GTP-Dependent Regulation of CTP Synthase: Evolving Insights into Allosteric Activation and NH3 Translocation
Abstract
:1. Introduction
2. Regulation of CTPS Activity by GTP
2.1. Kinetics Studies: Laying the Groundwork
2.2. Structure-Activity Studies
2.3. Site-Directed Mutagenesis and Kinetics Studies: Mapping Regions of CTPS Contributing to GTP-Dependent Effects
2.3.1. The L13 Loop: Limited Proteolysis
2.3.2. The L4 Loop
2.3.3. The Lid L11 Loop
2.3.4. “Pinching” the NH3 Tunnel
2.4. Regulatory Effects of NADH
3. Structural Studies Intimating the Location of the GTP-Binding Site and the Role of GTP-Dependent Activation in NH3 Translocation
4. GTP-Dependent Activation of CTPSs from Other Species
4.1. Thermus thermophilus
4.2. Chlamydia trachomatis
4.3. Trypanosoma brucei
4.4. Giardia intestinalis
4.5. Plasmodium falciparum
4.6. Saccharomyces cerevisiae
4.7. Drosophila melanogaster
4.8. Plants
4.9. Mammals
5. A New Level of Regulation: Role of the GAT Domain in Forming Filamentous Structures
6. CTPS with Bound GTP: Confirmation of the Location of the GTP-Binding Site and Relationship to Other Cryo-EM Structures
7. A Model for GTP-Dependent Regulation of CTPS
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bakovic, M.; Fullerton, M.D.; Michel, V. Metabolic and molecular aspects of ethanolamine phospholipid biosynthesis: The role of CTP: Phosphoethanolamine cytidylyltransferase (Pcyt2). Biochem. Cell Biol. 2007, 85, 283–300. [Google Scholar] [CrossRef] [PubMed]
- Chang, Y.F.; Carman, G.M. CTP synthetase and its role in phospholipid synthesis in the yeast Saccharomyces cerevisiae. Prog. Lipid Res. 2008, 47, 333–339. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ostrander, D.B.; O’Brien, D.J.; Gorman, J.A.; Carman, G.M. Effect of CTP synthetase regulation by CTP on phospholipid synthesis in Saccharomyces cerevisiae. J. Biol. Chem. 1998, 273, 18992–19001. [Google Scholar] [CrossRef] [Green Version]
- Hatse, S.; De Clercq, E.; Balzarini, J. Role of antimetabolites of purine and pyrimidine nucleotide metabolism in tumor cell differentiation. Biochem. Pharmacol. 1999, 58, 539–555. [Google Scholar] [CrossRef]
- Shridas, P.; Waechter, C.J. Human dolichol kinase, a polytopic endoplasmic reticulum membrane protein with a cytoplasmically oriented CTP-binding site. J. Biol. Chem. 2006, 281, 31696–31704. [Google Scholar] [CrossRef]
- Rivera-Serrano, E.E.; Gizzi, A.S.; Arnold, J.J.; Grove, T.L.; Almo, S.C.; Cameron, C.E. Viperin reveals its true function. Ann. Rev. Virol. 2020, 7, 421–446. [Google Scholar] [CrossRef]
- De Clercq, E. Antiviral agents: Characteristic activity spectrum depending on the molecular target with which they interact. Adv. Virus. Res. 1993, 42, 1–55. [Google Scholar] [CrossRef]
- De Souza, J.O.; Dawson, A.; Hunter, W.N. An improved model of the Trypanosoma brucei CTP synthetase glutaminase domain:acivicin complex. Chem. Med. Chem. 2017, 12, 577–579. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fijolek, A.; Hofer, A.; Thelander, L. Expression, purification, characterization, and in vivo targeting of trypanosome CTP synthetase for treatment of African sleeping sickness. J. Biol. Chem. 2007, 282, 11858–11865. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hendriks, E.F.; O’Sullivan, W.J.; Stewart, T.S. Molecular cloning and characterization of the Plasmodium falciparum cytidine triphosphate synthetase gene. Biochim. Biophys. Acta 1998, 1399, 213–218. [Google Scholar] [CrossRef]
- Hofer, A.; Steverding, D.; Chabes, A.; Brun, R.; Thelander, L. Trypanosoma brucei CTP synthetase: A target for the treatment of African sleeping sickness. Proc. Natl. Acad. Sci. USA 2001, 98, 6412–6416. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lim, R.L.; O’Sullivan, W.J.; Stewart, T.S. Isolation, characterization and expression of the gene encoding cytidine triphosphate synthetase from Giardia intestinalis. Mol. Biochem. Parasitol. 1996, 78, 249–257. [Google Scholar] [CrossRef]
- Narvaez-Ortiz, H.Y.; Lopez, A.J.; Gupta, N.; Zimmermann, B.H. A CTP synthase undergoing stage-specific spatial expression is essential for the survival of the intracellular parasite Toxoplasma gondii. Front. Cell. Infect. Microbiol. 2018, 8, 83. [Google Scholar] [CrossRef]
- Steeves, C.H.; Bearne, S.L. Activation and inhibition of CTP synthase from Trypanosoma brucei, the causative agent of African sleeping sickness. Bioorg. Med. Chem. Lett. 2011, 21, 5188–5190. [Google Scholar] [CrossRef] [PubMed]
