T.; Qi, J.; Hu, J. Red blood cell count as an indicator of microvascular complications in Chinese patients with type 2 diabetes mellitus. Vasc. Health Risk Manag. 2013, 9, 237–243. [Google Scholar] [CrossRef] [Green Version]
  340. Soma, P.; Pretorius, E. Interplay between ultrastructural findings and atherothrombotic complications in type 2 diabetes mellitus. Cardiovasc. Diabetol. 2015, 14, 96. [Google Scholar] [CrossRef] [Green Version]
  341. Malandrino, N.; Wu, W.C.; Taveira, T.H.; Whitlatch, H.B.; Smith, R.J. Association between red blood cell distribution width and macrovascular and microvascular complications in diabetes. Diabetologia 2012, 55, 226–235. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  342. Zimrin, A.B.; Hess, J.R. Current issues relating to the transfusion of stored red blood cells. Vox Sang. 2009, 96, 93–103. [Google Scholar] [CrossRef] [PubMed]
  343. Arun, P.; Padmakumaran Nair, K.G.; Manojkumar, V.; Deepadevi, K.V.; Lakshmi, L.R.; Kurup, P.A. Decreased hemolysis and lipid peroxidation in blood during storage in the presence of nicotinic acid. Vox Sang. 1999, 76, 220–225. [Google Scholar] [CrossRef]
  344. Meledeo, M.A.; Peltier, G.C.; McIntosh, C.S.; Bynum, J.A.; Cap, A.P. Optimizing whole blood storage: Hemostatic function of 35-day stored product in CPD, CP2D, and CPDA-1 anticoagulants. Transfusion 2019, 59, 1549–1559. [Google Scholar] [CrossRef] [Green Version]
  345. Peppa, M.; Vlassara, H. Advanced glycation end products and diabetic complications: A general overview. Hormones 2005, 4, 28–37. [Google Scholar] [CrossRef]
  346. Zhang, L.; Wang, F.; Wang, L.; Wang, W.; Liu, B.; Liu, J.; Chen, M.; He, Q.; Liao, Y.; Yu, X.; et al. Prevalence of chronic kidney disease in China: A cross-sectional survey. Lancet 2012, 379, 815–822. [Google Scholar] [CrossRef]
  347. Obrador, G.T.; Roberts, T.; St Peter, W.L.; Frazier, E.; Pereira, B.J.; Collins, A.J. Trends in anemia at initiation of dialysis in the United States. Kidney Int. 2001, 60, 1875–1884. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  348. Sills, M.A.; Bennett, D.A.; Lovell, R.A.; Liebman, J.M.; Wood, P.L.; Glaeser, B.S.; Williams, M.; Hutchison, A.J. CGS 18102A, a benzopyranopyridine anxiolytic with 5-HT1 agonist and 5-HT2 antagonist properties. Prog. Clin. Biol. Res. 1990, 361, 469–475. [Google Scholar]
  349. McClellan, W.; Aronoff, S.L.; Bolton, W.K.; Hood, S.; Lorber, D.L.; Tang, K.L.; Tse, T.F.; Wasserman, B.; Leiserowitz, M. The prevalence of anemia in patients with chronic kidney disease. Curr. Med. Res. Opin. 2004, 20, 1501–1510. [Google Scholar] [CrossRef]
  350. Kazmi, W.H.; Kausz, A.T.; Khan, S.; Abichandani, R.; Ruthazer, R.; Obrador, G.T.; Pereira, B.J. Anemia: An early complication of chronic renal insufficiency. Am. J. Kidney Dis. 2001, 38, 803–812. [Google Scholar] [CrossRef]
  351. Drueke, T.B.; Parfrey, P.S. Summary of the KDIGO guideline on anemia and comment: Reading between the (guide)line(s). Kidney Int. 2012, 82, 952–960. [Google Scholar] [CrossRef] [Green Version]
  352. Levin, A.; Thompson, C.R.; Ethier, J.; Carlisle, E.J.; Tobe, S.; Mendelssohn, D.; Burgess, E.; Jindal, K.; Barrett, B.; Singer, J.; et al. Left ventricular mass index increase in early renal disease: Impact of decline in hemoglobin. Am. J. Kidney Dis. 1999, 34, 125–134. [Google Scholar] [CrossRef]
  353. Foley, R.N.; Parfrey, P.S.; Harnett, J.D.; Kent, G.M.; Murray, D.C.; Barre, P.E. The impact of anemia on cardiomyopathy, morbidity, and and mortality in end-stage renal disease. Am. J. Kidney Dis. 1996, 28, 53–61. [Google Scholar] [CrossRef]
  354. Silverberg, D.S.; Wexler, D.; Sheps, D.; Blum, M.; Keren, G.; Baruch, R.; Schwartz, D.; Yachnin, T.; Steinbruch, S.; Shapira, I.; et al. The effect of correction of mild anemia in severe, resistant congestive heart failure using subcutaneous erythropoietin and intravenous iron: A randomized controlled study. J. Am. Coll. Cardiol. 2001, 37, 1775–1780. [Google Scholar] [CrossRef] [Green Version]
