Evidence for Involvement of GIP and GLP-1 Receptors and the Gut-Gonadal Axis in Regulating Female Reproductive Function in Mice
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Animals
2.2. Assessment of Stages of Estrous Cycle
2.3. Breeding Experiment
2.4. Gene and Protein Expression Studies
2.5. Statistics
3. Results
3.1. Expression of Genes for GIPR and GLP-1R in Female Reproductive Tissues of C57BL/6 Mice
3.2. Histological Localization of Incretin Receptors in Reproductive Tissues of Female GIPR-Cre and GLP1R-Cre Mice
3.3. Stages of Estrous Cycle in GIPR−/− and GLP-1R−/− Mice
3.4. Reproduction Outcomes in Control, GIPR−/− and GLP-1R−/− Mice
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gosman, G.G.; Katcher, H.I.; Legro, R. Obesity and the role of gut and adipose hormones in female reproduction. Hum. Reprod. Updat. 2006, 12, 585–601. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Izzi-Engbeaya, C.; Comninos, A.N.; Clarke, S.A.; Jomard, A.; Yang, L.; Jones, S.; Abbara, A.; Narayanaswamy, S.; Eng, P.C.; Papadopoulou, D.; et al. The effects of kisspeptin on β-cell function, serum metabolites and appetite in humans. Diabetes Obes. Metab. 2018, 20, 2800–2810. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Richard, J.E.; Anderberg, R.H.; López-Ferreras, L.; Olandersson, K.; Skibicka, K.P. Sex and estrogens alter the action of glucagon-like peptide-1 on reward. Biol. Sex Differ. 2016, 7, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Outeiriño-Iglesias, V.; Romaní-Pérez, M.; González-Matías, L.C.; Vigo, E.; Mallo, F. GLP-1 Increases Preovulatory LH Source and the Number of Mature Follicles, As Well As Synchronizing the Onset of Puberty in Female Rats. Endocrinology 2015, 156, 4226–4237. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heppner, K.M.; Baquero, A.F.; Bennett, C.M.; Lindsley, S.R.; Kirigiti, M.A.; Bennett, B.; Bosch, M.A.; Mercer, A.J.; Rønnekleiv, O.K.; True, C.; et al. GLP-1R Signaling Directly Activates Arcuate Nucleus Kisspeptin Action in Brain Slices but Does not Rescue Luteinizing Hormone Inhibition in Ovariectomized Mice During Negative Energy Balance. Eneuro 2017, 4, ENEURO.0198-16.2016. [Google Scholar] [CrossRef] [Green Version]
- Silvestris, E.; De Pergola, G.; Rosania, R.; Loverro, G. Obesity as disruptor of the female fertility. Reprod. Biol. Endocrinol. 2018, 16, 22. [Google Scholar] [CrossRef]
- Comninos, A.; Jayasena, C.; Dhillo, W.S. The relationship between gut and adipose hormones, and reproduction. Hum. Reprod. Updat. 2014, 20, 153–174. [Google Scholar] [CrossRef]
- Khan, D.; Moffet, C.R. Commentary: Emerging role of GIP and related gut hormones in fertility and PCSOS. J. Endocrinolo. Sci. 2020, 2, 11–15. [Google Scholar] [CrossRef]
- Bell, G.I.; Sanchez-Pescador, R.; Laybourn, P.J.; Najarian, R.C. Exon duplication and divergence in the human preproglucagon gene. Nature 1983, 304, 368–371. [Google Scholar] [CrossRef]
- Nauck, M.A.; Meier, J.J. Incretin hormones: Their role in health and disease. Diabetes Obes. Metab. 2018, 20, 5–21. [Google Scholar] [CrossRef]
