A Trajectory of Discovery: Metabolic Regulation by the Conditionally Disordered Chloroplast Protein, CP12
Abstract
:1. Introduction
2. Discovery of a Small Protein, CP12, in Photosynthetic Organisms
3. CP12, a Flexible Protein
4. CP12, a Widespread Protein with Sequence Variations on an Original Theme
5. One Gene, One Protein, Many Functions
5.1. CP12 Jack-of-All Trades but Master of the CBB Cycle
5.2. CP12, Other Functions
5.3. CP12, an Anti-Stress Protein
5.4. CP12 and Metal Ions
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Uversky, V.N. Protein Intrinsic Disorder and Structure-Function Continuum. Prog. Mol. Biol. Transl. Sci. 2019, 166, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Uversky, V.N. Natively Unfolded Proteins: A Point Where Biology Waits for Physics. Protein Sci. Publ. Protein Soc. 2002, 11, 739–756. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yruela, I.; Contreras-Moreira, B. Genetic Recombination Is Associated with Intrinsic Disorder in Plant Proteomes. BMC Genom. 2013, 14, 772. [Google Scholar] [CrossRef] [Green Version]
- Rendón-Luna, D.F.; Romero-Pérez, P.S.; Cuevas-Velazquez, C.L.; Reyes, J.L.; Covarrubias, A.A. Determining the Protective Activity of IDPs Under Partial Dehydration and Freeze-Thaw Conditions. Methods Mol. Biol. 2020, 2141, 519–528. [Google Scholar] [CrossRef]
- Zhang, Y.; Launay, H.; Schramm, A.; Lebrun, R.; Gontero, B. Exploring Intrinsically Disordered Proteins in Chlamydomonas reinhardtii. Sci. Rep. 2018, 8, 6805. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thieulin-Pardo, G.; Schramm, A.; Lignon, S.; Lebrun, R.; Kojadinovic, M.; Gontero, B. The Intriguing CP12-like Tail of Adenylate Kinase 3 from Chlamydomonas reinhardtii. FEBS J. 2016, 283, 3389–3407. [Google Scholar] [CrossRef] [PubMed]
- Sena, L.; Uversky, V.N. Comparison of the Intrinsic Disorder Propensities of the RuBisCO Activase Enzyme from the Motile and Non-Motile Oceanic Green Microalgae. Intrinsically Disord. Proteins 2016, 4, e1253526. [Google Scholar] [CrossRef] [Green Version]
- Launay, H.; Receveur-Bréchot, V.; Carrière, F.; Gontero, B. Orchestration of Algal Metabolism by Protein Disorder. Arch. Biochem. Biophys. 2019, 672, 108070. [Google Scholar] [CrossRef]
- Gontero, B.; Maberly, S.C. An Intrinsically Disordered Protein, CP12: Jack of All Trades and Master of the Calvin Cycle. Biochem. Soc. Trans. 2012, 40, 995–999. [Google Scholar] [CrossRef] [Green Version]
- Mackinder, L.C.M.; Meyer, M.T.; Mettler-Altmann, T.; Chen, V.K.; Mitchell, M.C.; Caspari, O.; Rosenzweig, E.S.F.; Pallesen, L.; Reeves, G.; Itakura, A.; et al. A Repeat Protein Links Rubisco to Form the Eukaryotic Carbon-Concentrating Organelle. Proc. Natl. Acad. Sci. USA 2016, 113, 5958–5963. [Google Scholar] [CrossRef] [Green Version]
- Atkinson, N.; Mao, Y.; Chan, K.X.; McCormick, A.J. Condensation of Rubisco into a Proto-Pyrenoid in Higher Plant Chloroplasts. Nat. Commun. 2020, 11, 6303. [Google Scholar] [CrossRef]
- He, S.; Chou, H.-T.; Matthies, D.; Wunder, T.; Meyer, M.T.; Atkinson, N.; Martinez-Sanchez, A.; Jeffrey, P.D.; Port, S.A.; Patena, W.; et al. The Structural Basis of Rubisco Phase Separation in the Pyrenoid. Nat. Plants 2020, 6, 1480–1490. [Google Scholar] [CrossRef] [PubMed]