  355. Higgins, M.R.; Grace, M.; Ulan, R.A.; Silverberg, D.S.; Bettcher, K.B.; Dossetor, J.B. Anemia in hemodialysis patients. Arch. Intern. Med. 1977, 137, 172–176. [Google Scholar] [CrossRef]
  356. Goodnough, L.T.; Strasburg, D.; Riddell, J.t.; Verbrugge, D.; Wish, J. Has recombinant human erythropoietin therapy minimized red-cell transfusions in hemodialysis patients? Clin. Nephrol. 1994, 41, 303–307. [Google Scholar]
  357. Ibrahim, H.N.; Ishani, A.; Guo, H.; Gilbertson, D.T. Blood transfusion use in non-dialysis-dependent chronic kidney disease patients aged 65 years and older. Nephrol Dial. Transpl. 2009, 24, 3138–3143. [Google Scholar] [CrossRef] [Green Version]
  358. Provenzano, R.; Garcia-Mayol, L.; Suchinda, P.; Von Hartitzsch, B.; Woollen, S.B.; Zabaneh, R.; Fink, J.C.; Group, P.S. Once-weekly epoetin alfa for treating the anemia of chronic kidney disease. Clin. Nephrol. 2004, 61, 392–405. [Google Scholar] [CrossRef]
  359. Pfeffer, M.A.; Burdmann, E.A.; Chen, C.Y.; Cooper, M.E.; de Zeeuw, D.; Eckardt, K.U.; Feyzi, J.M.; Ivanovich, P.; Kewalramani, R.; Levey, A.S.; et al. A trial of darbepoetin alfa in type 2 diabetes and chronic kidney disease. N. Engl. J. Med. 2009, 361, 2019–2032. [Google Scholar] [CrossRef] [Green Version]
  360. Despotis, G.J.; Zhang, L.; Lublin, D.M. Transfusion risks and transfusion-related pro-inflammatory responses. Hematol. Oncol. Clin. N. Am. 2007, 21, 147–161. [Google Scholar] [CrossRef]
  361. Carson, J.L.; Altman, D.G.; Duff, A.; Noveck, H.; Weinstein, M.P.; Sonnenberg, F.A.; Hudson, J.I.; Provenzano, G. Risk of bacterial infection associated with allogeneic blood transfusion among patients undergoing hip fracture repair. Transfusion 1999, 39, 694–700. [Google Scholar] [CrossRef]
  362. Zou, S.; Dorsey, K.A.; Notari, E.P.; Foster, G.A.; Krysztof, D.E.; Musavi, F.; Dodd, R.Y.; Stramer, S.L. Prevalence, incidence, and residual risk of human immunodeficiency virus and hepatitis C virus infections among United States blood donors since the introduction of nucleic acid testing. Transfusion 2010, 50, 1495–1504. [Google Scholar] [CrossRef] [PubMed]
  363. Patel, R.; Terasaki, P.I. Significance of the positive crossmatch test in kidney transplantation. N. Engl. J. Med. 1969, 280, 735–739. [Google Scholar] [CrossRef]
  364. Karpinski, M.; Pochinco, D.; Dembinski, I.; Laidlaw, W.; Zacharias, J.; Nickerson, P. Leukocyte reduction of red blood cell transfusions does not decrease allosensitization rates in potential kidney transplant candidates. J. Am. Soc. Nephrol. 2004, 15, 818–824. [Google Scholar] [CrossRef] [Green Version]
  365. Kiernan, M.C.; Walters, R.J.; Andersen, K.V.; Taube, D.; Murray, N.M.; Bostock, H. Nerve excitability changes in chronic renal failure indicate membrane depolarization due to hyperkalaemia. Brain 2002, 125, 1366–1378. [Google Scholar] [CrossRef] [Green Version]
  366. Baumgaertel, M.W.; Kraemer, M.; Berlit, P. Neurologic complications of acute and chronic renal disease. Handb. Clin. Neurol. 2014, 119, 383–393. [Google Scholar] [CrossRef]
  367. Jabbari, B.; Vaziri, N.D. The nature, consequences, and management of neurological disorders in chronic kidney disease. Hemodial. Int. 2018, 22, 150–160. [Google Scholar] [CrossRef] [Green Version]
  368. Mayeda, L.; Katz, R.; Ahmad, I.; Bansal, N.; Batacchi, Z.; Hirsch, I.B.; Robinson, N.; Trence, D.L.; Zelnick, L.; de Boer, I.H. Glucose time in range and peripheral neuropathy in type 2 diabetes mellitus and chronic kidney disease. BMJ Open Diabetes Res. Care 2020, 8, e000991. [Google Scholar] [CrossRef] [Green Version]