- Khan, D.; Moffet, C.R.; Flatt, P.R.; Kelly, C. Role of islet peptides in beta cell regulation and type 2 diabetes therapy. Peptides 2018, 100, 212–218. [Google Scholar] [CrossRef] [PubMed]
- Mulherin, A.J.; Oh, A.H.; Kim, H.; Grieco, A.; Lauffer, L.M.; Brubaker, P.L. Mechanisms Underlying Metformin-Induced Secretion of Glucagon-Like Peptide-1 from the Intestinal L Cell. Endocrinology 2011, 152, 4610–4619. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jensterle, M.; Janez, A.; Fliers, E.; Devries, J.H.; Vrtacnik-Bokal, E.; Siegelaar, S.E. The role of glucagon-like peptide-1 in reproduction: From physiology to therapeutic perspective. Hum. Reprod. Updat. 2019, 25, 504–517. [Google Scholar] [CrossRef] [PubMed]
- Holst, J.J. The Physiology of Glucagon-like Peptide 1. Physiol. Rev. 2007, 87, 1409–1439. [Google Scholar] [CrossRef] [Green Version]
- Jensterle, M.; Podbregar, A.; Goricar, K.; Gregoric, N.; Janez, A. Effects of liraglutide on obesity-associated functional hypogonadism in men. Endocr. Connec. 2019, 8, 195–202. [Google Scholar] [CrossRef] [Green Version]
- McIntosh, C.H.; Widenmaier, S.; Kim, S. Glucose-dependent insulinotropic polypeptide (gastric inhibitory polypeptide; GIP). Vitam. Horm. 2009, 80, 409–471. [Google Scholar]
- Cho, Y.M.; Kieffer, T.J. K-cells and Glucose-Dependent Insulinotropic Polypeptide in Health and Disease. Vitam. Horm. 2010, 84, 111–150. [Google Scholar]
- Gögebakan, Ö.; Osterhoff, M.A.; Schüler, R.; Pivovarova, O.; Kruse, M.; Seltmann, A.C.; Mosig, A.S.; Rudovich, N.; Nauck, M.; Pfeiffer, A.F. GIP increases adipose tissue expression and blood levels of MCP-1 in humans and links high energy diets to inflammation: A randomised trial. Diabetologia 2015, 58, 1759–1768. [Google Scholar] [CrossRef] [Green Version]
- Flatt, P.R.; Conlon, J.M. GIP renaissance. Peptides 2020, 125, 170266. [Google Scholar] [CrossRef]
- Gögebakan, Ö.; Andres, J.; Biedasek, K.; Mai, K.; Kühnen, P.; Krude, H.; Isken, F.; Rudovich, N.; Osterhoff, M.A.; Kintscher, U.; et al. Glucose-dependent insulinotropic polypeptide reduces fat-specific expression and activity of 11beta-hydroxysteroid dehydrogenase type 1 and inhibits release of free fatty acids. Diabetes 2012, 61, 292–300. [Google Scholar] [CrossRef] [Green Version]
- Gambineri, A.; Vicennati, V.; Genghini, S.; Tomassoni, F.; Pagotto, U.; Pasquali, R.; Walker, B.R. Genetic Variation in 11β-Hydroxysteroid Dehydrogenase Type 1 Predicts Adrenal Hyperandrogenism among Lean Women with Polycystic Ovary Syndrome. J. Clin. Endocrinol. Metab. 2006, 91, 2295–2302. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nishiyama, Y.; Hasegawa, T.; Fujita, S.; Iwata, N.; Nagao, S.; Hosoya, T.; Inagaki, K.; Wada, J.; Otsuka, F. Incretins modulate progesterone biosynthesis by regulating bone morphogenetic protein activity in rat granulosa cells. J. Steroid Biochem. Mol. Biol. 2017, 178, 82–88. [Google Scholar] [CrossRef] [PubMed]