- Mori, G.; Chiarelli, L.R.; Esposito, M.; Makarov, V.; Bellinzoni, M.; Hartkoorn, R.C.; Degiacomi, G.; Boldrin, F.; Ekins, S.; de Jesus Lopes Ribeiro, A.L.; et al. Thiophenecarboxamide derivatives activated by EthA kill Mycobacterium tuberculosis by inhibiting the CTP synthetase PyrG. Chem. Biol. 2015, 22, 917–927. [Google Scholar] [CrossRef] [PubMed]
- Esposito, M.; Szadocka, S.; Degiacomi, G.; Orena, B.S.; Mori, G.; Piano, V.; Boldrin, F.; Zemanová, J.; Huszár, S.; Barros, D.; et al. A phenotypic based target screening approach delivers new antitubercular CTP synthetase inhibitors. ACS Infect. Dis. 2017, 3, 428–437. [Google Scholar] [CrossRef] [PubMed]
- Chiarelli, L.R.; Mori, G.; Orena, B.S.; Esposito, M.; Lane, T.; de Jesus Lopes Ribeiro, A.L.; Degiacomi, G.; Zemanová, J.; Szádocka, S.; Huszár, S.; et al. A multitarget approach to drug discovery inhibiting Mycobacterium tuberculosis PyrG and PanK. Sci. Rep. 2018, 8, 3187. [Google Scholar] [CrossRef]
- Williams, J.C.; Kizaki, H.; Weber, G.; Morris, H.P. Increased CTP synthetase activity in cancer cells. Nature 1978, 271, 71–73. [Google Scholar] [CrossRef] [PubMed]
- Kizaki, H.; Williams, J.C.; Morris, H.P.; Weber, G. Increased cytidine 5′-triphosphate synthetase activity in rat and human tumors. Cancer Res. 1980, 40, 3921–3927. [Google Scholar] [PubMed]
- Kang, G.J.; Cooney, D.A.; Moyer, J.D.; Kelley, J.A.; Kim, H.Y.; Marquez, V.E.; Johns, D.G. Cyclopentenylcytosine triphosphate. Formation and inhibition of CTP synthetase. J. Biol. Chem. 1989, 264, 713–718. [Google Scholar] [CrossRef]
- Van den Berg, A.A.; van Lenthe, H.; Busch, S.; de Korte, D.; Roos, D.; van Kuilenburg, A.B.; van Gennip, A.H. Evidence for transformation-related increase in CTP synthetase activity in situ in human lymphoblastic leukemia. Eur. J. Biochem. 1993, 216, 161–167. [Google Scholar] [CrossRef] [PubMed]
- Van den Berg, A.A.; van Lenthe, H.; Busch, S.; de Korte, D.; van Kuilenburg, A.B.; van Gennip, A.H. The roles of uridine-cytidine kinase and CTP synthetase in the synthesis of CTP in malignant human T-lymphocytic cells. Leukemia 1994, 8, 1375–1378. [Google Scholar] [CrossRef]
- Viola, J.J.; Agbaria, R.; Walbridge, S.; Oshiro, E.M.; Johns, D.G.; Kelley, J.A.; Oldfield, E.H.; Ram, Z. In situ cyclopentenyl cytosine infusion for the treatment of experimental brain tumors. Cancer Res. 1995, 55, 1306–1309. [Google Scholar] [PubMed]
- Agbaria, R.; Kelley, J.A.; Jackman, J.; Viola, J.; Ram, Z.; Oldfield, E.; Johns, D.G. Antiproliferative effects of cyclopentenyl cytosine (NSC 375575) in human glioblastoma cells. Oncol. Res. 1997, 9, 111–118. [Google Scholar] [PubMed]
- Verschuur, A.C.; Van Gennip, A.H.; Leen, R.; Voute, P.A.; Brinkman, J.; Van Kuilenburg, A.B. Cyclopentenyl cytosine increases the phosphorylation and incorporation into DNA of 1-β-D-arabinofuranosyl cytosine in a human T-lymphoblastic cell line. Int. J. Cancer 2002, 98, 616–623. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.; Zhang, J.; Li, Y.; Guo, W.; Chen, L.; Chen, M.; Chen, X.; Zhang, W.; Jin, X.; Jiang, M.; et al. CTPS1 promotes malignant progression of triple-negative breast cancer with transcriptional activation by YBX1. J. Transl. Med. 2022, 20, 17. [Google Scholar] [CrossRef] [PubMed]
- Sun, Z.; Zhang, Z.; Wang, Q.-Q.; Liu, J.-L. Combined inactivation of CTPS1 and ATR is synthetically lethal to MYC-overexpressing cancer cells. Cancer Res. 2022, 82, 1013–1024. [Google Scholar] [CrossRef]
- Martin, E.; Palmic, N.; Sanquer, S.; Lenoir, C.; Hauck, F.; Mongellaz, C.; Fabrega, S.; Nitschké, P.; Esposti, M.D.; Schwartzentruber, J.; et al. CTP synthase 1 deficiency in humans reveals its central role in lymphocyte proliferation. Nature 2014, 510, 288–292. [Google Scholar] [CrossRef]
- Lynch, E.M.; DiMattia, M.A.; Albanese, S.; van Zundert, G.C.P.; Hansen, J.M.; Quispe, J.D.; Kennedy, M.A.; Verras, A.; Borrelli, K.; Toms, A.V.; et al. Structural basis for isoform-specific inhibition of human CTPS1. Proc. Natl. Acad. Sci. USA 2021, 118, e2107968118. [Google Scholar] [CrossRef]
- Zalkin, H. The amidotransferases. Adv. Enzymol. Relat. Areas Mol. Biol. 1993, 66, 203–309. [Google Scholar] [CrossRef]
- Weng, M.L.; Zalkin, H. Structural role for a conserved region in the CTP synthetase glutamine amide transfer domain. J. Bacteriol. 1987, 169, 3023–3028. [Google Scholar] [CrossRef] [Green Version]