  369. Pop-Busui, R.; Roberts, L.; Pennathur, S.; Kretzler, M.; Brosius, F.C.; Feldman, E.L. The management of diabetic neuropathy in CKD. Am. J. Kidney Dis. 2010, 55, 365–385. [Google Scholar] [CrossRef] [Green Version]
  370. Davison, S.N.; Koncicki, H.; Brennan, F. Pain in chronic kidney disease: A scoping review. Semin. Dial. 2014, 27, 188–204. [Google Scholar] [CrossRef]
  371. Aggarwal, H.K.; Sood, S.; Jain, D.; Kaverappa, V.; Yadav, S. Evaluation of spectrum of peripheral neuropathy in predialysis patients with chronic kidney disease. Ren. Fail. 2013, 35, 1323–1329. [Google Scholar] [CrossRef]
  372. Grunwald, J.E.; Pistilli, M.; Ying, G.S.; Daniel, E.; Maguire, M.; Xie, D.; Roy, J.; Whittock-Martin, R.; Parker Ostroff, C.; Lo, J.C.; et al. Association Between Progression of Retinopathy and Concurrent Progression of Kidney Disease: Findings from the Chronic Renal Insufficiency Cohort (CRIC) Study. JAMA Ophthalmol. 2019, 137, 767–774. [Google Scholar] [CrossRef]
  373. Wong, C.W.; Wong, T.Y.; Cheng, C.Y.; Sabanayagam, C. Kidney and eye diseases: Common risk factors, etiological mechanisms, and pathways. Kidney Int. 2014, 85, 1290–1302. [Google Scholar] [CrossRef] [Green Version]
  374. Izzedine, H.; Bodaghi, B.; Launay-Vacher, V.; Deray, G. Eye and kidney: From clinical findings to genetic explanations. J. Am. Soc. Nephrol. 2003, 14, 516–529. [Google Scholar] [CrossRef] [Green Version]
  375. Grunwald, J.E.; Alexander, J.; Maguire, M.; Whittock, R.; Parker, C.; McWilliams, K.; Lo, J.C.; Townsend, R.; Gadegbeku, C.A.; Lash, J.P.; et al. Prevalence of ocular fundus pathology in patients with chronic kidney disease. Clin. J. Am. Soc. Nephrol. 2010, 5, 867–873. [Google Scholar] [CrossRef] [Green Version]
  376. Grunwald, J.E.; Alexander, J.; Ying, G.S.; Maguire, M.; Daniel, E.; Whittock-Martin, R.; Parker, C.; McWilliams, K.; Lo, J.C.; Go, A.; et al. Retinopathy and chronic kidney disease in the Chronic Renal Insufficiency Cohort (CRIC) study. Arch. Ophthalmol. 2012, 130, 1136–1144. [Google Scholar] [CrossRef] [PubMed]
  377. Grunwald, J.E.; Pistilli, M.; Ying, G.S.; Daniel, E.; Maguire, M.G.; Xie, D.; Whittock-Martin, R.; Parker Ostroff, C.; Lo, J.C.; Townsend, R.R.; et al. Retinopathy and progression of CKD: The CRIC study. Clin. J. Am. Soc. Nephrol. 2014, 9, 1217–1224. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  378. Edwards, M.S.; Wilson, D.B.; Craven, T.E.; Stafford, J.; Fried, L.F.; Wong, T.Y.; Klein, R.; Burke, G.L.; Hansen, K.J. Associations between retinal microvascular abnormalities and declining renal function in the elderly population: The Cardiovascular Health Study. Am. J. Kidney Dis. 2005, 46, 214–224. [Google Scholar] [CrossRef] [PubMed]
  379. Grunwald, J.E.; Pistilli, M.; Ying, G.S.; Maguire, M.; Daniel, E.; Whittock-Martin, R.; Parker-Ostroff, C.; Mohler, E.; Lo, J.C.; Townsend, R.R.; et al. Retinopathy and the risk of cardiovascular disease in patients with chronic kidney disease (from the Chronic Renal Insufficiency Cohort study). Am. J. Cardiol. 2015, 116, 1527–1533. [Google Scholar] [CrossRef] [Green Version]
  380. Wong, T.Y.; Coresh, J.; Klein, R.; Muntner, P.; Couper, D.J.; Sharrett, A.R.; Klein, B.E.; Heiss, G.; Hubbard, L.D.; Duncan, B.B. Retinal microvascular abnormalities and renal dysfunction: The atherosclerosis risk in communities study. J. Am. Soc. Nephrol. 2004, 15, 2469–2476. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  381. Chillo, P.; Ismail, A.; Sanyiwa, A.; Ruggajo, P.; Kamuhabwa, A. Hypertensive retinopathy and associated factors among nondiabetic chronic kidney disease patients seen at a tertiary hospital in Tanzania: A cross-sectional study. Int. J. Nephrol. Renov. Dis. 2019, 12, 79–86. [Google Scholar] [CrossRef] [Green Version]
  382. Yawn, B.P.; Buchanan, G.R.; Afenyi-Annan, A.N.; Ballas, S.K.; Hassell, K.L.; James, A.H.; Jordan, L.; Lanzkron, S.M.; Lottenberg, R.; Savage, W.J.; et al. Management of sickle cell disease: Summary of the 2014 evidence-based report by expert panel members. JAMA 2014, 312, 1033–1048. [Google Scholar] [CrossRef]