- Eid, G.M.; Cottam, D.R.; Velcu, L.M.; Mattar, S.G.; Korytkowski, M.T.; Gosman, G.; Hindi, P.; Schauer, P.R. Effective treatment of polycystic ovarian syndrome with Roux-en-Y gastric bypass. Surg. Obes. Relat. Dis. 2005, 1, 77–80. [Google Scholar] [CrossRef] [PubMed]
- Jamal, M.; Gunay, Y.; Capper, A.; Eid, A.; Heitshusen, D.; Samuel, I. Roux-en-Y gastric bypass ameliorates polycystic ovary syndrome and dramatically improves conception rates: A 9-year analysis. Surg. Obes. Relat. Dis. 2012, 8, 440–444. [Google Scholar] [CrossRef] [PubMed]
- Abdeen, G.; le Roux, C. Mechanism Underlying the Weight Loss and Complications of Roux-en-Y Gastric Bypass. Review. Obes. Surg. 2016, 26, 410–421. [Google Scholar] [CrossRef] [Green Version]
- MacLusky, N.J.; Cook, S.; Scrocchi, L.; Shin, J.; Kim, J.; Vaccarino, F.; Asa, S.L.; Drucker, D.J. Neuroendocrine Function and Response to Stress in Mice with Complete Disruption of Glucagon-Like Peptide-1 Receptor Signaling1. Endocrinology 2000, 141, 752–762. [Google Scholar] [CrossRef]
- Seino, Y.; Fukushima, M.; Yabe, D. GIP and GLP-1, the two incretin hormones: Similarities and differences. J. Diabetes Investig. 2010, 1, 8–23. [Google Scholar] [CrossRef] [Green Version]
- Fernandez-Fernandez, R.; Aguilar, E.; Tena-Sempere, M.; Pinilla, L. Effects of polypeptide YY3–36 upon luteinizing hormone-releasing hormone and gonadotropin secretion in prepubertal rats: In vivo and in vitro studies. Endocrinology 2005, 146, 1403–1410. [Google Scholar] [CrossRef] [Green Version]
- Cuthbertson, J.; Patterson, S.; O’Harte, F.P.; Bell, P.M. Addition of metformin to exogenous glucagon-like peptide–1 results in increased serum glucagon-like peptide–1 concentrations and greater glucose lowering in type 2 diabetes mellitus. Metabolism 2011, 60, 52–56. [Google Scholar] [CrossRef]
- Scrocchi, L.A.; Brown, T.J.; MacLusky, N.; Brubaker, P.; Auerbach, A.; Joyner, A.; Drucker, D. Glucose intolerance but normal satiety in mice with a null mutation in the glucagon–like peptide 1 receptor gene. Nat. Med. 1996, 2, 1254–1258. [Google Scholar] [CrossRef]
- Preitner, F.; Ibberson, M.; Franklin, I.; Binnert, C.; Pende, M.; Gjinovci, A.; Hansotia, T.; Drucker, D.J.; Wollheim, C.; Burcelin, R.; et al. Gluco-incretins control insulin secretion at multiple levels as revealed in mice lacking GLP-1 and GIP receptors. J. Clin. Investig. 2004, 113, 635–645. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moffett, R.C.; Vasu, S.; Thorens, B.; Drucker, D.J.; Flatt, P.R. Incretin Receptor Null Mice Reveal Key Role of GLP-1 but Not GIP in Pancreatic Beta Cell Adaptation to Pregnancy. PLoS ONE 2014, 9, e96863. [Google Scholar] [CrossRef]
- Richards, P.; Parker, H.E.; Adriaenssens, A.E.; Hodgson, J.M.; Cork, S.C.; Trapp, S.; Gribble, F.M.; Reimann, F. Identification and characterization of GLP-1 receptor–expressing cells using a new transgenic mouse model. Diabetes 2014, 63, 1224–1233. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adriaenssens, A.E.; Biggs, E.K.; Darwish, T.; Tadross, J.; Sukthankar, T.; Girish, M.; Polex-Wolf, J.; Lam, B.Y.; Zvetkova, I.; Pan, W.; et al. Glucose-Dependent Insulinotropic Polypeptide Receptor-Expressing Cells in the Hypothalamus Regulate Food Intake. Cell Metab. 2019, 30, 987–996. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Caligioni, C.S. Assessing Reproductive Status/Stages in Mice. Curr. Protoc. Neurosci. 2009, 48, A.4I.1–A.4I.8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Calixto, M.C.; Lintomen, L.; André, D.M.; Leiria, L.O.; Ferreira, D.; Lellis-Santos, C.; Anhe, G.; Bordin, S.; Landgraf, R.; Antunes, E. Metformin Attenuates the Exacerbation of the Allergic Eosinophilic Inflammation in High Fat-Diet-Induced Obesity in Mice. PLoS ONE 2013, 8, e76786. [Google Scholar] [CrossRef]
- Regazzo, D.; Losa, M.; Albiger, N.M.; Terreni, M.R.; Vazza, G.; Ceccato, F.; Emanuelli, E.; Denaro, L.; Scaroni, C.; Occhi, G. The GIP/GIPR axis is functionally linked to GH-secretion increase in a significant proportion of gsp− somatotropinomas. Eur. J. Endocrinol. 2017, 176, 543–553. [Google Scholar] [CrossRef] [Green Version]
- Usdin, T.; Mezey, E.; Button, D.; Brownstein, M.; Bonner, T. Gastric inhibitory polypeptide receptor, a member of the secretin-vasoactive intestinal peptide receptor family, is widely distributed in peripheral organs and the brain. Endocrinology 1993, 133, 2861–2870. [Google Scholar] [CrossRef]
- Sun, Z.; Li, P.; Wang, X.; Lai, S.; Qiu, H.; Chen, Z.; Hu, S.; Yao, J.; Shen, J. GLP-1/GLP-1R signaling regulates ovarian PCOS-associated granulosa cells proliferation and antiapoptosis by modification of forkhead box protein O1 phosphorylation sites. Int. J. Endocrinol. 2020, 2020, 1–10. [Google Scholar] [CrossRef]
- Cork, S.C.; Richards, J.E.; Holt, M.K.; Gribble, F.M.; Reimann, F.; Trapp, S. Distribution and characterisation of Glucagon-like peptide-1 receptor expressing cells in the mouse brain. Mol. Metab. 2015, 4, 718–731. [Google Scholar] [CrossRef] [Green Version]
- Clemens, J.A.; Amenomori, Y.; Jenkins, T.; Meites, J. Effects of Hypothalamic Stimulation, Hormones, and Drugs on Ovarian Function in Old Female Rats. Exp. Biol. Med. 1969, 132, 561–563. [Google Scholar] [CrossRef] [PubMed]
- Brawer, J.R.; Munoz, M.; Farookhi, R. Development of the polycystic ovarian condition (PCO) in the estradiol valerate-treated rat. Biol. Reprod. 1986, 35, 647–655. [Google Scholar] [CrossRef]
- D’Angelo, S.A.; Kravatz, A.S. Gonadotrophic Hormone Function in Persistent Estrous Rats with Hypothalamic Lesions. Exp. Biol. Med. 1960, 104, 130–133. [Google Scholar] [CrossRef]
- Wiegand, S.; Terasawa, E.; Bridson, W. Persistent estrus and blockade of progesterone-induced LH release follows lesions which do not damage the suprachiasmatic nucleus. Endocrinology 1978, 102, 1645–1648. [Google Scholar] [CrossRef]
- Volk, K.M.; Pogrebna, V.V.; Roberts, J.A.; Zachry, J.E.; Blythe, S.N.; Toporikova, N. High-fat, high-sugar diet disrupts the preovulatory hormone surge and induces cystic ovaries in cycling female rats. J. Endocr. Soc. 2017, 1, 1488–1505. [Google Scholar] [CrossRef]