- Wunder, T.; Cheng, S.L.H.; Lai, S.-K.; Li, H.-Y.; Mueller-Cajar, O. The Phase Separation Underlying the Pyrenoid-Based Microalgal Rubisco Supercharger. Nat. Commun. 2018, 9, 5076. [Google Scholar] [CrossRef] [PubMed]
- Mackinder, L.C.M.; Chen, C.; Leib, R.D.; Patena, W.; Blum, S.R.; Rodman, M.; Ramundo, S.; Adams, C.M.; Jonikas, M.C. A Spatial Interactome Reveals the Protein Organization of the Algal CO2-Concentrating Mechanism. Cell 2017, 171, 133–147.e14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pohlmeyer, K.; Paap, B.K.; Soll, J.; Wedel, N. CP12: A Small Nuclear-Encoded Chloroplast Protein Provides Novel Insights into Higher-Plant GAPDH Evolution. Plant Mol. Biol. 1996, 32, 969–978. [Google Scholar] [CrossRef]
- Wedel, N.; Soll, J.; Paap, B.K. CP12 Provides a New Mode of Light Regulation of Calvin Cycle Activity in Higher Plants. Proc. Natl. Acad. Sci. USA 1997, 94, 10479–10484. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gontero, B.; Cardenas, M.L.; Ricard, J. A Functional Five-Enzyme Complex of Chloroplasts Involved in the Calvin Cycle. Eur. J. Biochem. 1988, 173, 437–443. [Google Scholar] [CrossRef]
- Gontero, B.; Mulliert, G.; Rault, M.; Giudici-Orticoni, M.-T.; Ricard, J. Structural and Functional Properties of a Multi-Enzyme Complex from Spinach Chloroplasts. II: Modulation of the Kinetic Properties of Enzymes in the Aggregated State. Eur. J. Biochem. 1993, 217, 1075–1082. [Google Scholar] [CrossRef]
- Rault, M.; Gontero, B.; Ricard, J. Thioredoxin Activation of Phosphoribulokinase in a Chloroplast Multi-Enzyme Complex. Eur. J. Biochem. 1991, 197, 791–797. [Google Scholar] [CrossRef]
- Avilan, L.; Gontero, B.; Lebreton, S.; Ricard, J. Memory and Imprinting Effects in Multienzyme Complexes. Eur. J. Biochem. 1997, 246, 78–84. [Google Scholar] [CrossRef] [Green Version]
- Avilan, L.; Gontero, B.; Lebreton, S.; Ricard, J. Information Transfer in Multienzyme Complexes.2. The Role of Arg64 of Chlamydomonas reinhardtii Phosphoribulokinase in the Information Transfer between Glyceraldehyde-3-Phosphate Dehydrogenase and Phosphoribulokinase. Eur. J. Biochem. 1997, 250, 296–302. [Google Scholar] [CrossRef]
- Lebreton, S.; Gontero, B.; Avilan, L.; Ricard, J. Memory and Imprinting Effects in Multienzyme Complexes.2. Kinetics of the Bienzyme Complex from Chlamydomonas reinhardtii and Hysteretic Activation of Chloroplast Oxidized Phosphoribulokinase. Eur. J. Biochem. 1997, 246, 85–91. [Google Scholar] [CrossRef] [PubMed]
- Lebreton, S.; Gontero, B.; Avilan, L.; Ricard, J. Information Transfer in Multienzyme Complexes.1. Thermodynamics of Conformational Constraints and Memory Effects in the Bienzyme Glyceraldehyde-3-Phosphate-Dehydrogenase-Phosphoribulokinase Complex of Chlamydomonas reinhardtii Chloroplasts. Eur. J. Biochem. 1997, 250, 286–295. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Graciet, E.; Lebreton, S.; Camadro, J.-M.; Gontero, B. Characterization of Native and Recombinant A4 Glyceraldehyde 3-Phosphate Dehydrogenase. Kinetic Evidence for Confromation Changes upon Association with the Small Protein CP12. Eur. J. Biochem. 2003, 270, 129–136. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Graciet, E.; Gans, P.; Wedel, N.; Lebreton, S.; Camadro, J.