  383. Cappellini, M.D.; Cohen, A.; Porter, J.; Taher, A.; Viprakasit, V. (Eds.) Guidelines for the Management of Transfusion Dependent Thalassaemia (TDT); Thalassaemia International Federation: Nicosia, Cyprus, 2014. [Google Scholar]
  384. Stamboulis, E.; Vlachou, N.; Drossou-Servou, M.; Tsaftaridis, P.; Koutsis, G.; Katsaros, N.; Economou-Petersen, E.; Loutradi-Anagnostou, A. Axonal sensorimotor neuropathy in patients with beta-thalassaemia. J. Neurol. Neuro. Surg. Psychiatry 2004, 75, 1483–1486. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  385. Nemtsas, P.; Arnaoutoglou, M.; Perifanis, V.; Koutsouraki, E.; Spanos, G.; Arnaoutoglou, N.; Chalkia, P.; Pantelidou, D.; Orologas, A. Polyneuropathy and myopathy in beta-thalassemia major patients. Ann. Hematol. 2018, 97, 899–904. [Google Scholar] [CrossRef]
  386. Sawaya, R.A.; Zahed, L.; Taher, A. Peripheral neuropathy in thalassaemia. Ann. Saudi Med. 2006, 26, 358–363. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  387. Papanastasiou, D.A.; Papanicolaou, D.; Magiakou, A.M.; Beratis, N.G.; Tzebelikos, E.; Papapetropoulos, T. Peripheral neuropathy in patients with beta-thalassaemia. J. Neurol. Neurosurg. Psychiatry 1991, 54, 997–1000. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  388. Zafeiriou, D.I.; Economou, M.; Athanasiou-Metaxa, M. Neurological complications in beta-thalassemia. Brain Dev. 2006, 28, 477–481. [Google Scholar] [CrossRef] [PubMed]
  389. Okuyucu, E.E.; Turhanoglu, A.; Duman, T.; Kaya, H.; Melek, I.M.; Yilmazer, S. Peripheral nervous system involvement in patients with sickle cell disease. Eur. J. Neurol. 2009, 16, 814–818. [Google Scholar] [CrossRef] [PubMed]
  390. Shields, R.W., Jr.; Harris, J.W.; Clark, M. Mononeuropathy in sickle cell anemia: Anatomical and pathophysiological basis for its rarity. Muscle Nerve 1991, 14, 370–374. [Google Scholar] [CrossRef] [PubMed]
  391. Tsen, L.C.; Cherayil, G. Sickle cell-induced peripheral neuropathy following spinal anesthesia for cesarean delivery. Anesthesiology 2001, 95, 1298–1299. [Google Scholar] [CrossRef]
  392. Friedlander, A.H.; Genser, L.; Swerdloff, M. Mental nerve neuropathy: A complication of sickle-cell crisis. Oral Surg. Oral Med. Oral Pathol. 1980, 49, 15–17. [Google Scholar] [CrossRef]
  393. Konotey-Ahulu, F.I. Mental-nerve neuropathy: A complication of sickle-cell crisis. Lancet 1972, 2, 388. [Google Scholar] [CrossRef]
  394. Asher, S.W. Multiple cranial neuropathies, trigeminal neuralgia, and vascular headaches in sickle cell disease, a possible common mechanism. Neurology 1980, 30, 210–211. [Google Scholar] [CrossRef]
  395. Agapidou, A.; Aiken, L.; Linpower, L.; Tsitsikas, D.A. Ischemic Monomeric Neuropathy in a Woman with Sickle Cell Anaemia. Case Rep. Hematol. 2016, 2016, 8628425. [Google Scholar] [CrossRef]
  396. Sharma, D.; Brandow, A.M. Neuropathic pain in individuals with sickle cell disease. Neuro. Sci. Lett. 2020, 714, 134445. [Google Scholar] [CrossRef] [PubMed]
  397. Poh, F.; Hlis, R.; Chhabra, A. Upper limb peripheral neuropathy in sickle cell anemia: MR neurography appearances. Indian J. Radiol. Imaging 2019, 29, 67–71. [Google Scholar] [CrossRef] [PubMed]
  398. Liaska, A.; Petrou, P.; Georgakopoulos, C.D.; Diamanti, R.; Papaconstantinou, D.; Kanakis, M.G.; Georgalas, I. beta-Thalassemia and ocular implications: A systematic review. BMC Ophthalmol. 2016, 16, 102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  399. Bhoiwala, D.L.; Dunaief, J.L. Retinal abnormalities in beta-thalassemia major. Surv. Ophthalmol. 2016, 61, 33–50. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  400. Bilong, Y.; Dubert, M.; Koki, G.; Noubiap, J.J.; Pangetna, H.N.; Menet, A.; Chelo, D.; Offredo, L.; Jacob, S.; Belinga, S.; et al. Sickle cell retinopathy and other chronic complications of sickle cell anemia: A clinical study of 84 Sub-Saharan African cases (Cameroon). J. Fr. Ophtalmol. 2018, 41, 50–56. [Google Scholar] [CrossRef] [PubMed]