- Jensterle, M.; Salamun, V.; Kocjan, T.; Bokal, E.V.; Janez, A. Short term monotherapy with GLP-1 receptor agonist liraglutide or PDE 4 inhibitor roflumilast is superior to metformin in weight loss in obese PCOS women: A pilot randomized study. J. Ovarian Res. 2015, 8, 32. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elkind-Hirsch, K.; Marrioneaux, O.; Bhushan, M.; Vernor, D.; Bhushan, R. Comparison of Single and Combined Treatment with Exenatide and Metformin on Menstrual Cyclicity in Overweight Women with Polycystic Ovary Syndrome. J. Clin. Endocrinol. Metab. 2008, 93, 2670–2678. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jensterle Sever, M.; Kocjan, T.; Pfeifer, M.; Kravos, N.A.; Janez, A. Short-term combined treatment with liraglutide and metformin leads to significant weight loss in obese women with polycystic ovary syndrome and previous poor response to metformin. Eur. J. Endocrinol. 2014, 170, 451–459. [Google Scholar] [CrossRef] [Green Version]
- Kahal, H.; Aburima, A.; Ungvari, T.; Rigby, A.S.; Coady, A.M.; Vince, R.V.; Ajjan, R.A.; Kilpatrick, E.S.; Naseem, K.M.; Atkin, S.L. The effects of treatment with liraglutide on atherothrombotic risk in obese young women with polycystic ovary syndrome and controls. BMC Endocr. Disord. 2015, 15, 14. [Google Scholar] [CrossRef] [Green Version]
- Nylander, M.; Frøssing, S.; Clausen, H.V.; Kistorp, C.; Faber, J.; Skouby, S.O. Effects of liraglutide on ovarian dysfunction in polycystic ovary syndrome: A randomized clinical trial. Reprod. Biomed. Online 2017, 35, 121–127. [Google Scholar] [CrossRef] [Green Version]
- Elkind-Hirsch, K.E.; Paterson, M.S.; Seidemann, E.L.; Gutowski, H.C. Short-term therapy with combination dipeptidyl peptidase-4 inhibitor saxagliptin/metformin extended release (XR) is superior to saxagliptin or metformin XR monotherapy in prediabetic women with polycystic ovary syndrome: A single-blind, randomized, pilot study. Fertil. Steril. 2017, 107, 253–260. [Google Scholar]
- Sever, M.J.; Ferjan, S.; Janez, A. Incretin system: New pharmacological target in obese women with polycystic ovary syndrome. In: Debatable topics in PCOS patients. IntechOpen 2017, 57. [Google Scholar]
- Lashen, H. Review: Role of metformin in the management of polycystic ovary syndrome. Ther. Adv. Endocrinol. Metab. 2010, 1, 117–128. [Google Scholar] [CrossRef]
- Cho, Y.M.; Kieffer, T.J. New aspects of an old drug: Metformin as a glucagon-like peptide 1 (GLP-1) enhancer and sensitiser. Diabetologia 2011, 54, 219–222. [Google Scholar] [CrossRef]
- Maida, A.; Lamont, B.J.; Cao, X.; Drucker, D.J. Metformin regulates the incretin receptor axis via a pathway dependent on peroxisome proliferator-activated receptor-α in mice. Diabetologia 2011, 54, 339–349. [Google Scholar] [CrossRef]
- Mannucci, E.; Ognibene, A.; Cremasco, F.; Bardini, G.; Mencucci, A.; Pierazzuoli, E.; Ciani, S.; Messeri, G.; Rotella, C.M. Effect of metformin on glucagon-like peptide 1 (GLP-1) and leptin levels in obese nondiabetic subjects. Diabetes Care. 2001, 24, 489–494. [Google Scholar] [CrossRef] [Green Version]