-M.; Gontero, B. The Small Protein CP12: A Protein Linker for Supramolecular Complex Assembly. Biochemistry 2003, 42, 8163–8170. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mouche, F.; Gontero, B.; Callebaut, I.; Mornon, J.P.; Boisset, N. Striking Conformational Change Suspected within the Phosphoribulokinase Dimer Induced by Interaction with GAPDH. J. Biol. Chem. 2002, 277, 6743–6749. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Graciet, E.; Lebreton, S.; Camadro, J.-M.; Gontero, B. Thermodynamic Analysis of the Emergence of New Regulatory Properties in a Phosphoribulokinase-Glyceraldehyde 3-Phosphate Dehydrogenase Complex. J. Biol. Chem. 2002, 277, 12697–12702. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wedel, N.; Soll, J. Evolutionary Conserved Light Regulation of Calvin Cycle Activity by NADPH-Mediated Reversible Phosphoribulokinase/CP12/Glyceraldehyde-3-Phosphate Dehydrogenase Complex Dissociation. Proc. Natl. Acad. Sci. USA 1998, 95, 9699–9704. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scheibe, R.; Wedel, N.; Vetter, S.; Emmerlich, V.; Sauermann, S.M. Co-Existence of Two Regulatory NADP-Glyceraldehyde 3-P Dehydrogenase Complexes in Higher Plant Chloroplasts. Eur. J. Biochem. 2002, 269, 5617–5624. [Google Scholar] [CrossRef]
- Howard, T.P.; Lloyd, J.C.; Raines, C.A. Inter-Species Variation in the Oligomeric States of the Higher Plant Calvin Cycle Enzymes Glyceraldehyde-3-Phosphate Dehydrogenase and Phosphoribulokinase. J. Exp. Bot. 2011, 62, 3799–3805. [Google Scholar] [CrossRef]
- Clasper, S.; Easterby, J.S.; Powls, R. Properties of Two High-Molecular-Mass Forms of Glyceraldehyde-3-Phosphate Dehydrogenase from Spinach Leaf, One of Which Also Possesses Latent Phosphoribulokinase Activity. Eur. J. Biochem. 1991, 202, 1239–1246. [Google Scholar] [CrossRef] [PubMed]
- Wara-Aswapati, O.; Kemble, R.J.; Bradbeer, J.W. Activation of Glyceraldehyde-Phosphate Dehydrogenase (NADP) and Phosphoribulokinase in Phaseolus vulgaris Leaf Extracts Involves the Dissociation of Oligomers. Plant Physiol. 1980, 66, 34–39. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marri, L.; Trost, P.; Trivelli, X.; Gonnelli, L.; Pupillo, P.; Sparla, F. Spontaneous Assembly of Photosynthetic Supramolecular Complexes as Mediated by the Intrinsically Unstructured Protein CP12. J. Biol. Chem. 2008, 283, 1831–1838. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaaki, W.; Woudstra, M.; Gontero, B.; Halgand, F. Exploration of CP12 Conformational Changes and of Quaternary Structural Properties Using Electrospray Ionization Traveling Wave Ion Mobility Mass Spectrometry. Rapid Commun. Mass Spectrom. 2013, 27, 179–186. [Google Scholar] [CrossRef]
- Erales, J.; Mekhalfi, M.; Woudstra, M.; Gontero, B. Molecular Mechanism of NADPH-Glyceraldehyde-3-Phosphate Dehydrogenase Regulation through the C-Terminus of CP12 in Chlamydomonas reinhardtii. Biochemistry 2011, 50, 2881–2888. [Google Scholar] [CrossRef]
- Wright, P.E.; Dyson, H.J. Intrinsically Unstructured Proteins: Re-Assessing the Protein Structure-Function Paradigm. J. Mol. Biol. 1999, 293, 321–331. [Google Scholar] [CrossRef] [Green Version]
- Dyson, H.J.; Wright, P.E. Coupling of Folding and Binding for Unstructured Proteins. Curr. Opin. Struct. Biol. 2002, 12, 54–60. [Google Scholar] [CrossRef]