  401. Heydarian, S.; Jafari, R.; Dailami, K.N.; Hashemi, H.; Jafarzadehpour, E.; Heirani, M.; Yekta, A.; Mahjoob, M.; Khabazkhoob, M. Ocular abnormalities in beta thalassemia patients: Prevalence, impact, and management strategies. Int. Ophthalmol. 2020, 40, 511–527. [Google Scholar] [CrossRef]
  402. Abdalla Elsayed, M.E.A.; Mura, M.; Al Dhibi, H.; Schellini, S.; Malik, R.; Kozak, I.; Schatz, P. Sickle cell retinopathy. A focused review. Graefes. Arch. Clin. Exp. Ophthalmol. 2019, 257, 1353–1364. [Google Scholar] [CrossRef] [Green Version]
  403. Ribeiro, M.; Juca, J.V.O.; Alves, A.; Ferreira, C.V.O.; Barbosa, F.T.; Ribeiro, E.A.N. Sickle cell retinopathy: A literature review. Rev. Assoc. Med. Bras. 2017, 63, 1100–1103. [Google Scholar] [CrossRef]
  404. Li, J.; Bender, L.; Shaffer, J.; Cohen, D.; Ying, G.S.; Binenbaum, G. Prevalence and Onset of Pediatric Sickle Cell Retinopathy. Ophthalmology 2019, 126, 1000–1006. [Google Scholar] [CrossRef]
  405. Do, B.K.; Rodger, D.C. Sickle cell disease and the eye. Curr. Opin. Ophthalmol. 2017, 28, 623–628. [Google Scholar] [CrossRef]
  406. Beral, L.; Romana, M.; Lemonne, N.; David, T.; Connes, P. Terminologies regarding sickle cell retinopathy and maculopathy. Clin. Hemorheol. Microcirc. 2019, 71, 1–2. [Google Scholar] [CrossRef] [Green Version]
  407. Croise, F.; Le Lez, M.L.; Pisella, P.J. Role of OCT-angiography in the management of sickle cell retinopathy. J. Fr. Ophtalmol. 2020, 43, 7–17. [Google Scholar] [CrossRef]
  408. Ez-Zahraoui, M.; Laghmari, M.; Lezrek, O.; Ben Dali, I.; Benotmane, F.; Daoudi, R. Sickle cell retinopathy. J. Fr. Ophtalmol. 2017, 40, 156–157. [Google Scholar] [CrossRef] [PubMed]
  409. Elagouz, M.; Jyothi, S.; Gupta, B.; Sivaprasad, S. Sickle cell disease and the eye: Old and new concepts. Surv. Ophthalmol. 2010, 55, 359–377. [Google Scholar] [CrossRef] [PubMed]
  410. Scott, A.W. Ophthalmic Manifestations of Sickle Cell Disease. South Med. J. 2016, 109, 542–548. [Google Scholar] [CrossRef] [PubMed]
  411. Inati, A.; Zeineh, N.; Isma’eel, H.; Koussa, S.; Gharzuddine, W.; Taher, A. Beta-thalassemia: The Lebanese experience. Clin. Lab. Haematol. 2006, 28, 217–227. [Google Scholar] [CrossRef] [PubMed]
  412. Gimmon, Z.; Wexler, M.R.; Rachmilewitz, E.A. Juvenile leg ulceration in beta-thalassemia major and intermedia. Plast. Reconstr. Surg. 1982, 69, 320–325. [Google Scholar] [CrossRef]
  413. Stevens, D.M.; Shupack, J.L.; Javid, J.; Silber, R. Ulcers of the leg in thalassemia. Arch. Derm. 1977, 113, 1558–1560. [Google Scholar] [CrossRef]
  414. Ganor, S.; Cohen, T. Leg ulcers in a family with both beta thalassaemia and glucose-6-phosphate dehydrogenase deficiency. Br. J. Derm. 1976, 95, 203–206. [Google Scholar] [CrossRef] [PubMed]
  415. Levin, C.; Koren, A. Healing of refractory leg ulcer in a patient with thalassemia intermedia and hypercoagulability after 14 years of unresponsive therapy. Isr. Med. Assoc. J. 2011, 13, 316–318. [Google Scholar] [PubMed]
  416. Lotti, T.; Benci, M.; Palleschi, G.M.; Cantini, F.; Palchetti, R.; Albertacci, A. Leg ulcer in a patient with beta-thalassemia and glucose-6-phosphate-dehydrogenase deficiency. Int. J. Derm. 1990, 29, 426–427. [Google Scholar] [CrossRef]
  417. Koshy, M.; Entsuah, R.; Koranda, A.; Kraus, A.P.; Johnson, R.; Bellvue, R.; Flournoy-Gill, Z.; Levy, P. Leg ulcers in patients with sickle cell disease. Blood 1989, 74, 1403–1408. [Google Scholar] [CrossRef] [Green Version]
  418. Monfort, J.B.; Senet, P. Leg Ulcers in Sickle-Cell Disease: Treatment Update. Adv. Wound Care 2020, 9, 348–356. [Google Scholar] [CrossRef] [PubMed]