- Endrizzi, J.A.; Kim, H.; Anderson, P.M.; Baldwin, E.P. Crystal structure of Escherichia coli cytidine triphosphate synthetase, a nucleotide-regulated glutamine amidotransferase/ATP-dependent amidoligase fusion protein and homologue of anticancer and antiparasitic drug targets. Biochemistry 2004, 43, 6447–6463. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Levitzki, A.; Koshland, D.E., Jr. Cytidine triphosphate synthetase. Covalent intermediates and mechanisms of action. Biochemistry 1971, 10, 3365–3371. [Google Scholar] [CrossRef] [PubMed]
- Lewis, D.A.; Villafranca, J.J. Investigation of the mechanism of CTP synthetase using rapid quench and isotope partitioning methods. Biochemistry 1989, 28, 8454–8459. [Google Scholar] [CrossRef]
- Von der Saal, W.; Anderson, P.M.; Villafranca, J.J. Mechanistic investigations of Escherichia coli cytidine-5′-triphosphate synthetase. Detection of an intermediate by positional isotope exchange experiments. J. Biol. Chem. 1985, 260, 14993–14997. [Google Scholar] [CrossRef]
- Willemoës, M.; Sigurskjold, B.W. Steady-state kinetics of the glutaminase reaction of CTP synthase from Lactococcus lactis. Eur. J. Biochem. 2002, 269, 4772–4779. [Google Scholar] [CrossRef] [PubMed]
- Long, C.W.; Pardee, A.B. Cytidine triphosphate synthetase of Escherichia coli B. I. Purification and kinetics. J. Biol. Chem. 1967, 242, 4715–4721. [Google Scholar] [CrossRef]
- Chakraborty, K.P.; Hurlbert, R.B. Role of glutamine in the biosynthesis of cytidine nucleotides in Escherichia coli. Biochim. Biophys. Acta 1961, 47, 607–609. [Google Scholar] [CrossRef]
- Levitzki, A.; Koshland, D.E., Jr. Negative cooperativity in regulatory enzymes. Proc. Natl. Acad. Sci. USA 1969, 62, 1121–1128. [Google Scholar] [CrossRef] [Green Version]
- Levitzki, A.; Koshland, D.E., Jr. Ligand-induced dimer-to-tetramer transformation in cytosine triphosphate synthetase. Biochemistry 1972, 11, 247–253. [Google Scholar] [CrossRef]
- Anderson, P.M. CTP synthetase from Escherichia coli: An improved purification procedure and characterization of hysteretic and enzyme concentration effects on kinetic properties. Biochemistry 1983, 22, 3285–3292. [Google Scholar] [CrossRef] [PubMed]
- Thomas, P.E.; Lamb, B.J.; Chu, E.H. Purification of cytidine-triphosphate synthetase from rat liver, and demonstration of monomer, dimer and tetramer. Biochim. Biophys. Acta 1988, 953, 334–344. [Google Scholar] [CrossRef] [Green Version]
- Pappas, A.; Yang, W.L.; Park, T.S.; Carman, G.M. Nucleotide-dependent tetramerization of CTP synthetase from Saccharomyces cerevisiae. J. Biol. Chem. 1998, 273, 15954–15960. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Endrizzi, J.A.; Kim, H.; Anderson, P.M.; Baldwin, E.P. Mechanisms of product feedback regulation and drug resistance in cytidine triphosphate synthetases from the structure of a CTP-inhibited complex. Biochemistry 2005, 44, 13491–13499. [Google Scholar] [CrossRef] [Green Version]
- Goto, M.; Omi, R.; Nakagawa, N.; Miyahara, I.; Hirotsu, K. Crystal structures of CTP synthetase reveal ATP, UTP, and glutamine binding sites. Structure 2004, 12, 1413–1423. [Google Scholar] [CrossRef] [Green Version]
- Choi, M.G.; Park, T.S.; Carman, G.M. Phosphorylation of Saccharomyces cerevisiae CTP synthetase at Ser424 by protein kinases A and C regulates phosphatidylcholine synthesis by the CDP-choline pathway. J. Biol. Chem. 2003, 278, 23610–23616. [Google Scholar] [CrossRef] [Green Version]
- Park, T.S.; O’Brien, D.J.; Carman, G.M. Phosphorylation of CTP synthetase on Ser36, Ser330, Ser354, and Ser454 regulates the levels of CTP and phosphatidylcholine synthesis in Saccharomyces cerevisiae. J. Biol. Chem. 2003, 278, 20785–20794. [Google Scholar] [CrossRef] [Green Version]
- Chang, Y.F.; Martin, S.S.; Baldwin, E.P.; Carman, G.M. Phosphorylation of human CTP synthetase 1 by protein kinase C: Identification of Ser(462) and Thr(455) as major sites of phosphorylation. J. Biol. Chem. 2007, 282, 17613–17622. [Google Scholar] [CrossRef] [Green Version]
- Choi, M.G.; Carman, G.M. Phosphorylation of human CTP synthetase 1 by protein kinase A: Identification of Thr455 as a major site of phosphorylation. J. Biol. Chem. 2007, 282, 5367–5377. [Google Scholar] [CrossRef] [Green Version]
- Higgins, M.J.; Graves, P.R.; Graves, L.M. Regulation of human cytidine triphosphate synthetase 1 by glycogen synthase kinase 3. J. Biol. Chem. 2007, 282, 29493–29503. [Google Scholar] [CrossRef] [Green Version]