- Hayes, M.R.; Leichner, T.M.; Zhao, S.; Lee, G.S.; Chowansky, A.; Zimmer, D.; De Jonghe, B.C.; Kanoski, S.E.; Grill, H.J.; Bence, K.K. Intracellular signals mediating the food intake-suppressive effects of hindbrain glucagon-like peptide-1 receptor activation. Cell Metab. 2011, 13, 320–330. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lindsay, J.R.; Duffy, N.A.; McKillop, A.M.; Ardill, J.; O’Harte, F.P.; Flatt, P.R.; Bell, P.M. Inhibition of dipeptidyl peptidase IV (DPP-IV) activity by oral metformin in type 2 diabetes. Diabetic Med. 2003, 20, 4–5. [Google Scholar]
- Preiss, D.; Dawed, A.; Welsh, P.; Heggie, A.; Jones, A.G.; Dekker, J.; Koivula, R.; Hansen, T.H.; Stewart, C.; Holman, R.R.; et al. Sustained influence of metformin therapy on circulating glucagon-like peptide-1 levels in individuals with and without type 2 diabetes. Diabetes, Obes. Metab. 2017, 19, 356–363. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Flatt, P.R.; Conlon, J.M. Editorial: Newer peptide-based agents for treatment of patients with Type 2 diabetes. Peptides 2018, 100, 1–2. [Google Scholar] [CrossRef]
- Moffett, R.C.; Naughton, V. Emerging role of GIP and related gut hormones in fertility and PCOS. Peptides 2020, 125, 170233. [Google Scholar] [CrossRef] [PubMed]
Gene Symbol | Alias/Common Name | Primer Sequence (5′-nt-3′) | Product Size | Annealing Temperature |
---|---|---|---|---|
GIPR | Gastric inhibitory polypeptide receptor | Forward: CTACTCCCTGTCCCTGACGA Reverse: AGCTGATCTCGGGTGAGGAT | 147 | 57 |
GLP-1R | Glucagon-like peptide 1 receptor | Forward: TCACTTCCTTCCAGGGCTTG Reverse: CACTTGAGGGGCTTCATGCT | 145 | 57 |
ACTB | Actin, beta | Forward: GAGCGCAAGTACTCTGTGTG Reverse: AACGCAGCTCAGTAACAGTC | 152 | 57 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khan, D.; Ojo, O.O.; Woodward, O.R.; Lewis, J.E.; Sridhar, A.; Gribble, F.M.; Reimann, F.; Flatt, P.R.; Moffett, R.C. Evidence for Involvement of GIP and GLP-1 Receptors and the Gut-Gonadal Axis in Regulating Female Reproductive Function in Mice. Biomolecules 2022, 12, 1736. https://doi.org/10.3390/biom12121736
Khan D, Ojo OO, Woodward OR, Lewis JE, Sridhar A, Gribble FM, Reimann F, Flatt PR, Moffett RC. Evidence for Involvement of GIP and GLP-1 Receptors and the Gut-Gonadal Axis in Regulating Female Reproductive Function in Mice. Biomolecules. 2022; 12(12):1736. https://doi.org/10.3390/biom12121736
Chicago/Turabian StyleKhan, Dawood, Opeolu O. Ojo, Orla RM Woodward, Jo Edward Lewis, Ananyaa Sridhar, Fiona M. Gribble, Frank Reimann, Peter R. Flatt, and R. Charlotte Moffett. 2022. "Evidence for Involvement of GIP and GLP-1 Receptors and the Gut-Gonadal Axis in Regulating Female Reproductive Function in Mice" Biomolecules 12, no. 12: 1736. https://doi.org/10.3390/biom12121736
APA StyleKhan, D., Ojo, O. O., Woodward, O. R., Lewis, J. E., Sridhar, A., Gribble, F. M., Reimann, F., Flatt, P. R., & Moffett, R. C. (2022). Evidence for Involvement of GIP and GLP-1 Receptors and the Gut-Gonadal Axis in Regulating Female Reproductive Function in Mice. Biomolecules, 12(12), 1736. https://doi.org/10.3390/biom12121736