  419. Babalola, O.A.; Ogunkeyede, A.; Odetunde, A.B.; Fasola, F.; Oni, A.A.; Babalola, C.P.; Falusi, A.G. Haematological indices of sickle cell patients with chronic leg ulcers on compression therapy. Afr. J. Lab. Med. 2020, 9, 1037. [Google Scholar] [CrossRef]
  420. Kendall, C. Sickle Cell Leg Ulcers: A Case Study. Plast. Surg. Nurs. 2018, 38, 99–100. [Google Scholar] [CrossRef]
  421. Marti-Carvajal, A.J.; Knight-Madden, J.M.; Martinez-Zapata, M.J. Interventions for treating leg ulcers in people with sickle cell disease. Cochrane Database Syst. Rev. 2014, CD008394. [Google Scholar] [CrossRef]
  422. Kato, G.J.; McGowan, V.; Machado, R.F.; Little, J.A.; Taylor, J.t.; Morris, C.R.; Nichols, J.S.; Wang, X.; Poljakovic, M.; Morris, S.M., Jr.; et al. Lactate dehydrogenase as a biomarker of hemolysis-associated nitric oxide resistance, priapism, leg ulceration, pulmonary hypertension, and death in patients with sickle cell disease. Blood 2006, 107, 2279–2285. [Google Scholar] [CrossRef] [Green Version]
  423. Demosthenous, C.; Vlachaki, E.; Apostolou, C.; Eleftheriou, P.; Kotsiafti, A.; Vetsiou, E.; Mandala, E.; Perifanis, V.; Sarafidis, P. Beta-thalassemia: Renal complications and mechanisms: A narrative review. Hematology 2019, 24, 426–438. [Google Scholar] [CrossRef] [Green Version]
  424. Nafea, O.E.; Zakaria, M.; Hassan, T.; El Gebaly, S.M.; Salah, H.E. Subclinical nephrotoxicity in patients with beta-thalassemia: Role of urinary kidney injury molecule. Drug Chem. Toxicol. 2019, 1–10. [Google Scholar] [CrossRef]
  425. Sen, V.; Ece, A.; Uluca, U.; Soker, M.; Gunes, A.; Kaplan, I.; Tan, I.; Yel, S.; Mete, N.; Sahin, C. Urinary early kidney injury molecules in children with beta-thalassemia major. Ren. Fail. 2015, 37, 607–613. [Google Scholar] [CrossRef] [PubMed]
  426. Ong-ajyooth, L.; Malasit, P.; Ong-ajyooth, S.; Fucharoen, S.; Pootrakul, P.; Vasuvattakul, S.; Siritanaratkul, N.; Nilwarangkur, S. Renal function in adult beta-thalassemia/Hb E disease. Nephron 1998, 78, 156–161. [Google Scholar] [CrossRef] [PubMed]
  427. Ahmadzadeh, A.; Jalali, A.; Assar, S.; Khalilian, H.; Zandian, K.; Pedram, M. Renal tubular dysfunction in pediatric patients with beta-thalassemia major. Saudi J. Kidney Dis. Transpl. 2011, 22, 497–500. [Google Scholar] [PubMed]
  428. Sadeghi-Bojd, S.; Hashemi, M.; Karimi, M. Renal tubular function in patients with beta-thalassaemia major in Zahedan, southeast Iran. Singap. Med. J. 2008, 49, 410–412. [Google Scholar]
  429. Aldudak, B.; Karabay Bayazit, A.; Noyan, A.; Ozel, A.; Anarat, A.; Sasmaz, I.; Kilinc, Y.; Gali, E.; Anarat, R.; Dikmen, N. Renal function in pediatric patients with beta-thalassemia major. Pediatr. Nephrol. 2000, 15, 109–112. [Google Scholar] [CrossRef] [PubMed]
  430. Mohkam, M.; Shamsian, B.S.; Gharib, A.; Nariman, S.; Arzanian, M.T. Early markers of renal dysfunction in patients with beta-thalassemia major. Pediatr. Nephrol. 2008, 23, 971–976. [Google Scholar] [CrossRef]
  431. Smolkin, V.; Halevy, R.; Levin, C.; Mines, M.; Sakran, W.; Ilia, K.; Koren, A. Renal function in children with beta-thalassemia major and thalassemia intermedia. Pediatr. Nephrol. 2008, 23, 1847–1851. [Google Scholar] [CrossRef] [PubMed]
  432. Jalali, A.; Khalilian, H.; Ahmadzadeh, A.; Sarvestani, S.; Rahim, F.; Zandian, K.; Asar, S. Renal function in transfusion-dependent pediatric beta-thalassemia major patients. Hematology 2011, 16, 249–254. [Google Scholar] [CrossRef]
  433. Bakr, A.; Al-Tonbary, Y.; Osman, G.; El-Ashry, R. Renal complications of beta-thalassemia major in children. Am. J. Blood Res. 2014, 4, 1–6. [Google Scholar]
  434. Hamed, E.A.; ElMelegy, N.T. Renal functions in pediatric patients with beta-thalassemia major: Relation to chelation therapy: Original prospective study. Ital. J. Pediatr. 2010, 36, 39. [Google Scholar] [CrossRef] [Green Version]