- Tompa, P. Intrinsically Unstructured Proteins. Trends Biochem. Sci. 2002, 27, 527–533. [Google Scholar] [CrossRef]
- Moparthi, S.B.; Thieulin-Pardo, G.; Mansuelle, P.; Rigneault, H.; Gontero, B.; Wenger, J. Conformational Modulation and Hydrodynamic Radii of CP12 Protein and Its Complexes Probed by Fluorescence Correlation Spectroscopy. FEBS J. 2014, 281, 3206–3217. [Google Scholar] [CrossRef] [Green Version]
- Vacic, V.; Uversky, V.N.; Dunker, A.K.; Lonardi, S. Composition Profiler: A Tool for Discovery and Visualization of Amino Acid Composition Differences. BMC Bioinform. 2007, 8, 211. [Google Scholar] [CrossRef] [Green Version]
- Launay, H.; Barré, P.; Puppo, C.; Manneville, S.; Gontero, B.; Receveur-Bréchot, V. Absence of Residual Structure in the Intrinsically Disordered Regulatory Protein CP12 in Its Reduced State. Biochem. Biophys. Res. Commun. 2016, 477, 20–26. [Google Scholar] [CrossRef] [PubMed]
- Moparthi, S.B.; Thieulin-Pardo, G.; de Torres, J.; Ghenuche, P.; Gontero, B.; Wenger, J. FRET Analysis of CP12 Structural Interplay by GAPDH and PRK. Biochem. Biophys. Res. Commun. 2015, 458, 488–493. [Google Scholar] [CrossRef] [PubMed]
- Gardebien, F.; Thangudu, R.R.; Gontero, B.; Offmann, B. Construction of a 3D Model of CP12, a Protein Linker. J. Mol. Graph. Model. 2006, 25, 186–195. [Google Scholar] [CrossRef] [PubMed]
- Launay, H.; Barré, P.; Puppo, C.; Zhang, Y.; Maneville, S.; Gontero, B.; Receveur-Bréchot, V. Cryptic Disorder Out of Disorder: Encounter between Conditionally Disordered CP12 and Glyceraldehyde-3-Phosphate Dehydrogenase. J. Mol. Biol. 2018, 430, 1218–1234. [Google Scholar] [CrossRef] [PubMed]
- Receveur-Brechot, V.; Durand, D. How Random Are Intrinsically Disordered Proteins? A Small Angle Scattering Perspective. Curr. Protein Pept. Sci. 2012, 13, 55–75. [Google Scholar] [CrossRef] [PubMed]
- Reichmann, D.; Jakob, U. The Roles of Conditional Disorder in Redox Proteins. Curr. Opin. Struct. Biol. 2013, 23, 436–442. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McFarlane, C.R.; Shah, N.R.; Kabasakal, B.V.; Echeverria, B.; Cotton, C.A.R.; Bubeck, D.; Murray, J.W. Structural Basis of Light-Induced Redox Regulation in the Calvin-Benson Cycle in Cyanobacteria. Proc. Natl. Acad. Sci. USA 2019, 116, 20984–20990. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, A.; Xie, Y.; Pan, X.; Zhang, H.; Cao, P.; Su, X.; Chang, W.; Li, M. Photosynthetic Phosphoribulokinase Structures: Enzymatic Mechanisms and the Redox Regulation of the Calvin-Benson-Bassham Cycle. Plant Cell 2020, 32, 1556–1573. [Google Scholar] [CrossRef] [Green Version]
- Matsumura, H.; Kai, A.; Maeda, T.; Tamoi, M.; Satoh, A.; Tamura, H.; Hirose, M.; Ogawa, T.; Kizu, N.; Wadano, A.; et al. Structure Basis for the Regulation of Glyceraldehyde-3-Phosphate Dehydrogenase Activity via the Intrinsically Disordered Protein CP12. Structure 2011, 19, 1846–1854. [Google Scholar] [CrossRef] [Green Version]
- Trost, P.; Fermani, S.; Marri, L.; Zaffagnini, M.; Falini, G.; Scagliarini, S.; Pupillo, P.; Sparla, F. Thioredoxin-Dependent Regulation of Photosynthetic Glyceraldehyde-3-Phosphate Dehydrogenase: Autonomous vs. CP12-Dependent Mechanisms. Photosynth. Res. 2006, 89, 263–275. [Google Scholar] [CrossRef]
- Erdős, G.; Mészáros, B.; Reichmann, D.; Dosztányi, Z. Large-Scale Analysis of Redox-Sensitive Conditionally Disordered Protein Regions Reveals Their Widespread Nature and Key Roles in High-Level Eukaryotic Processes. Proteomics 2019, 19, e1800070. [Google Scholar] [CrossRef] [PubMed]
- Bhopatkar, A.A.; Uversky, V.N.; Rangachari, V. Disorder and Cysteines in Proteins: A Design for Orchestration of Conformational See-Saw and Modulatory Functions. Prog. Mol. Biol. Transl. Sci. 2020, 174, 331–373. [Google Scholar] [CrossRef] [PubMed]
- Lopez-Calcagno, P.E.; Howard, T.P.; Raines, C.A. The CP12 Protein Family: A Thioredoxin-Mediated Metabolic Switch? Front. Plant Sci. 2014, 5, 9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Groben, R.; Kaloudas, D.; Raines, C.A.; Offmann, B.; Maberly, S.C.; Gontero, B. Comparative Sequence Analysis of CP12, a Small Protein Involved in the Formation of a Calvin Cycle Complex in Photosynthetic Organisms. Photosynth. Res. 2010, 103, 183–194. [Google Scholar] [CrossRef] [PubMed]
- Avilan, L.; Puppo, C.; Erales, J.; Woudstra, M.; Lebrun, R.; Gontero, B. CP12 Residues Involved in the Formation and Regulation of the Glyceraldehyde-3-Phosphate Dehydrogenase–CP12–Phosphoribulokinase Complex in Chlamydomonas reinhardtii. Mol. Biosyst. 2012, 8, 2994. [Google Scholar] [CrossRef] [PubMed]
- Oesterhelt, C.; Klocke, S.; Holtgrefe, S.; Linke, V.; Weber, A.P.M.; Scheibe, R. Redox Regulation of Chloroplast Enzymes in Galdieria sulphuraria in View of Eukaryotic Evolution. Plant Cell Physiol. 2007, 48, 1359–1373. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tamoi, M.; Miyazaki, T.; Fukamizo, T.; Shigeoka, S. The Calvin Cycle in Cyanobacteria Is Regulated by CP12 via the NAD(H)/NADP(H) Ratio under Light/Dark Conditions. Plant J. 2005, 42, 504–513. [Google Scholar] [CrossRef]
- Stanley, D.N.; Raines, C.A.; Kerfeld, C.A. Comparative Analysis of 126 Cyanobacterial Genomes Reveals Evidence of Functional Diversity among Homologs of the Redox-Regulated CP12 Protein. Plant Physiol. 2013, 161, 824–835. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mekhalfi, M.; Puppo, C.; Avilan, L.; Lebrun, R.; Mansuelle, P.; Maberly, S.C.; Gontero, B. Glyceraldehyde-3-Phosphate Dehydrogenase Is Regulated by Ferredoxin-NADP Reductase in the Diatom Asterionella formosa. New Phytol. 2014, 203, 414–423. [Google Scholar] [CrossRef] [Green Version]
- Boggetto, N.; Gontero, B.; Maberly, S.C. Regulation of Phosphoribulokinase and Glyceraldehyde 3-Phosphate Dehydrogenase in a Freshwater Diatom, Asterionella formosa. J. Phycol. 2007, 43, 1227–1235. [Google Scholar] [CrossRef]
- Shao, H.; Huang, W.; Avilan, L.; Receveur-Bréchot, V.; Puppo, C.; Puppo, R.; Lebrun, R.; Gontero, B.; Launay, H. A New Type of Flexible CP12 Protein in the Marine Diatom Thalassiosira pseudonana. Cell Commun. Signal. CCS 2021, 19, 38. [Google Scholar] [CrossRef] [PubMed]