- Jia, F.; Chi, C.; Han, M. Regulation of nucleotide metabolism and germline proliferation in response to nucleotide imbalance and genotoxic stresses by EndoU nuclease. Cell Rep. 2020, 30, 1848–1861. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aughey, G.N.; Grice, S.J.; Liu, J.L. The interplay between Myc and CTP synthase in Drosophila. PLoS Genet. 2016, 12, e1005867. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barry, R.M.; Bitbol, A.F.; Lorestani, A.; Charles, E.J.; Habrian, C.H.; Hansen, J.M.; Li, H.J.; Baldwin, E.P.; Wingreen, N.S.; Kollman, J.M.; et al. Large-scale filament formation inhibits the activity of CTP synthetase. eLife 2014, 3, e03638. [Google Scholar] [CrossRef] [PubMed]
- Gou, K.M.; Chang, C.C.; Shen, Q.J.; Sung, L.Y.; Liu, J.L. CTP synthase forms cytoophidia in the cytoplasm and nucleus. Exp. Cell Res. 2014, 323, 242–253. [Google Scholar] [CrossRef]
- Ingerson-Mahar, M.; Briegel, A.; Werner, J.N.; Jensen, G.J.; Gitai, Z. The metabolic enzyme CTP synthase forms cytoskeletal filaments. Nat. Cell Biol. 2010, 12, 739–746. [Google Scholar] [CrossRef] [Green Version]
- Lynch, E.M.; Hicks, D.R.; Shepherd, M.; Endrizzi, J.A.; Maker, A.; Hansen, J.M.; Barry, R.M.; Gitai, Z.; Baldwin, E.P.; Kollman, J.M. Human CTP synthase filament structure reveals the active enzyme conformation. Nat. Struct. Biol. 2017, 24, 507–514. [Google Scholar] [CrossRef]
- McCluskey, G.D.; Bearne, S.L. Biophysical analysis of bacterial CTP synthase filaments formed in the presence of the chemotherapeutic metabolite gemcitabine-5′-triphosphate. J. Mol. Biol. 2018, 430, 1201–1217. [Google Scholar] [CrossRef]
- Noree, C.; Monfort, E.; Shiau, A.K.; Wilhelm, J.E. Common regulatory control of CTP synthase enzyme activity and filament formation. Mol. Biol. Cell 2014, 25, 2282–2290. [Google Scholar] [CrossRef]
- Strochlic, T.I.; Stavrides, K.P.; Thomas, S.V.; Nicolas, E.; O’Reilly, A.M.; Peterson, J.R. Ack kinase regulates CTP synthase filaments during Drosophila oogenesis. EMBO Rep. 2014, 15, 1184–1191. [Google Scholar] [CrossRef] [Green Version]
- Wang, P.Y.; Lin, W.C.; Tsai, Y.C.; Cheng, M.L.; Lin, Y.H.; Tseng, S.H.; Chakraborty, A.; Pai, L.M. Regulation of CTP synthase filament formation during DNA endoreplication in drosophila. Genetics 2015, 201, 1511–1523. [Google Scholar] [CrossRef] [Green Version]
- Lynch, E.M.; Kollman, J.M. Coupled structural transitions enable highly cooperative regulation of human CTPS2 filaments. Nat. Struct. Mol. Biol. 2020, 27, 42–48. [Google Scholar] [CrossRef] [PubMed]
- Chakraborty, A.; Lin, W.C.; Lin, Y.T.; Huang, K.J.; Wang, P.Y.; Chang, I.Y.; Wang, H.I.; Ma, K.T.; Wang, C.Y.; Huang, X.R.; et al. SNAP29 mediates the assembly of histidine-induced CTP synthase filaments in proximity to the cytokeratin network. J. Cell. Sci. 2020, 133, jcs240200. [Google Scholar] [CrossRef] [PubMed]
- Savage, C.R.; Weinfeld, H. Purification and properties of mammalian liver cytidine triphosphate synthetase. J. Biol. Chem. 1970, 245, 2529–2535. [Google Scholar] [CrossRef]
- Levitzki, A.; Koshland, D.E., Jr. Role of an allosteric effector. Guanosine triphosphate activation in cytosine triphosphate synthetase. Biochemistry 1972, 11, 241–246. [Google Scholar] [CrossRef] [PubMed]
- Kizaki, H.; Ohsaka, F.; Sakurada, T. Role of GTP in CTP synthetase from Ehrlich ascites tumor cells. Biochem. Biophys. Res. Commun. 1982, 108, 286–291. [Google Scholar] [CrossRef]
- Zhou, X.; Guo, C.J.; Chang, C.C.; Zhong, J.; Hu, H.H.; Lu, G.M.; Liu, J.L. Structural basis for ligand binding modes of CTP synthase. Proc. Natl. Acad. Sci. USA 2021, 118, e2026621118. [Google Scholar] [CrossRef]
- Lauritsen, I.; Willemoës, M.; Jensen, K.F.; Johansson, E.; Harris, P. Structure of the dimeric form of CTP synthase from Sulfolobus solfataricus. Acta Crystallogr. 2011, F67, 201–208. [Google Scholar] [CrossRef] [Green Version]
- Kursula, P.; Flodin, S.; Ehn, M.; Hammarstrom, M.; Schuler, H.; Nordlund, P. Structure of the synthetase domain of human CTP synthetase, a target for anticancer therapy. Acta Crystallograph. Sect. F Struct. Biol. Cryst. Commun. 2006, 62, 613–617. [Google Scholar] [CrossRef] [Green Version]
- Zhou, X.; Guo, C.J.; Hu, H.H.; Zhong, J.; Sun, Q.; Liu, D.; Zhou, S.; Chang, C.C.; Liu, J.L. Drosophila CTP synthase can form distinct substrate- and product-bound filaments. J. Genet. Genom. 2019, 46, 537–545. [Google Scholar] [CrossRef]
- Robertson, J.G.; Villafranca, J.J. Characterization of metal ion activation and inhibition of CTP synthetase. Biochemistry 1993, 32, 3769–3777. [Google Scholar] [CrossRef]
- MacDonnell, J.E.; Lunn, F.A.; Bearne, S.L. Inhibition of E. coli CTP synthase by the “positive” allosteric effector GTP. Biochim. Biophys. Acta 2004, 1699, 213–220. [Google Scholar] [CrossRef]
- Lunn, F.A.; MacDonnell, J.E.; Bearne, S.L. Structural requirements for the activation of Escherichia coli CTP synthase by the allosteric effector GTP are stringent, but requirements for inhibition are lax. J. Biol. Chem. 2008, 283, 2010–2020. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wadskov-Hansen, S.L.; Willemoës, M.; Martinussen, J.; Hammer, K.; Neuhard, J.; Larsen, S. Cloning and verification of the Lactococcus lactis pyrG gene and characterization of the gene product, CTP synthase. J. Biol. Chem. 2001, 276, 38002–93800. [Google Scholar] [CrossRef] [PubMed]
- Nadkarni, A.K.; McDonough, V.M.; Yang, W.L.; Stukey, J.E.; Ozier-Kalogeropoulos, O.; Carman, G.M. Differential biochemical regulation of the URA7- and URA8-encoded CTP synthetases from Saccharomyces cerevisiae. J. Biol. Chem. 1995, 270, 24982–24988. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bearne, S.L.; Hekmat, O.; MacDonnell, J.E. Inhibition of Escherichia coli CTP synthase by glutamate γ-semialdehyde and the role of the allosteric effector GTP in glutamine hydrolysis. Biochem. J. 2001, 356, 223–232. [Google Scholar] [CrossRef]
- Willemoës, M. Competition between ammonia derived from internal glutamine hydrolysis and hydroxylamine present in the solution for incorporation into UTP as catalysed by Lactococcus lactis CTP synthase. Arch. Biochem. Biophys. 2004, 424, 105–111. [Google Scholar] [CrossRef]
- Mareya, S.M.; Raushel, F.M. A molecular wedge for triggering the amidotransferase activity of carbamoyl phosphate synthetase. Biochemistry 1994, 33, 2945–2950. [Google Scholar] [CrossRef]
- Miles, B.W.; Banzon, J.A.; Raushel, F.M. Regulatory control of the amidotransferase domain of carbamoyl phosphate synthetase. Biochemistry 1998, 37, 16773–16779. [Google Scholar] [CrossRef]
- Myers, R.S.; Jensen, J.R.; Deras, I.L.; Smith, J.L.; Davisson, V.J. Substrate-induced changes in the ammonia channel for imidazole glycerol phosphate synthase. Biochemistry 2003, 42, 7013–7022. [Google Scholar] [CrossRef]
- Roy, A.C.; Lunn, F.A.; Bearne, S.L. Inhibition of CTP synthase from Escherichia coli by xanthines and uric acids. Bioorg. Med. Chem. Lett. 2010, 20, 141–144. [Google Scholar] [CrossRef]
- Simard, D.; Hewitt, K.A.; Lunn, F.; Iyengar, A.; Bearne, S.L. Limited proteolysis of Escherichia coli cytidine-5′-triphosphate synthase. Identification of residues required for CTP formation and GTP-dependent activation of glutamine hydrolysis. Eur. J. Biochem. 2003, 270, 2195–2206. [Google Scholar] [CrossRef] [PubMed]
- Iyengar, A.; Bearne, S.L. Aspartate 107 and leucine 109 facilitate efficient coupling of glutamine hydrolysis to CTP synthesis by E. coli CTP synthase. Biochem. J. 2003, 369, 497–507. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lunn, F.A.; Bearne, S.L. Alternative substrates for wild-type and L109A E. coli CTP synthases. Kinetic evidence for a constricted ammonia tunnel. Eur. J. Biochem. 2004, 271, 4204–4212. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Willemoës, M.; Mølgaard, A.; Johansson, E.; Martinussen, J. Lid L11 of the glutamine amidotransferase domain of CTP synthase mediates allosteric GTP activation of glutaminase activity. FEBS J. 2005, 272, 856–864. [Google Scholar] [CrossRef] [PubMed]
- Willemoës, M. Thr-431 and Arg-433 are part of a conserved sequence motif of the glutamine amidotransferase domain of CTP synthases and are involved in GTP activation of the Lactococcus lactis enzyme. J. Biol. Chem. 2003, 278, 9407–9411. [Google Scholar] [CrossRef] [Green Version]
- McCluskey, G.D.; Bearne, S.L. “Pinching” the ammonia tunnel of CTP synthase unveils coordinated catalytic and allosteric-dependent control of ammonia passage. Biochim. Biophys. Acta Gen. Subj. 2018, 1862, 2714–2727. [Google Scholar] [CrossRef]
- Habrian, C.; Chandrasekhara, A.; Shahrvini, B.; Hua, B.; Lee, J.; Jesinghaus, R.; Barry, R.; Gitai, Z.; Kollman, J.; Baldwin, E.P. Inhibition of Escherichia coli CTP synthetase by NADH and other nicotinamides and their mutual interactions with CTP and GTP. Biochemistry 2016, 55, 5554–5565. [Google Scholar] [CrossRef] [Green Version]
- Ashkenazy, H.; Abadi, S.; Martz, E.; Chay, O.; Mayrose, I.; Pupko, T.; Ben-Tal, N. ConSurf 2016: An improved methodology to estimate and visualize evolutionary conservation in macromolecules. Nucleic Acids Res. 2016, 44, W344–W350. [Google Scholar] [CrossRef] [Green Version]
