Short-Term Exposure to Nanoplastics Does Not Affect Bisphenol A Embryotoxicity to Marine Ascidian Ciona robusta
Abstract
:1. Introduction
2. Materials and Methods
2.1. Organism Tested
2.2. BPA and PS NPs Preparation and Characterization
2.3. Embryotoxicity Assays
2.4. Statistical Analysis
3. Results
3.1. Behavior of PS NPs in MilliQ and Filtered Natural Seawater (FSW)
3.2. Embryotoxicity Assays of PS NPs and BPA Alone
3.3. Embryotoxicity Assays with PS NPs and BPA Combined (T0)
3.4. Embryotoxicity Assays with PS NPs and BPA Combined (T24)
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lebreton, L.; Andrady, A. Future scenarios of global plastic waste generation and disposal. Palgrave Commun. 2019, 5, 6. [Google Scholar] [CrossRef] [Green Version]
- Cózar, A.; Echevarría, F.; González-Gordillo, J.I.; Irigoien, X.; Úbeda, B.; Hernández-León, S. Plastic debris in the open ocean. Proc. Natl. Acad. Sci. USA 2014, 111, 10239–10244. [Google Scholar] [CrossRef] [Green Version]
- Andrady, A.L. The plastic in microplastics: A review. Mar. Pollut. Bull. 2017, 119, 12–22. [Google Scholar] [CrossRef] [PubMed]
- Corsi, I.; Bellingeri, A.; Eliso, M.C.; Grassi, G.; Liberatori, G.; Murano, C.; Sturba, L.; Vannuccini, M.L.; Bergami, E. Eco-interactions of engineered nanomaterials in the marine environment: A lesson to learn for an eco-design. Nanomaterials 2021, 11, 1903. [Google Scholar] [CrossRef]
- Corsi, I.; Bergami, E.; Grassi, G. Behaviour and bio-interactions of anthropogenic particles in marine environment for a more realistic ecological risk assessment. Front. Environ. Sci. 2020, 8, 60. [Google Scholar] [CrossRef]
- Hartmann, N.B.; Hüffer, T.; Thompson, R.C.; Hassellöv, M.; Verschoor, A.; Daugaard, A. Are We Speaking the Same Language? Recommendations for a Definition and Categorization Framework for Plastic Debris. Environ. Sci. Technol. 2019, 53, 1039–1047. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Kuo, Y.Y.; Gerecke, A.; Wang, J. Co-release of hexabromocyclododecane (HBCD) and nano- and microparticles from thermal cutting of polystyrene foams. Environ. Sci. Technol. 2012, 46, 10990–10996. [Google Scholar] [CrossRef] [PubMed]
- Kuo, Y.Y.; Zhang, H.; Gerecke, A.C.; Wang, J. Chemical composition of nanoparticles released from thermal cutting of polystyrene foams and the associated isomerization of hexabromocyclododecane (HBCD) diastereomers. Aerosol Air Qual. Res. 2014, 14, 1114–1120. [Google Scholar] [CrossRef] [Green Version]
- Lambert, S.; Wagner, M. Formation of microscopic particles during the degradation of different polymers. Chemosphere 2016, 161, 510–517. [Google Scholar] [CrossRef]
- Davidson, T.M. Boring crustaceans damage polystyrene floats under docks polluting marine waters with microplastic. Mar. Pollut. Bull. 2012, 64, 1821–1828. [Google Scholar] [CrossRef]
- Velev, O.D.; Kaler, E.W. In Situ Assembly of Colloidal Particles into Miniaturized Biosensors. Langmuir 1999, 15, 3693–3698. [Google Scholar] [CrossRef]
- Guterres, S.S.; Alves, M.P.; Pohlmann, A.R. Polymeric Nanoparticles, Nanospheres and Nanocapsules, for Cutaneous Applications. Drug Target Insights 2007, 2, 117739280700200. [Google Scholar] [CrossRef] [Green Version]
- Leslie, H.A. Review of Microplastics in Cosmetics. IVM Inst. Environ. Stud. 2014, 476, 33. [Google Scholar]
- Hernandez, L.M.; Xu, E.G.; Larsson, H.C.E.; Tahara, R.; Maisuria, V.B.; Tufenkji, N. Plastic Teabags Release Billions of Microparticles and Nanoparticles into Tea. Environ. Sci. Technol. 2019, 53, 12300–12310. [Google Scholar] [CrossRef]
- Jiménez-Fernández, E.; Ruyra, A.; Roher, N.; Zuasti, E.; Infante, C.; Fernández-Díaz, C. Nanoparticles as a novel delivery system for vitamin C administration in aquaculture. Aquaculture 2014, 432, 426–433. [Google Scholar] [CrossRef]
- Lenz, R.; Enders, K.; Nielsen, T.G. Microplastic exposure studies should be environmentally realistic. Proc. Natl. Acad. Sci. USA 2016, 113, E4121–E4122. [Google Scholar] [CrossRef] [Green Version]
- Gigault, J.; Pedrono, B.; Maxit, B.; Ter Halle, A. Marine plastic litter: The unanalyzed nano-fraction. Environ. Sci. Nano 2016, 3, 346–350. [Google Scholar] [CrossRef]
- Schirinzi, G.F.; Llorca, M.; Seró, R.; Moyano, E.; Barceló, D.; Abad, E.; Farré, M. Trace analysis of polystyrene microplastics in natural waters. Chemosphere 2019, 236, 124321. [Google Scholar] [CrossRef] [PubMed]
- Gigault, J.; El Hadri, H.; Nguyen, B.; Grassl, B.; Rowenczyk, L.; Tufenkji, N.; Feng, S.; Wiesner, M. Nanoplastics are neither microplastics nor engineered nanoparticles. Nat. Nanotechnol. 2021, 16, 501–507. [Google Scholar] [CrossRef]
- Bhagat, J.; Nishimura, N.; Shimada, Y. Toxicological interactions of microplastics/nanoplastics and environmental contaminants: Current knowledge and future perspectives. J. Hazard. Mater. 2020, 405, 123913. [Google Scholar] [CrossRef] [PubMed]
- Huang, W.; Song, B.; Liang, J.; Niu, Q.; Zeng, G.; Shen, M.; Deng, J.; Luo, Y.; Wen, X.; Zhang, Y. Microplastics and associated contaminants in the aquatic environment: A review on their ecotoxicological effects, trophic transfer, and potential impacts to human health. J. Hazard. Mater. 2021, 405, 124187. [Google Scholar] [CrossRef] [PubMed]
- Della Torre, C.; Balbi, T.; Grassi, G.; Frenzilli, G.; Bernardeschi, M.; Smerilli, A.; Guidi, P.; Canesi, L.; Nigro, M.; Monaci, F.; et al. Titanium dioxide nanoparticles modulate the toxicological response to cadmium in the gills of Mytilus galloprovincialis. J. Hazard. Mater. 2015, 297, 92–100. [Google Scholar] [CrossRef]
- Della Torre, C.; Buonocore, F.; Frenzilli, G.; Corsolini, S.; Brunelli, A.; Guidi, P.; Kocan, A.; Mariottini, M.; Mottola, F.; Nigro, M.; et al. Influence of Titanium Dioxide Nanoparticles on 2,3,7,8-Tetrachlorodibenzo-p Dioxin Bioconcentration and Toxicity in the Marine Fish European Sea Bass (Dicentrarchus labrax). Environ. Pollut. 2015, 196, 185–193. [Google Scholar] [CrossRef]
- Grassi, G.; Landi, C.; Della Torre, C.; Bergami, E.; Bini, L.; Corsi, I. Proteomic profile of the hard corona of charged polystyrene nanoparticles exposed to sea urchin Paracentrotus lividus coelomic fluid highlights potential drivers of toxicity. Environ. Sci. Nano 2019, 10, 2921–3174. [Google Scholar] [CrossRef]
- Marques-Santos, L.F.; Grassi, G.; Bergami, E.; Faleri, C.; Balbi, T.; Salis, A.; Damonte, G.; Canesi, L.; Corsi, I. Cationic polystyrene nanoparticle and the sea urchin immune system: Biocorona formation, cell toxicity, and multixenobiotic resistance phenotype. Nanotoxicology 2018, 12, 847–867. [Google Scholar] [CrossRef]
- Town, R.M.; Van Leeuwen, H.P. Uptake and Release Kinetics of Organic Contaminants Associated with Micro and Nanoplastic Particles. Environ. Sci. Technol. 2020, 54, 10057–10067. [Google Scholar] [CrossRef]
- Hahladakis, J.N.; Velis, C.A.; Weber, R.; Iacovidou, E.; Purnell, P. An overview of chemical additives present in plastics: Migration, release, fate and environmental impact during their use, disposal and recycling. J. Hazard. Mater. 2018, 344, 179–199. [Google Scholar] [CrossRef] [PubMed]
- PubChem. Bisphenol A; National Library of Medicine: Bethesda, MD, USA, 2020.
- Ma, Y.; Liu, H.; Wu, J.; Yuan, L.; Wang, Y.; Du, X.; Zhang, H. The adverse health effects of bisphenol A and related toxicity mechanisms. Environ. Res. 2019, 176, 108575. [Google Scholar] [CrossRef] [PubMed]
- Satou, Y.; Imai, K.S. Gene regulatory systems that control gene expression in the Ciona embryo. Proc. Jpn. Acad. Ser. B 2015, 91, 33–51. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gomes, I.D.; Gazo, I.; Besnardeau, L.; Hebras, C.; McDougall, A.; Dumollard, R. Potential roles of nuclear receptors in mediating neurodevelopmental toxicity of known endocrine-disrupting chemicals in ascidian embryos. Mol. Reprod. Dev. 2019, 86, 1333–1347. [Google Scholar] [CrossRef]
- Gomes, D.L.I.; Gazo, I.; Nabi, D.; Besnardeau, L.; Hebras, C.; McDougall ADumollard, R. Bisphenols disrupt differentiation of the pigmented cells during larval brain formation in the ascidian. Aquat. Toxicol. 2019, 216, 105314. [Google Scholar] [CrossRef]
- Eliso, M.C.; Bergami, E.; Manfra, L.; Spagnuolo, A.; Corsi, I. Toxicity of nanoplastics during the embryogenesis of the ascidian Ciona robusta (Phylum Chordata). Nanotoxicology 2020, 14, 1415–1431. [Google Scholar] [CrossRef]
- Messinetti, S.; Mercurio, S.; Pennati, R. Effects of bisphenol A on the development of pigmented organs in the ascidian Phallusia mammillata. Invertebr. Biol. 2018, 137, 329–338. [Google Scholar] [CrossRef]
- Chen, Q.; Yin, D.; Jia, Y.; Schiwy, S.; Legradi, J.; Yang, S.; Hollert, H. Enhanced uptake of BPA in the presence of nanoplastics can lead to neurotoxic effects in adult zebrafish. Sci. Total Environ. 2017, 609, 1312–1321. [Google Scholar] [CrossRef] [PubMed]
- Lambert, C.C.; Brandt, C.L. The effect of light on the spawning of Ciona intestinalis. Biol. Bull. 1967, 132, 222–228. [Google Scholar] [CrossRef]
- Bellas, J.; Beiras, R. Toxicity of Organic Compounds to Marine Invertebrate Embryos and Larvae: A Comparison between the Sea Urchin Embryogenesis Bioassay and Alternative Test Species. Ecotoxicology 2005, 14, 337–353. [Google Scholar] [CrossRef] [PubMed]
- Hotta, K.; Dauga, D.; Manni, L. The Ontology of the Anatomy and Development of the Solitary Ascidian Ciona. Sci. Rep. 2020, 10, 17916. [Google Scholar] [CrossRef] [PubMed]
- Flint, S.; Markle, T.; Thompson, S.; Wallace, E. Bisphenol A exposure, effects, and policy: A wildlife perspective. J. Environ. Manag. 2012, 104, 19–34. [Google Scholar] [CrossRef] [PubMed]
- Canesi, L.; Fabbri, E. Environmental effects of BPA: Focus on aquatic species. Dose-Response 2015, 13, 1559325815598304. [Google Scholar] [CrossRef] [Green Version]
- Messinetti, S.; Mercurio, S.; Pennati, R. Bisphenol A affects neural development of the ascidian Ciona robusta. J. Exp. Zool. A Ecol. Integr. Physiol. 2019, 331, 5–16. [Google Scholar] [CrossRef] [Green Version]
- Mu, X.; Liu, J.; Yuan, L.; Huang, Y.; Qian, L.; Wang, C. The pigmentation interference of bisphenol F and bisphenol A. Environ. Pollut. 2020, 266, 115139. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Zu, B.; Yang, Q.; An, J.; Li, J. Nanoplastic adsorption characteristics of bisphenol A: The roles of pH, metal ions, and suspended sediments. Mar. Pollut. Bull. 2022, 178, 113602. [Google Scholar] [CrossRef]
ζ-Average (nm) | PDI | ζ-Potential (mV) | |
---|---|---|---|
mQW | 22.8 ± 0.3 | 0.35 ± 0.04 | −51 ± 5 |
FSW 0 h | 1589 ± 139 | 0.35 ± 0.04 | −34 ± 4 |
FSW + BPA (10 µM) 0 h | 2583 ± 198 | 0.46 ± 0.1 | −32 ± 4 |
FSW 24 h | >3000 | 0.76 ± 0.3 | −31 ± 9 |
FSW + BPA (10 µM) 24 h | >3000 | 0.53 ± 0.4 | −21 ± 14 |
PS NPs and BPA Alone | % Normal | % Undeveloped |
---|---|---|
CTRL | 75.43 ± 8.98 | 10.77 ± 8.88 |
CTRL (0.01% DMSO) | 71.57 ± 5.17 | 10.92 ± 1.09 |
PS NPs 0.1 µg/mL | 62.54 ± 10.10 | 21.81 ± 3.17 |
PS NPs 1 µg/mL | 60.39 ± 8.73 | 23.63 ± 2.92 |
BPA 4.5 µM | 11.18 ± 5.23 | 17.15 ± 1.81 |
BPA 10 µM | 0 | 35.16 ± 10.82 |
Combined (T0) | % Normal | % Undeveloped |
---|---|---|
CTRL | 75.43 ± 8.98 | 10.77 ± 8.88 |
CTRL (0.01% DMSO) | 71.57 ± 5.17 | 10.92 ± 1.09 |
PS NPs 0.1 µg/mL + BPA 4.5 µM | 4.06 ± 3.54 | 18.04 ± 4.65 |
PS NPs 0.1 µg/mL + BPA 10 µM | 0 | 26.1 ± 2.67 |
PS NPs 1 µg/mL + BPA 4.5 µM | 0 | 25.77 ± 5.27 |
PS NPs 1 µg/mL + BPA 10 µM | 0 | 55.47 ± 16.45 |
Combined (T24) | % Normal | % Undeveloped |
---|---|---|
CTRL | 75.43 ± 8.98 | 10.77 ± 8.88 |
CTRL (0.01% DMSO) | 71.57 ± 5.17 | 10.92 ± 1.09 |
PS NPs 0.1 µg/mL + BPA 4.5 µM | 8.9 ± 1.81 | 26.56 ± 6.34 |
PS NPs 0.1 µg/mL + BPA 10 µM | 0 | 78.39 ± 5.29 |
PS NPs 1 µg/mL + BPA 4.5 µM | 11.1 ± 2.97 | 26.78 ± 6.00 |
PS NPs 1 µg/mL + BPA 10 µM | 12.17 ± 1.2 | 26.54 ± 1.66 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ferrari, E.; Eliso, M.C.; Bellingeri, A.; Corsi, I.; Spagnuolo, A. Short-Term Exposure to Nanoplastics Does Not Affect Bisphenol A Embryotoxicity to Marine Ascidian Ciona robusta. Biomolecules 2022, 12, 1661. https://doi.org/10.3390/biom12111661
Ferrari E, Eliso MC, Bellingeri A, Corsi I, Spagnuolo A. Short-Term Exposure to Nanoplastics Does Not Affect Bisphenol A Embryotoxicity to Marine Ascidian Ciona robusta. Biomolecules. 2022; 12(11):1661. https://doi.org/10.3390/biom12111661
Chicago/Turabian StyleFerrari, Emma, Maria Concetta Eliso, Arianna Bellingeri, Ilaria Corsi, and Antonietta Spagnuolo. 2022. "Short-Term Exposure to Nanoplastics Does Not Affect Bisphenol A Embryotoxicity to Marine Ascidian Ciona robusta" Biomolecules 12, no. 11: 1661. https://doi.org/10.3390/biom12111661
APA StyleFerrari, E., Eliso, M. C., Bellingeri, A., Corsi, I., & Spagnuolo, A. (2022). Short-Term Exposure to Nanoplastics Does Not Affect Bisphenol A Embryotoxicity to Marine Ascidian Ciona robusta. Biomolecules, 12(11), 1661. https://doi.org/10.3390/biom12111661