- Wilhelm, C.; Büchel, C.; Fisahn, J.; Goss, R.; Jakob, T.; Laroche, J.; Lavaud, J.; Lohr, M.; Riebesell, U.; Stehfest, K.; et al. The Regulation of Carbon and Nutrient Assimilation in Diatoms Is Significantly Different from Green Algae. Protist 2006, 157, 91–124. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thieulin-Pardo, G.; Remy, T.; Lignon, S.; Lebrun, R.; Gontero, B. Phosphoribulokinase from Chlamydomonas reinhardtii: A Benson-Calvin Cycle Enzyme Enslaved to Its Cysteine Residues. Mol. Biosyst. 2015, 11, 1134–1145. [Google Scholar] [CrossRef] [PubMed]
- Thompson, L.R.; Zeng, Q.; Kelly, L.; Huang, K.H.; Singer, A.U.; Stubbe, J.; Chisholm, S.W. Phage Auxiliary Metabolic Genes and the Redirection of Cyanobacterial Host Carbon Metabolism. Proc. Natl. Acad. Sci. USA 2011, 108, E757–E764. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Launay, H.; Liu, F.; Lebrun, R.; Gontero, B. Interaction between Adenylate Kinase 3 and Glyceraldehyde-3-phosphate Dehydrogenase from Chlamydomonas reinhardtii. FEBS J. 2018, 285, 2495–2503. [Google Scholar] [CrossRef] [Green Version]
- Marri, L.; Pesaresi, A.; Valerio, C.; Lamba, D.; Pupillo, P.; Trost, P.; Sparla, F. In Vitro Characterization of Arabidopsis CP12 Isoforms Reveals Common Biochemical and Molecular Properties. J. Plant Physiol. 2010, 167, 939–950. [Google Scholar] [CrossRef]
- Robbens, S.; Petersen, J.; Brinkmann, H.; Rouzé, P.; Van de Peer, Y. Unique Regulation of the Calvin Cycle in the Ultrasmall Green Alga Ostreococcus. J. Mol. Evol. 2007, 64, 601–604. [Google Scholar] [CrossRef]
- Sun, Q.; Zybailov, B.; Majeran, W.; Friso, G.; Olinares, P.D.B.; van Wijk, K.J. PPDB, the Plant Proteomics Database at Cornell. Nucleic Acids Res. 2009, 37, D969–D974. [Google Scholar] [CrossRef]
- Marquardt, A.; Henry, R.J.; Botha, F.C. Effect of Sugar Feedback Regulation on Major Genes and Proteins of Photosynthesis in Sugarcane Leaves. Plant Physiol. Biochem. PPB 2021, 158, 321–333. [Google Scholar] [CrossRef]
- Cortese, M.S.; Uversky, V.N.; Keith Dunker, A. Intrinsic Disorder in Scaffold Proteins: Getting More from Less. Prog. Biophys. Mol. Biol. 2008, 98, 85–106. [Google Scholar] [CrossRef] [Green Version]
- Marri, L.; Zaffagnini, M.; Collin, V.; Issakidis-Bourguet, E.; Lemaire, S.D.; Pupillo, P.; Sparla, F.; Miginiac-Maslow, M.; Trost, P. Prompt and Easy Activation by Specific Thioredoxins of Calvin Cycle Enzymes of Arabidopsis thaliana Associated in the GAPDH/CP12/PRK Supramolecular Complex. Mol. Plant 2009, 2, 259–269. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yoshida, K.; Hara, A.; Sugiura, K.; Fukaya, Y.; Hisabori, T. Thioredoxin-Like2/2-Cys Peroxiredoxin Redox Cascade Supports Oxidative Thiol Modulation in Chloroplasts. Proc. Natl. Acad. Sci. USA 2018, 115, E8296–E8304. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Avilan, L.; Lebreton, S.; Gontero, B. Thioredoxin Activation of Phosphoribulokinase in a Bi-Enzyme Complex from Chlamydomonas reinhardtii Chloroplasts. J. Biol. Chem. 2000, 275, 9447–9451. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marri, L.; Trost, P.; Pupillo, P.; Sparla, F. Reconstitution and Properties of the Recombinant Glyceraldehyde-3-Phosphate Dehydrogenase/CP12/Phosphoribulokinase Supramolecular Complex of Arabidopsis. Plant Physiol. 2005, 139, 1433–1443. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Terzaghi, W.B.; Cashmore, A.R. Light-Regulated Transcription. Annu. Rev. Plant Physiol Plant Mol. Biol. 1995, 46, 445–474. [Google Scholar] [CrossRef]
- Elena López-Calcagno, P.; Omar Abuzaid, A.; Lawson, T.; Anne Raines, C. Arabidopsis CP12 Mutants Have Reduced Levels of Phosphoribulokinase and Impaired Function of the Calvin-Benson Cycle. J. Exp. Bot. 2017, 68, 2285–2298. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gérard, C.; Lebrun, R.; Lemesle, E.; Avilan, L.; Chang, K.S.; Jin, E.; Carrière, F.; Gontero, B.; Launay, H. Reduction in Phosphoribulokinase Amount and Re-Routing Metabolism in Chlamydomonas reinhardtii CP12 Mutants. Int. J. Mol. Sci. 2022, 23, 2710. [Google Scholar] [CrossRef]
- Howard, T.P.; Fryer, M.J.; Singh, P.; Metodiev, M.; Lytovchenko, A.; Obata, T.; Fernie, A.R.; Kruger, N.J.; Quick, W.P.; Lloyd, J.C.; et al. Antisense Suppression of the Small Chloroplast Protein CP12 in Tobacco Alters Carbon Partitioning and Severely Restricts Growth. Plant Physiol. 2011, 157, 620–631. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Howard, T.P.; Upton, G.J.G.; Lloyd, J.C.; Raines, C.A. Antisense Suppression of the Small Chloroplast Protein CP12 in Tobacco: A Transcriptional Viewpoint. Plant Signal. Behav. 2011, 6, 2026–2030. [Google Scholar] [CrossRef] [Green Version]
- Li, K.; Qiu, H.; Zhou, M.; Lin, Y.; Guo, Z.; Lu, S. Chloroplast Protein 12 Expression Alters Growth and Chilling Tolerance in Tropical Forage Stylosanthes guianensis (Aublet) Sw. Front. Plant Sci. 2018, 9, 1319. [Google Scholar] [CrossRef]
- Erales, J.; Avilan, L.; Lebreton, S.; Gontero, B. Exploring CP12 Binding Proteins Revealed Aldolase as a New Partner for the Phosphoribulokinase/Glyceraldehyde 3-Phosphate Dehydrogenase/CP12 Complex--Purification and Kinetic Characterization of This Enzyme from Chlamydomonas reinhardtii. FEBS J. 2008, 275, 1248–1259. [Google Scholar] [CrossRef] [PubMed]
- Burlacot, A.; Dao, O.; Auroy, P.; Cuiné, S.; Li-Beisson, Y.; Peltier, G. Alternative Photosynthesis Pathways Drive the Algal CO2-Concentrating Mechanism. Nature 2022, 605, 366–371. [Google Scholar] [CrossRef] [PubMed]
- Dao, O.; Kuhnert, F.; Weber, A.P.M.; Peltier, G.; Li-Beisson, Y. Physiological Functions of Malate Shuttles in Plants and Algae. Trends Plant Sci. 2022, 27, 488–501. [Google Scholar] [CrossRef] [PubMed]
- Clement, R.; Lignon, S.; Mansuelle, P.; Jensen, E.; Pophillat, M.; Lebrun, R.; Denis, Y.; Puppo, C.; Maberly, S.C.; Gontero, B. Responses of the Marine Diatom Thalassiosira pseudonana to Changes in CO2 Concentration: A Proteomic Approach. Sci. Rep. 2017, 7, 42333. [Google Scholar] [CrossRef] [Green Version]
- Tamoi, M.; Shigeoka, S. CP12 Is Involved in Protection against High Light Intensity by Suppressing the ROS Generation in Synechococcus elongatus PCC7942. Plants 2021, 10, 1275. [Google Scholar] [CrossRef] [PubMed]
- Hackenberg, C.; Hakanpää, J.; Cai, F.; Antonyuk, S.; Eigner, C.; Meissner, S.; Laitaoja, M.; Jänis, J.; Kerfeld, C.A.; Dittmann, E.; et al. Structural and Functional Insights into the Unique CBS-CP12 Fusion Protein Family in Cyanobacteria. Proc. Natl. Acad. Sci. USA 2018, 115, 7141–7146. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marri, L.; Thieulin-Pardo, G.; Lebrun, R.; Puppo, R.; Zaffagnini, M.; Trost, P.; Gontero, B.; Sparla, F. CP12-Mediated Protection of Calvin-Benson Cycle Enzymes from Oxidative Stress. Biochimie 2014, 97, 228–237. [Google Scholar] [CrossRef] [PubMed]