  435. Uzun, E.; Balci, Y.I.; Yuksel, S.; Aral, Y.Z.; Aybek, H.; Akdag, B. Glomerular and tubular functions in children with different forms of beta thalassemia. Ren. Fail. 2015, 37, 1414–1418. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  436. Nickavar, A.; Qmarsi, A.; Ansari, S.; Zarei, E. Kidney Function in Patients with Different Variants of Beta-Thalassemia. Iran. J. Kidney Dis. 2017, 11, 132–137. [Google Scholar] [PubMed]
  437. Voskaridou, E.; Terpos, E.; Michail, S.; Hantzi, E.; Anagnostopoulos, A.; Margeli, A.; Simirloglou, D.; Loukopoulos, D.; Papassotiriou, I. Early markers of renal dysfunction in patients with sickle cell/beta-thalassemia. Kidney Int. 2006, 69, 2037–2042. [Google Scholar] [CrossRef] [Green Version]
  438. Deveci, B.; Kurtoglu, A.; Kurtoglu, E.; Salim, O.; Toptas, T. Documentation of renal glomerular and tubular impairment and glomerular hyperfiltration in multitransfused patients with beta thalassemia. Ann. Hematol. 2016, 95, 375–381. [Google Scholar] [CrossRef]
  439. Nath, K.A.; Hebbel, R.P. Sickle cell disease: Renal manifestations and mechanisms. Nat. Rev. Nephrol. 2015, 11, 161–171. [Google Scholar] [CrossRef] [Green Version]
  440. Hariri, E.; Mansour, A.; El Alam, A.; Daaboul, Y.; Korjian, S.; Aoun Bahous, S. Sickle cell nephropathy: An update on pathophysiology, diagnosis, and treatment. Int. Urol. Nephrol. 2018, 50, 1075–1083. [Google Scholar] [CrossRef] [PubMed]
  441. Laurentino, M.R.; Parente Filho, S.L.A.; Parente, L.L.C.; da Silva Junior, G.B.; Daher, E.F.; Lemes, R.P.G. Non-invasive urinary biomarkers of renal function in sickle cell disease: An overview. Ann. Hematol. 2019, 98, 2653–2660. [Google Scholar] [CrossRef]
  442. Naik, R.P.; Derebail, V.K. The spectrum of sickle hemoglobin-related nephropathy: From sickle cell disease to sickle trait. Expert Rev. Hematol. 2017, 10, 1087–1094. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  443. Nath, K.A.; Vercellotti, G.M. Renal Functional Decline in Sickle Cell Disease and Trait. J. Am. Soc. Nephrol. 2020, 31, 236–238. [Google Scholar] [CrossRef]
  444. Nnaji, U.M.; Ogoke, C.C.; Okafor, H.U.; Achigbu, K.I. Sickle Cell Nephropathy and Associated Factors among Asymptomatic Children with Sickle Cell Anaemia. Int. J. Pediatr. 2020, 2020, 1286432. [Google Scholar] [CrossRef] [PubMed]
  445. Barshtein, G.; Goldschmidt, N.; Pries, A.R.; Zelig, O.; Arbell, D.; Yedgar, S. Deformability of transfused red blood cells is a potent effector of transfusion-induced hemoglobin increment: A study with beta-thalassemia major patients. Am. J. Hematol. 2017, 92, E559–E560. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  446. Mirlohi, M.S.; Yaghooti, H.; Shirali, S.; Aminasnafi, A.; Olapour, S. Increased levels of advanced glycation end products positively correlate with iron overload and oxidative stress markers in patients with beta-thalassemia major. Ann. Hematol. 2018, 97, 679–684. [Google Scholar] [CrossRef]
  447. Nur, E.; Brandjes, D.P.; Schnog, J.J.; Otten, H.M.; Fijnvandraat, K.; Schalkwijk, C.G.; Biemond, B.J.; Group, C.S. Plasma levels of advanced glycation end products are associated with haemolysis-related organ complications in sickle cell patients. Br. J. Haematol. 2010, 151, 62–69. [Google Scholar] [CrossRef] [Green Version]
  448. Somjee, S.S.; Warrier, R.P.; Thomson, J.L.; Ory-Ascani, J.; Hempe, J.M. Advanced glycation end-products in sickle cell anaemia. Br. J. Haematol. 2005, 128, 112–118. [Google Scholar] [CrossRef]
  449. Safwat, N.A.; Kenny, M.A. Soluble receptor for advanced glycation end products as a vasculopathy biomarker in sickle cell disease. Pediatr. Res. 2018, 84, 869–874. [Google Scholar] [CrossRef]
Table 1. Comparison between some features of RBC from non-insulin-dependent diabetic patients and stored units.