- Levitzki, A.; Stallcup, W.B.; Koshland, D.E., Jr. Half-of-the-sites reactivity and the conformational states of cytidine triphosphate synthetase. Biochemistry 1971, 10, 3371–3378. [Google Scholar] [CrossRef]
- Yoon, J.; Cho, L.H.; Kim, S.R.; Tun, W.; Peng, X.; Pasriga, R.; Moon, S.; Hong, W.J.; Ji, H.; Jung, K.H.; et al. CTP synthase is essential for early endosperm development by regulating nuclei spacing. Plant Biotechnol. J. 2021, 19, 2177–2191. [Google Scholar] [CrossRef]
- Daumann, M.; Hickl, D.; Zimmer, D.; DeTar, R.A.; Kunz, H.H.; Möhlmann, T. Characterization of filament-forming CTP synthases from Arabidopsis thaliana. Plant J. 2018, 96, 316–328. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wylie, J.L.; Berry, J.D.; McClarty, G. Chlamydia trachomatis CTP synthetase: Molecular characterization and developmental regulation of expression. Mol. Microbiol. 1996, 22, 631–642. [Google Scholar] [CrossRef] [PubMed]
- Yuan, P.; Hendriks, E.F.; Fernandez, H.R.; O’Sullivan, W.J.; Stewart, T.S. Functional expression of the gene encoding cytidine triphosphate synthetase from Plasmodium falciparum which contains two novel sequences that are potential antimalarial targets. Mol. Biochem. Parasitol. 2005, 143, 200–208. [Google Scholar] [CrossRef] [PubMed]
- Jiménez, B.M.; O’Sullivan, W.J. CTP synthetase and enzymes of pyrimidine ribonucleotide metabolism in Giardia intestinalis. Int. J. Parasitol. 1994, 24, 713–718. [Google Scholar] [CrossRef]
- O’Sullivan, W.J.; Jiminez, B.M.; Dai, Y.P.; Lee, C.S. GTP activates two enzymes of pyrimidine salvage from the human intestinal parasite Giardia intestinalis. Adv. Exp. Med. Biol. 1991, 309B, 249–452. [Google Scholar] [CrossRef]
- Yang, W.L.; McDonough, V.M.; Ozier-Kalogeropoulos, O.; Adeline, M.T.; Flocco, M.T.; Carman, G.M. Purification and characterization of CTP synthetase, the product of the URA7 gene in Saccharomyces cerevisiae. Biochemistry 1994, 33, 10785–10793. [Google Scholar] [CrossRef]
- Yang, W.L.; Bruno, M.E.; Carman, G.M. Regulation of yeast CTP synthetase activity by protein kinase C. J. Biol. Chem. 1996, 271, 11113–11119. [Google Scholar] [CrossRef] [Green Version]
- Yang, W.L.; Carman, G.M. Phosphorylation and regulation of CTP synthetase from Saccharomyces cerevisiae by protein kinase A. J. Biol. Chem. 1996, 271, 28777–28783. [Google Scholar] [CrossRef] [Green Version]
- Park, T.S.; Ostrander, D.B.; Pappas, A.; Carman, G.M. Identification of Ser424 as the protein kinase A phosphorylation site in CTP synthetase from Saccharomyces cerevisiae. Biochemistry 1999, 38, 8839–8848. [Google Scholar] [CrossRef]
- Kassel, K.M.; Au, D.R.; Higgins, M.J.; Hines, M.; Graves, L.M. Regulation of human cytidine triphosphate synthetase 2 by phosphorylation. J. Biol. Chem. 2010, 285, 33727–33736. [Google Scholar] [CrossRef] [Green Version]
- McPartland, R.P.; Weinfeld, H. Cooperative effects of CTP on calf liver CTP synthetase. J. Biol. Chem. 1979, 254, 11394–11398. [Google Scholar] [CrossRef]
- Weinfeld, H.; Savage, C.R.; McPartland, R.P. CTP synthetase of bovine calf liver. Methods Enzymol. 1978, 51, 84–90. [Google Scholar] [CrossRef] [PubMed]
- Aronow, B.; Ullman, B. In situ regulation of mammalian CTP synthetase by allosteric inhibition. J. Biol. Chem. 1987, 262, 5106–5112. [Google Scholar] [CrossRef]
- Kizaki, H.; Sakurada, T.; Weber, G. Purification and properties of CTP synthetase from Ehrlich ascites tumor cells. Biochim. Biophys. Acta 1981, 662, 48–54. [Google Scholar] [CrossRef]
- Kizaki, H.; Ohsaka, F.; Sakurada, T. CTP synthetase from Ehrlich ascites tumor cells. Subunit stoichiometry and regulation of activity. Biochim. Biophys. Acta 1985, 829, 34–43. [Google Scholar] [CrossRef]
- Ozier-Kalogeropoulos, O.; Fasiolo, F.; Adeline, M.T.; Collin, J.; Lacroute, F. Cloning, sequencing and characterization of the Saccharomyces cerevisiae URA7 gene encoding CTP synthetase. Mol. Gen. Genet. 1991, 231, 7–16. [Google Scholar] [CrossRef]
- Ozier-Kalogeropoulos, O.; Adeline, M.T.; Yang, W.L.; Carman, G.M.; Lacroute, F. Use of synthetic lethal mutants to clone and characterize a novel CTP synthetase gene in Saccharomyces cerevisiae. Mol. Gen. Genet. 1994, 242, 431–439. [Google Scholar] [CrossRef]
- Yang, W.L.; Carman, G.M. Phosphorylation of CTP synthetase from Saccharomyces cerevisiae by protein kinase C. J. Biol. Chem. 1995, 270, 14983–14988. [Google Scholar] [CrossRef] [Green Version]
- Van Kuilenburg, A.B.; Meinsma, R.; Vreken, P.; Waterham, H.R.; van Gennip, A.H. Isoforms of human CTP synthetase. Adv. Exp. Med. Biol. 2000, 486, 257–261. [Google Scholar] [CrossRef]
- Van Kuilenburg, A.B.P.; Meinsma, R.; Vreken, P.; Waterham, H.R.; van Gennip, A.H. Identifcation of a cDNA encoding an isoform of human CTP synthetase. Biochim. Biophys. Acta 2000, 1492, 548–552. [Google Scholar] [CrossRef]
- Van Kuilenburg, A.B.; Elzinga, L.; van Gennip, A.H. Kinetic properties of CTP synthetase from HL-60 cells. Adv. Exp. Med. Biol. 1998, 431, 255–258. [Google Scholar] [CrossRef] [PubMed]
- Traut, T.W. Physiological concentrations of purines and pyrimidines. Mol. Cell. Biochem. 1994, 140, 1–22. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.L. Intracellular compartmentation of CTP synthase in Drosophila. J. Genet. Genom. 2010, 37, 281–296. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, J.; Liu, J.-L. The atlas of cytoophidia in Drosophila larvae. J. Genet. Genom. 2020, 47, 321–331. [Google Scholar] [CrossRef] [PubMed]
- Noree, C.; Sato, B.K.; Broyer, R.M.; Wilhelm, J.E. Identification of novel filament-forming proteins in Saccharomyces cerevisiae and Drosophila melanogaster. J. Cell Biol. 2010, 190, 541–551. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Hulme, L.; Liu, J.-L. Asymmetric inheritance of cytoophidia in Schizosaccharomyces pombe. Biol. Open 2014, 3, 1092–1097. [Google Scholar] [CrossRef] [Green Version]
- Zhou, S.; Xiang, H.; Liu, J.-L. CTP synthase forms cytoophidia in archaea. J. Genet. Genom. 2020, 47, 213–223. [Google Scholar] [CrossRef]
- Chang, C.C.; Keppeke, G.D.; Antos, C.L.; Peng, M.; Andrade, L.E.C.; Sung, L.Y.; Liu, J.-L. CTPS forms the cytoophidium in zebrafish. Exp. Cell Res. 2021, 405, 112684. [Google Scholar] [CrossRef]
- Chen, K.; Zhang, J.; Tastan, Ö.Y.; Deussen, Z.A.; Siswick, M.Y.; Liu, J.L. Glutamine analogs promote cytoophidium assembly in human and Drosophila cells. J. Genet. Genom. 2011, 38, 391–402. [Google Scholar] [CrossRef]
- Peng, M.; Chang, C.C.; Liu, J.L.; Sung, L.Y. CTPS and IMPDH form cytoophidia in developmental thymocytes. Exp. Cell Res. 2021, 405, 112662. [Google Scholar] [CrossRef]
- Hansen, J.M.; Horowitz, A.; Lynch, E.M.; Farrell, D.P.; Quispe, J.; DiMaio, F.; Kollman, J.M. Cryo-EM structures of CTP synthase filaments reveal mechanism of pH-sensitive assembly during budding yeast starvation. eLife 2021, 10, e73368. [Google Scholar] [CrossRef] [PubMed]
Variant | Organism | Observations (Changes in Kinetic Parameters Are Relative to Wild-Type Enzyme) | |||
---|---|---|---|---|---|
(E. coli Residue), Structural Element a | NH3-Dependent CTP Formation | GTP-Dependent Activation of Gln-Dependent CTP Formation | Glutaminase Activity (in the Presence of GTP) | Reference | |
R105A, L4 | E. coli | no change in kcat no change in Km | ↓ kcat 4.0-fold ↑ Km 1.2-fold | ↓ kcat 2.5-fold ↑ KA 3.1-fold | [82] |
D107A, L4 | E. coli | no change in kcat ↓ Km 1.2-fold | ↓ kcat 1.7-fold ↓ Km 1.3-fold | ↓ kcat 1.2-fold ↑ KA 1.6-fold | [82] |
L109A, L4 | E. coli | ↓ kcat 1.2-fold ↓ Km 1.3-fold | ↓ kcat 3.7-fold ↑ Km 1.2-fold | no change in kcat ↑ KA 3.8-fold | [82] |
L109A, L4 (NH2OH as substrate) | E. coli | no change in kcat no change in Km | ↓ kcat 7.2-fold b ↑ Km 1.5-fold b | ↓ kcat 3.0-fold b ↓ Km 1.2-fold b | [83] |
L109F, L4 | E. coli | ↑ kcat 1.2-fold no change in Km | ↓ kcat 5.9-fold no change in Km | ↓ kcat 5.8-fold ↑ KA 4.9-fold | [82] |
R429A, L13 | E. coli | no change in kcat no change in Km | ↓ kcat 15-fold ↑ Km 1.7-fold | ↓ kact 6.0-fold ↑ KA 12-fold | [81] |
G352P, L11 | E. coli | ↓ specific activity 1.3-fold | no activity observed | – | [31] |
R359M (R356, L11) | L. lactis | no change in kcat no change in Km | ↓ kact 12-fold ↑ KA 4.6-fold | ↓ kcat 1.3-fold ↑ Km 1.2-fold | [84] |
R359P (R356, L11) | L. lactis | ↓ kcat 1.2-fold ↑ Km 1.7-fold | ↓ kcat~43-fold c ↑ KA~11-fold c | ↓ kcat 4.3-fold no change in Km | [84] |
G360A (G357, L11) | L. lactis | ↑ kcat 1.2-fold no change in Km | ↑ kact 1.3-fold ↓ KA 1.2-fold | ↑ kcat 1.8-fold ↑ Km 1.2-fold ↑ kcat 1.6-fold e no change in KA e | [84] |
G360P (G357, L11) | L. lactis | ↓ kcat 3.5-fold ↑ Km 1.7-fold | ↓ kcat~24-fold c,d ↑ KA 142-fold c | – | [84] |
E362Q (E359, L11-α13) | L. lactis | ↑ kcat 1.6-fold ↑ Km 1.4-fold | ↑ kact 1.2-fold no change in KA | ↓ kcat 4.3-fold no change in Km | [84] |
T431V (T438, L13-β18) | L. lactis | ↑ kcat 1.2-fold ↑ Km 1.7-fold | ↓ kcat 74-fold ↓ kact 104-fold no change in KA | ↓ kcat 2.8-fold no change in Km | [85] |
R433M (R440, β18) | L. lactis | ↓ kcat 2-fold no change in Km | ↓ kcat 8.4-fold ↓ kact 12.7-fold ↓ KA 17-fold | ↓ kcat 1.6-fold ↓ Km 1.2-fold | [85] |
F50A (M52, L2) | D. melanogaster | NR | qualitatively markedly reduced with 0.2 and 2 mM GTP | NR f | [66] |
L444A (L435, L13) | D. melanogaster | NR | qualitatively markedly reduced with 0.2 and 2 mM GTP | NR | [66] |
R381M (R356, L11) | S. cerevisiae | NR | % filaments, average filament length, and median filament length: 86%, 1.37 µm, and 1.41 µm g | NR | [58] |
R381P (R356, L11) | S. cerevisiae | NR | % filaments, average filament length, and median filament length: 82%, 1.20 µm, and 1.022 µm g | NR | [58] |
G382A (G357, L11) | S. cerevisiae | NR | % filaments, average filament length, and median filament length: 54%, 0.83 µm, and 0.79 µm g | NR | [58] |
Organism, Isoform(s) | KA, µM | Fold Increase a | Other Activators and Inhibitors | Additional Observations | References |
---|---|---|---|---|---|
Prokaryotes | |||||
Escherichia coli, EcCTPS | 81 c 32 d | ↑7.1 × b ↑15 × c ↑51 × d | 6-thio-GTP (kact = 8.5 s−1, KA = 35 µM) c GtetraP (kact = 4.0 s−1, KA = 190 µM) c ITP (kact = 5.2 s−1, KA = 2900 µM) c O6-Me-GTP (kact = 2.8 s−1, KA = 130 µM) c 2′-dGTP (kact = 1.5 s−1, KA = 210 µM) c | [S]0.5 (Gln) decreased 6.3-fold b For GTP: c ko = 0.73 s−1, kact = 10.6 s−1, Ki = 280 µM, n = 4.0 For GTP: d ko = 0.14 s−1, kact = 7.1 s−1 | [64,72,81] |
Lactococcus lacti, LlCTPS | 31 e 136 f 2.7 g 220 f 2430 h 1620 i | ↑25 × e ↑50 × f ↑7 × g ↑49 × f ↑15 × h ↑14 × i | Inhibition of glutaminase rxn. with 0.1 mM UTP and ATPγS at [GTP] > 2 mM | (kcat,1 = 0.028 s−1, kcat,2 = 0.195) d (kcat,1 = 0.130 s−1, kcat,2 = 6.4) c (kcat,1 = 0.078 s−1, kcat,2 = 1.20) e (kcat,1 = 0.76 s−1, kcat,2 = 1.054) f | [36,73] |
Thermus thermophilus, TtCTPS | – | – | – | n = 2.1 | [45] |
eukaryotes | |||||
Trypanosomal brucei, TbCTPS | 70 | ↑5.4 × | Inhibitors: GTP (IC50 = 460 µM), guanosine (IC50 = 380 µM), caffeine (IC50 = 480 µM), uric acid (IC50 = 100 µM) | ko = 0.16 s−1 kact = 0.87 s−1 KA = 57 µM Ki = 272 µM n = 4.2 | [9,14] |
Arabidopsis thaliana, AtCTPS | ~250 | ↑5 × | – | – | [90,91] |
Chlamydia trachomatis, CtCTPS | 7 | – | – | – | [92] |
Plasmodium falciparum, PfCTPS | – | – | – | noted increase in rate, but no kinetic data | [10,93] |
Giardia intestinalis, GiCTPS | 60 (400) j | – | Activators: GTP > GDP (KA = 100 µM) > dGTP (KA = 230 µM) | – | [12,94,95] |
Saccharomyces cerevisiae, ScCTPS7 | 15.3–15.7 | ↑4 × | – | KA = 12.0 µM and 12.2 µM when phosphorylated by PKA and PKC | [58,96,97,98,99] |
ScCTPS8 | 26 | ↑12 × | – | – | [74] |
mammalian | |||||
Homo sapiens, hCTPS1 | 1.6 | ↑4 × | Inhibited by [GTP] > 10 mM | – | [100] |
hCTPS2 | 8.0 | ↑12 × | Inhibited by [GTP] > 10 mM | – | [100] |
Bos taurus, calf liver CTPS | 70 | ↑7 × | – | n = 1 | [63,101,102] |
Rattus norvegicus, rat liver CTPS | 70 | – | – | – | [18] |
Mus musculus, MmCTPS from FURT-A cells | – | – | Intracellular GTP levels varied between 10% and 200% of that of unperturbed cells showed that the cooperativity of MmCTPS for GTP activation differed: n = 1.59 (in situ) vs. n = 0.76 (in vitro) | [GTP] required to activate MmCTPS in situ > than that in vitro | [103] |
Mus musculus, Ehrlich ascites tumor cells | 50 | ↑5 × | Activators: GMP, GDP, dGTP, Gpp[NH]p, GTP acts as a substrate! | ↑1.4–2.5 × glutaminase activity in the absence of ATP & UTP, ↑32–45 × in the presence | [65,104,105] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bearne, S.L.; Guo, C.-J.; Liu, J.-L. GTP-Dependent Regulation of CTP Synthase: Evolving Insights into Allosteric Activation and NH3 Translocation. Biomolecules 2022, 12, 647. https://doi.org/10.3390/biom12050647
Bearne SL, Guo C-J, Liu J-L. GTP-Dependent Regulation of CTP Synthase: Evolving Insights into Allosteric Activation and NH3 Translocation. Biomolecules. 2022; 12(5):647. https://doi.org/10.3390/biom12050647
Chicago/Turabian StyleBearne, Stephen L., Chen-Jun Guo, and Ji-Long Liu. 2022. "GTP-Dependent Regulation of CTP Synthase: Evolving Insights into Allosteric Activation and NH3 Translocation" Biomolecules 12, no. 5: 647. https://doi.org/10.3390/biom12050647
APA StyleBearne, S. L., Guo, C. -J., & Liu, J. -L. (2022). GTP-Dependent Regulation of CTP Synthase: Evolving Insights into Allosteric Activation and NH3 Translocation. Biomolecules, 12(5), 647. https://doi.org/10.3390/biom12050647