- Erales, J.; Lignon, S.; Gontero, B. CP12 from Chlamydomonas reinhardtii, a Permanent Specific “Chaperone-like” Protein of Glyceraldehyde-3-Phosphate Dehydrogenase. J. Biol. Chem. 2009, 284, 12735–12744. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.-H.; Li, Y.-Y.; Zhang, H.; Liu, J.-L.; Xie, Z.-X.; Lin, L.; Wang, D.-Z. Quantitative Proteomics Reveals Common and Specific Responses of a Marine Diatom Thalassiosira pseudonana to Different Macronutrient Deficiencies. Front. Microbiol. 2018, 9, 2761. [Google Scholar] [CrossRef] [PubMed]
- Banovic Deri, B.; Bozic, M.; Dudic, D.; Vicic, I.; Milivojevic, M.; Ignjatovic-Micic, D.; Samardzic, J.; Vancetovic, J.; Delic, N.; Nikolic, A. Leaf Transcriptome Analysis of Lancaster versus Other Heterotic Groups’ Maize Inbred Lines Revealed Different Regulation of Cold-Responsive Genes. J. Agron. Crop Sci. 2022, 208, 497–509. [Google Scholar] [CrossRef]
- Bosco, G.L.; Baxa, M.; Sosnick, T.R. Metal Binding Kinetics of Bi-Histidine Sites Used in Psi Analysis: Evidence of High-Energy Protein Folding Intermediates. Biochemistry 2009, 48, 2950–2959. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Delobel, A.; Graciet, E.; Andreescu, S.; Gontero, B.; Halgand, F.; Laprévote, O. Mass Spectrometric Analysis of the Interactions between CP12, a Chloroplast Protein, and Metal Ions: A Possible Regulatory Role within a PRK/GAPDH/CP12 Complex. Rapid Commun. Mass Spectrom. 2005, 19, 3379–3388. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stöckel, J.; Safar, J.; Wallace, A.C.; Cohen, F.E.; Prusiner, S.B. Prion Protein Selectively Binds Copper(II) Ions. Biochemistry 1998, 37, 7185–7193. [Google Scholar] [CrossRef] [PubMed]
- Himelblau, E.; Mira, H.; Lin, S.J.; Culotta, V.C.; Peñarrubia, L.; Amasino, R.M. Identification of a Functional Homolog of the Yeast Copper Homeostasis Gene ATX1 from Arabidopsis. Plant Physiol. 1998, 117, 1227–1234. [Google Scholar] [CrossRef] [Green Version]
- Rocha, A.G.; Vothknecht, U.C. Identification of CP12 as a Novel Calcium-Binding Protein in Chloroplasts. Plants 2013, 2, 530–540. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gérard, C.; Carrière, F.; Receveur-Bréchot, V.; Launay, H.; Gontero, B. A Trajectory of Discovery: Metabolic Regulation by the Conditionally Disordered Chloroplast Protein, CP12. Biomolecules 2022, 12, 1047. https://doi.org/10.3390/biom12081047
Gérard C, Carrière F, Receveur-Bréchot V, Launay H, Gontero B. A Trajectory of Discovery: Metabolic Regulation by the Conditionally Disordered Chloroplast Protein, CP12. Biomolecules. 2022; 12(8):1047. https://doi.org/10.3390/biom12081047
Chicago/Turabian StyleGérard, Cassy, Frédéric Carrière, Véronique Receveur-Bréchot, Hélène Launay, and Brigitte Gontero. 2022. "A Trajectory of Discovery: Metabolic Regulation by the Conditionally Disordered Chloroplast Protein, CP12" Biomolecules 12, no. 8: 1047. https://doi.org/10.3390/biom12081047
APA StyleGérard, C., Carrière, F., Receveur-Bréchot, V., Launay, H., & Gontero, B. (2022). A Trajectory of Discovery: Metabolic Regulation by the Conditionally Disordered Chloroplast Protein, CP12. Biomolecules, 12(8), 1047. https://doi.org/10.3390/biom12081047