Table 1. Comparison between some features of RBC from non-insulin-dependent diabetic patients and stored units.
T2 DiabetesRBC Storage
Elevated Hemolysis/Free Heme[67][68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85]
Elevated Membrane Phosphatidylserine exposure[86,87][88,89,90,91,92]
Elevated HbA1C[93,94,95,96,97][73,98,99,100,101,102,103]
Elevated
Intra-RBC ROS concentration
[100,102][71,104,105]
Decreased levels/activity of
RBC GSH and other antioxidant systems
[102,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134][69,104,135,136,137,138]
Elevated
Intracellular AGE
[58,102,139,140,141,142,143,144,145,146,147][148,149]
Abnormalities in Nitric oxide signaling and decreased RBC nitric oxide synthase (RBC-NOS) activity[150][84,151]
Decreased
2,3 DPG level
[152,153,154,155][33,70,73,88,156,157,158,159,160,161,162,163]
Abnormalities in Na/K levels and decreased Na+/K+-ATPase activity[128,141,164,165,166,167,168,169,170,171,172,173,174,175,176][70,72,177,178,179,180,181,182,183,184]
Ca2+ intracellular accumulation and/or decreased Ca2+ ATPase activity[141,172,185,186,187,188,189,190,191][73,75,192,193]
Decreased intracellular ATP level[154,172][68,72,73,75,77,80,81,82,83,88,156,157,162,194,195,196,197,198,199,200,201,202,203,204]
Elevated intra-RBC protein oxidation[102,118,145,205,206,207,208,209,210,211,212][34,71,73,79,135,137,162,179,181,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233]
Elevated lipid peroxidation[106,114,115,126,127,141,145,210,234,235,236,237,238,239][79,135,162,179,215,221,240,241]
Elevated Poly Unsaturated Fatty Acid (PUFA) oxidation[127,242][73,148,243]
Decreased ATP release from RBC[244,245,246,247][199,248,249]
Decreased intra-RBC NADPH[110,111,247][104]
Decreased
RBC deformability
[59,187,211,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268][70,73,156,197,216,269,270,271,272,273,274,275,276,277]
Elevated RBC adhesion[278,279,280][275,281,282]
Elevated RBC aggregability[262,283,284,285,286][162,275,287]
Elevated release of Extracellular vesicles (EVs)[288][69,72,73,156,192,289,290,291,292,293,294,295]
Table 2. Sugar concentration in different storage media [75,309,310,311,312,313].
Table 2. Sugar concentration in different storage media [75,309,310,311,312,313].
Storage MediumSugar Concentration, mM
GlucoseDextrose
MAP40-
CPDA-1177-
AS-1111
AS-3-55
AS-780-
SAGM45-
PAGGSM47
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Share and Cite

MDPI and ACS Style

Livshits, L.; Barshtein, G.; Arbell, D.; Gural, A.; Levin, C.; Guizouarn, H. Do We Store Packed Red Blood Cells under “Quasi-Diabetic” Conditions? Biomolecules 2021, 11, 992. https://doi.org/10.3390/biom11070992

AMA Style

Livshits L, Barshtein G, Arbell D, Gural A, Levin C, Guizouarn H. Do We Store Packed Red Blood Cells under “Quasi-Diabetic” Conditions? Biomolecules. 2021; 11(7):992. https://doi.org/10.3390/biom11070992

Chicago/Turabian Style

Livshits, Leonid, Gregory Barshtein, Dan Arbell, Alexander Gural, Carina Levin, and Hélène Guizouarn. 2021. "Do We Store Packed Red Blood Cells under “Quasi-Diabetic” Conditions?" Biomolecules 11, no. 7: 992. https://doi.org/10.3390/biom11070992

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop