Sweet Orange Juice Processing By-Product Extracts: A Caries Management Alternative to Chlorhexidine
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Preparation and Extraction
2.2. Preparation of Treatment Solutions with ISOWE, CHX, and Combination of CHX and ISOWE
2.3. Cytotoxic Assays
2.3.1. Cultivation of TR146 Cells
2.3.2. Cell Viability and Cell Proliferation Assays
2.3.3. MTT Assay
2.4. Seven-Day Complex Cariogenic Biofilm Model Development and Anti-Cariogenic Assays
2.4.1. Volunteer Recruitment and Sample Collection
2.4.2. Sample Processing and Development of the 7-Day Complex Cariogenic Biofilm Model
2.4.3. Viable Bacterial Count (CFU/mL)
DNA Extraction of Bacteria from the 7-Day Complex Biofilm
Amplicon Sequencing Outsourced to Novogene UK Ltd.
2.5. Statistical Analysis
3. Results
3.1. Effect of CHX and ISOWE on TR146 Cell Viability and Proliferation
3.2. Viable Bacterial Count (CFU/mL)
3.3. Alpha and Beta Diversity
3.4. Analysis of Bacterial Composition on Phylum, Genus, and Species Levels
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lin, H.; Peddada, S.D. Analysis of microbial compositions: A review of normalization and differential abundance analysis. NPJ Biofilms Microbiomes 2020, 6, 60. [Google Scholar] [CrossRef] [PubMed]
- Girisa, S.; Kumar, A.; Rana, V.; Parama, D.; Daimary, U.D.; Warnakulasuriya, S.; Kumar, A.P.; Kunnumakkara, A.B. From simple mouth cavities to complex oral mucosal disorders—Curcuminoids as a promising therapeutic approach. ACS Pharmacol. Transl. Sci. 2021, 4, 647–665. [Google Scholar] [CrossRef] [PubMed]
- Gönczi, N.N.; Strang, O.; Bagi, Z.; Rákhely, G.; Kovács, K.L. Interactions between probiotic and oral pathogenic strains. Biol. Futur. 2021, 72, 461–471. [Google Scholar] [CrossRef] [PubMed]
- Wade, W.G. The oral microbiome in health and disease. Pharmacol. Res. 2013, 69, 137–143. [Google Scholar] [CrossRef]
- Benn, A.M.; Heng, N.C.; Thomson, W.M.; Sissons, C.H.; Gellen, L.S.; Gray, A.R.; Broadbent, J.M. Associations of sex, oral hygiene and smoking with oral species in distinct habitats at age 32 years. Eur. J. Oral Sci. 2021, 130, e12829. [Google Scholar] [CrossRef]
- Bui, F.Q.; Almeida-da-Silva, C.L.C.; Huynh, B.; Trinh, A.; Liu, J.; Woodward, J.; Asadi, H.; Ojcius, D.M. Association between periodontal pathogens and systemic disease. Biomed. J. 2019, 42, 27–35. [Google Scholar] [CrossRef]
- Esberg, A.; Eriksson, L.; Hasslöf, P.; Haworth, S.; Holgerson, P.L.; Johansson, I. Using oral microbiota data to design a short sucrose intake index. Nutrients 2021, 13, 1400. [Google Scholar] [CrossRef]
- Dige, I.; Baelum, V.; Nyvad, B.; Schlafer, S. Monitoring of extracellular pH in young dental biofilms grown in vivo in the presence and absence of sucrose. J. Oral Microbiol. 2016, 8, 30390. [Google Scholar] [CrossRef]
- Chen, X.; Daliri, E.B.-M.; Kim, N.; Kim, J.-R.; Yoo, D.; Oh, D.-H. Microbial etiology and prevention of dental caries: Exploiting natural products to inhibit cariogenic biofilms. Pathogens 2020, 9, 569. [Google Scholar] [CrossRef]
- Brookes, Z.L.; Belfield, L.A.; Ashworth, A.; Casas-Agustench, P.; Raja, M.; Pollard, A.J.; Bescos, R. Chlorhexidine and oral microbiome. J. Dent. 2021, 113, 103768. [Google Scholar] [CrossRef]
- Cieplik, F.; Jakubovics, N.S.; Buchalla, W.; Maisch, T.; Hellwig, E.; Al-Ahmad, A. Resistance toward chlorhexidine in oral bacteria–is there cause for concern? Front. Microbiol. 2019, 10, 587. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Wang, H.; Ren, B.; Li, X.; Wang, L.; Zhou, H.; Weir, M.D.; Zhou, X.; Masri, R.M.; Oates, T.W. Drug resistance of oral bacteria to new antibacterial dental monomer dimethylaminohexadecyl methacrylate. Sci. Rep. 2018, 8, 5509. [Google Scholar] [CrossRef] [PubMed]
- de Oliveira, J.R.; Belato, K.K.; de Oliveira, F.E.; Jorge, A.O.C.; Camargo, S.E.A.; de Oliveira, L.D. Mouthwashes: An in vitro study of their action on microbial biofilms and cytotoxicity to gingival fibroblasts. Gen. Dent. 2018, 66, 28–34. [Google Scholar] [PubMed]
- Shafiee, H.A.; Motamedi, M.H.K.; Mina, M.; Taheri, J.B.; Azimi, S.; Joharchi, K.; Yadegari, Z.; Rasouli, H.R. Evaluation of cytotoxic effects of anbarnesa on fibroblast l929: Can it be used as a mouthwash? Anc. Sci. Life 2014, 33, 203. [Google Scholar]
- Siripipatthanakul, S.; Sixl-Daniell, K. Strategic management in oral care product market: A case study of colgate-palmolive (thailand) limited. Int. Trend Sci. Res. Dev. 2021, 5, 851–865. [Google Scholar]
- Zerva, I.; Remmas, N.; Ntougias, S.J.B. Biocatalyst potential of cellulose-degrading microorganisms isolated from orange juice processing waste. Beverages 2019, 5, 21. [Google Scholar] [CrossRef]
- McKay, S.; Sawant, P.; Fehlberg, J.; Almenar, E. Antimicrobial activity of orange juice processing waste in powder form and its suitability to produce antimicrobial packaging. Waste Manag. 2021, 120, 230–239. [Google Scholar] [CrossRef]
- Addi, M.; Elbouzidi, A.; Abid, M.; Tungmunnithum, D.; Elamrani, A.; Hano, C. An overview of bioactive flavonoids from citrus fruits. Appl. Sci. 2022, 12, 29. [Google Scholar] [CrossRef]
- Lohrasbi, M.; Pourbafrani, M.; Niklasson, C.; Taherzadeh, M.J. Process design and economic analysis of a citrus waste biorefinery with biofuels and limonene as products. Bioresour. Technol. 2010, 101, 7382–7388. [Google Scholar] [CrossRef]
- Saha, S.; Do, T.; Maycock, J.; Wood, S.; Boesch, C. Antibiofilm efficacies of flavonoid-rich sweet orange waste extract against dual-species biofilms. Pathogens 2023, 12, 657. [Google Scholar] [CrossRef]
- Lessa, F.C.R.; Aranha, A.M.F.; Nogueira, I.; Giro, E.M.A.; Hebling, J.; Costa, C.A.d.S. Toxicity of chlorhexidine on odontoblast-like cells. J. Appl. Oral Sci. 2010, 18, 50–58. [Google Scholar] [CrossRef] [PubMed]
- Naginyte, M. Environmental Effects on Oral Biofilm Communities. Ph.D. Thesis, University of Leeds, Leeds, UK, November 2018. [Google Scholar]
- Gu, M.; Wang, P.; Xiang, S.; Xu, D.; Jin, C.; Jiang, Z.; Hu, N. Effects of type 2 diabetes and metformin on salivary microbiota in patients with chronic periodontitis. Microb. Pathog. 2021, 161, 105277. [Google Scholar] [CrossRef] [PubMed]
- Teng, F.; Nair, S.S.D.; Zhu, P.; Li, S.; Huang, S.; Li, X.; Xu, J.; Yang, F. Impact of DNA extraction method and targeted 16s-rrna hypervariable region on oral microbiota profiling. Sci. Rep. 2018, 8, 16321. [Google Scholar] [CrossRef] [PubMed]
- López-García, J.; Lehocký, M.; Humpolíček, P.; Sáha, P. Hacat keratinocytes response on antimicrobial atelocollagen substrates: Extent of cytotoxicity, cell viability and proliferation. J. Funct. Biomater. 2014, 5, 43–57. [Google Scholar] [CrossRef]
- Li, Y.-C.; Kuan, Y.-H.; Lee, T.-H.; Huang, F.-M.; Chang, Y.-C. Assessment of the cytotoxicity of chlorhexidine by employing an in vitro mammalian test system. J. Dent. Sci. 2014, 9, 130–135. [Google Scholar] [CrossRef]
- Shahidi, Z.; Davani, S.T.; Noori, F.; Tabatabaei, M.H.; Sodeif, F.; Etemadi, A.; Chiniforoosh, N.; Moradi, Z. Cytotoxicity and antibacterial activity of toothpastes and mouthwashes available in the Iranian market. Front. Dent. 2021, 18, 7. [Google Scholar] [CrossRef]
- Müller, H.D.; Eick, S.; Moritz, A.; Lussi, A.; Gruber, R. Cytotoxicity and antimicrobial activity of oral rinses in vitro. BioMed Res. Int. 2017, 2017, 4019723. [Google Scholar] [CrossRef]
- Yayli, N.A.; Tunc, S.K.; Degirmenci, B.U.; Dikilitas, A.; Taspinar, M. Comparative evaluation of the cytotoxic effects of different oral antiseptics: A primary culture study. Niger. J. Clin. Pract. 2021, 24, 313. [Google Scholar] [CrossRef]
- Pilloni, A.; Ceccarelli, S.; Bosco, D.; Gerini, G.; Marchese, C.; Marini, L.; Rojas, M.A. Effect of chlorhexidine digluconate in early wound healing of human gingival tissues. A histological, immunohistochemical and biomolecular analysis. Antibiotics 2021, 10, 1192. [Google Scholar] [CrossRef]
- Emmadi, P.; Ambalavanan, N.; Ramakrishnan, T.; Vijayalakshmi, R. Effect of three commercial mouth rinses on cultured human gingival fibroblast: An in vitro study. Indian J. Dent. Res. 2008, 19, 29. [Google Scholar]
- Wyganowska-Swiatkowska, M.; Kotwicka, M.; Urbaniak, P.; Nowak, A.; Skrzypczak-Jankun, E.; Jankun, J. Clinical implications of the growth-suppressive effects of chlorhexidine at low and high concentrations on human gingival fibroblasts and changes in morphology. Int. J. Mol. Med. 2016, 37, 1594–1600. [Google Scholar] [CrossRef] [PubMed]
- Chang, Y.-C.; Huang, F.-M.; Tai, K.-W.; Chou, M.-Y. The effect of sodium hypochlorite and chlorhexidine on cultured human periodontal ligament cells. Oral Surg. Oral Med. Oral Radiol. 2001, 92, 446–450. [Google Scholar] [CrossRef] [PubMed]
- Ginsburg, I.; Koren, E.; Shalish, M.; Kanner, J.; Kohen, R. Saliva increases the availability of lipophilic polyphenols as antioxidants and enhances their retention in the oral cavity. Arch. Oral Biol. 2012, 57, 1327–1334. [Google Scholar] [CrossRef] [PubMed]
- Williamson, G. Common features in the pathways of absorption and metabolism of flavonoids. In Phytochemicals: Mechanisms of Action; CRC Press: Boca Raton, FL, USA, 2003; pp. 21–33. [Google Scholar]
- Bhavikatti, S.K.; Karobari, M.I.; Zainuddin, S.L.A.; Marya, A.; Nadaf, S.J.; Sawant, V.J.; Patil, S.B.; Venugopal, A.; Messina, P.; Scardina, G.A. Investigating the antioxidant and cytocompatibility of mimusops elengi linn extract over human gingival fibroblast cells. Int. J. Environ. Res. Public Health 2021, 18, 7162. [Google Scholar] [CrossRef] [PubMed]
- Walle, T.; Browning, A.M.; Steed, L.L.; Reed, S.G.; Walle, U.K. Flavonoid glucosides are hydrolyzed and thus activated in the oral cavity in humans. J. Nutr. 2005, 135, 48–52. [Google Scholar] [CrossRef] [PubMed]
- Teixeira Essenfelder, L.; Gomes, A.A.; Miquelutti, D.; da Silva, G.F.; Magalhães, M.L. Effect of xylitol on salivary β-glucosidase in humans. Eur. J. Oral Sci. 2019, 127, 472–475. [Google Scholar] [CrossRef]
- Tsourounakis, I.; Palaiologou, A.; Stoute, D.; Maney, P.; Lallier, T. Erratum: “Effect of essential oil and chlorhexidine mouthwashes on gingival fibroblast survival and migration”. J. Periodontol. 2012, 85, 876. [Google Scholar] [CrossRef]
- Ali, Ö.; Aşkin Çelik, T. Cytotoxic effects of peel extracts from Citrus limon and Citrus sinensis. Caryologia 2007, 60, 48–51. [Google Scholar] [CrossRef]
- Jeon, J.-G.; Rosalen, P.; Falsetta, M.; Koo, H. Natural products in caries research: Current (limited) knowledge, challenges and future perspective. Caries Res. 2011, 45, 243–263. [Google Scholar] [CrossRef]
- Mandal, A.; Manohar, B.; Shetty, N.; Mathur, A.; Makhijani, B.; Sen, N. A comparative evaluation of anti-inflammatory and antiplaque efficacy of citrus sinesis mouthwash and chlorhexidine mouthwash. J. Nepal. Soc. Periodontol. Oral Implant. 2018, 2, 9–13. [Google Scholar] [CrossRef]
- Iswariya, G.T.; Suganya, V.; Padma, P.R.; Nirmaladevi, R. Cytotoxic effect of citrus limetta and citrus sinensis on molt-3 cell line. Int. J. Pharm. Sci. Res. 2016, 41, 111–115. [Google Scholar]
- De Wit, R.; Bouvier, T. ‘Everything is everywhere, but, the environment selects’; what did baas becking and beijerinck really say? Environ. Microbiol. 2006, 8, 755–758. [Google Scholar] [CrossRef] [PubMed]
- Fondi, M.; Karkman, A.; Tamminen, M.V.; Bosi, E.; Virta, M.; Fani, R.; Alm, E.; McInerney, J.O. “Every gene is everywhere but the environment selects”: Global geolocalization of gene sharing in environmental samples through network analysis. Genome Biol. Evol. 2016, 8, 1388–1400. [Google Scholar] [CrossRef]
- Palumbo, A.V.; Zhang, C.; Liu, S.; Scarborough, S.P.; Pfiffner, S.M.; Phelps, T.J. Influence of media on measurement of bacterial populations in the subsurface. Appl. Biochem. Biotechnol. 1996, 57, 905–914. [Google Scholar] [CrossRef]
- Wijesinghe, G.; Dilhari, A.; Gayani, B.; Kottegoda, N.; Samaranayake, L.; Weerasekera, M. Influence of laboratory culture media on in vitro growth, adhesion, and biofilm formation of pseudomonas aeruginosa and staphylococcus aureus. Med. Princ. Pract. 2019, 28, 28–35. [Google Scholar] [CrossRef]
- Wilson, C.; Lukowicz, R.; Merchant, S.; Valquier-Flynn, H.; Caballero, J.; Sandoval, J.; Okuom, M.; Huber, C.; Brooks, T.D.; Wilson, E. Quantitative and qualitative assessment methods for biofilm growth: A mini-review. Res. Rev. J. Eng. Technol. 2017, 6. [Google Scholar]
- Cruz, G.N.F.; Christoff, A.P.; de Oliveira, L.F.V. Microbiome Meets Classical Microbiology: Quantifying Sample CFU Using 16s rRNA Gene Sequencing Data. Eur. PMC 2020, preprint. [Google Scholar] [CrossRef]
- Liu, B.; Zhou, C.; Zhang, Z.; Roland, J.D.; Lee, B.P. Antimicrobial property of halogenated catechols. J. Chem. Eng. 2021, 403, 126340. [Google Scholar] [CrossRef]
- Culbreath, K.; Melanson, S.; Gale, J.; Baker, J.; Li, F.; Saebo, O.; Kommedal, O.; Contreras, D.; Garner, O.B.; Yang, S. Validation and retrospective clinical evaluation of a quantitative 16s rRNA gene metagenomic sequencing assay for bacterial pathogen detection in body fluids. J. Mol. Diagn. 2019, 21, 913–923. [Google Scholar] [CrossRef]
- Verma, D.; Garg, P.K.; Dubey, A.K. Insights into the human oral microbiome. Arch. Microbiol. 2018, 200, 525–540. [Google Scholar] [CrossRef]
- Baumgardner, D.J.; Aurora UW Medical Group; Aurora Health Care. Oral Fungal Microbiota: To Thrush and Beyond. J. Patient-Cent. Res. Rev. 2019, 6, 252–261. [Google Scholar] [CrossRef] [PubMed]
- Modafer, Y.A. The Effect of Sewak on Oral Microbiota Composition. Ph.D. Thesis, Tennessee State University, Nashville, TN, USA, 2016. [Google Scholar]
- Minov, R.I. Role of archaea in human disease. Front. Cell. Infect. Microbiol. 2013, 3, 42. [Google Scholar]
- Nguyen-Hieu, T.; Khelaifia, S.; Aboudharam, G.; Drancourt, M. Methanogenic archaea in subgingival sites: A review. APMIS 2013, 121, 467–477. [Google Scholar] [CrossRef] [PubMed]
- Yamabe, K.; Maeda, H.; Kokeguchi, S.; Tanimoto, I.; Sonoi, N.; Asakawa, S.; Takashiba, S. Distribution of archaea in japanese patients with periodontitis and humoral immune response to the components. FEMS Microbiol. Lett. 2008, 287, 69–75. [Google Scholar] [CrossRef] [PubMed]
- Dridi, B.; Fardeau, M.-L.; Ollivier, B.; Raoult, D.; Drancourt, M. The antimicrobial resistance pattern of cultured human methanogens reflects the unique phylogenetic position of archaea. J. Antimicrob. Chemother. 2011, 66, 2038–2044. [Google Scholar] [CrossRef]
- Zaura, E.; Keijser, B.J.; Huse, S.M.; Crielaard, W. Defining the healthy “core microbiome” of oral microbial communities. BMC Microbiol. 2009, 9, 259. [Google Scholar] [CrossRef]
- Bik, E.M.; Long, C.D.; Armitage, G.C.; Loomer, P.; Emerson, J.; Mongodin, E.F.; Nelson, K.E.; Gill, S.R.; Fraser-Liggett, C.M.; Relman, D.A. Bacterial diversity in the oral cavity of 10 healthy individuals. ISME J. 2010, 4, 962–974. [Google Scholar] [CrossRef]
- Li, W.; Ma, Z. FBA Ecological Guild: Trio of Firmicutes-Bacteroidetes Alliance against Actinobacteria in Human Oral Microbiome. Sci. Rep. 2020, 10, 287. [Google Scholar] [CrossRef]
- Li, J.; Quinque, D.; Horz, H.-P.; Li, M.; Rzhetskaya, M.; A Raff, J.; Hayes, M.G.; Stoneking, M. Comparative analysis of the human saliva microbiome from different climate zones: Alaska, Germany, and Africa. BMC Microbiol. 2014, 14, 316. [Google Scholar] [CrossRef]
- Kaur, R.; Gilbert, S.C.; Sheehy, E.C.; Beighton, D. Salivary levels of Bifidobacteria in caries-free and caries-active children. Int. J. Paediatr. Dent. 2013, 23, 32–38. [Google Scholar] [CrossRef]
- Mira, A. Oral Microbiome Studies: Potential Diagnostic and Therapeutic Implications. Adv. Dent. Res. 2018, 29, 71–77. [Google Scholar] [CrossRef] [PubMed]
- Nascimento, M.; Zaura, E.; Mira, A.; Takahashi, N.; Cate, J.T. Second Era of OMICS in Caries Research: Moving Past the Phase of Disillusionment. J. Dent. Res. 2017, 96, 733–740. [Google Scholar] [CrossRef] [PubMed]
- Olsen, I. Organization of supragingival plaque at the micron scale. J. Oral Microbiol. 2018, 10, 1438722. [Google Scholar] [CrossRef] [PubMed]
- Ferrer, M.D.; Mira, A. Oral Biofilm Architecture at the Microbial Scale. Trends Microbiol. 2016, 24, 246–248. [Google Scholar] [CrossRef] [PubMed]
- Ezaura, E.; Nicu, E.A.; Krom, B.P.; Keijser, B.J.F. Acquiring and maintaining a normal oral microbiome: Current perspective. Front. Cell. Infect. Microbiol. 2014, 4, 85. [Google Scholar] [CrossRef]
- Benahmed, A.G.; Gasmi, A.; Doşa, A.; Chirumbolo, S.; Mujawdiya, P.K.; Aaseth, J.; Dadar, M.; Bjørklund, G. Association be-tween the gut and oral microbiome with obesity. Anaerobe 2021, 70, 102248. [Google Scholar] [CrossRef]
- Simpson, C.A.; Adler, C.; du Plessis, M.R.; Landau, E.R.; Dashper, S.G.; Reynolds, E.C.; Schwartz, O.S.; Simmons, J.G. Oral microbiome composition, but not diversity, is associated with adolescent anxiety and depression symptoms. Physiol. Behav. 2020, 226, 113126. [Google Scholar] [CrossRef]
- Head, D.A.; Marsh, P.D.; Devine, D.A. Non-Lethal Control of the Cariogenic Potential of an Agent-Based Model for Dental Plaque. PLoS ONE 2014, 9, e105012. [Google Scholar] [CrossRef]
- Niu, Y.; Wang, K.; Zheng, S.; Wang, Y.; Ren, Q.; Li, H.; Ding, L.; Li, W.; Zhang, L. Antibacterial Effect of Caffeic Acid Phenethyl Ester on Cariogenic Bacteria and Streptococcus mutans Biofilms. Antimicrob. Agents Chemother. 2020, 64. [Google Scholar] [CrossRef]
- Bescos, R.; Ashworth, A.; Cutler, C.; Brookes, Z.L.; Belfield, L.; Rodiles, A.; Casas-Agustench, P.; Farnham, G.; Liddle, L.; Burleigh, M.; et al. Effects of Chlorhexidine mouthwash on the oral microbiome. Sci. Rep. 2020, 10, 5254. [Google Scholar] [CrossRef]
- Al-Kamel, A.; Baraniya, D.; Al-Hajj, W.A.; Halboub, E.; Abdulrab, S.; Chen, T.; Al-Hebshi, N.N. Subgingival microbiome of experimental gingivitis: Shifts associated with the use of chlorhexidine and N-acetyl cysteine mouthwashes. J. Oral Microbiol. 2019, 11, 1608141. [Google Scholar] [CrossRef]
- Tribble, G.D.; Angelov, N.; Weltman, R.; Wang, B.-Y.; Eswaran, S.V.; Gay, I.C.; Parthasarathy, K.; Dao, D.-H.V.; Richardson, K.N.; Ismail, N.M. Frequency of tongue cleaning impacts the human tongue microbiome composition and enterosalivary circulation of nitrate. Front. Cell. Infect. Microbiol. 2019, 9, 39. [Google Scholar] [CrossRef]
- Yip, S.; Dehcheshmeh, M.M.; McLelland, D.J.; Boardman, W.S.J.; Saputra, S.; Ebrahimie, E.; Weyrich, L.S.; Bird, P.S.; Trott, D.J. Porphyromonas spp., Fusobacterium spp., and Bacteroides spp. dominate microbiota in the course of macropod progressive periodontal disease. Sci. Rep. 2021, 11, 17775. [Google Scholar] [CrossRef] [PubMed]
- Burton, J.P.; Drummond, B.K.; Chilcott, C.N.; Tagg, J.R.; Thomson, W.M.; Hale, J.D.F.; Wescombe, P.A. Influence of the probiotic Streptococcus salivarius strain M18 on indices of dental health in children: A randomized double-blind, placebo-controlled trial. J. Med. Microbiol. 2013, 62, 875–884. [Google Scholar] [CrossRef] [PubMed]
- Sarkonen, N.; Könönen, E.; Summanen, P.; Kanervo, A.; Takala, A.; Jousimies-Somer, H. Oral Colonization with Actinomyces Species in Infants by Two Years of Age. J. Dent. Res. 2000, 79, 864–867. [Google Scholar] [CrossRef] [PubMed]
- Hyde, E.R.; Luk, B.; Cron, S.; Kusic, L.; McCue, T.; Bauch, T.; Kaplan, H.; Tribble, G.; Petrosino, J.F.; Bryan, N.S. Characteri-zation of the rat oral microbiome and the effects of dietary nitrate. Free Radic. Biol. Med. 2014, 77, 249–257. [Google Scholar] [CrossRef]
- Treerat, P.; Redanz, U.; Redanz, S.; Giacaman, R.A.; Merritt, J.; Kreth, J. Synergism between Corynebacterium and Streptococcus sanguinis reveals new interactions between oral commensals. ISME J. 2020, 14, 1154–1169. [Google Scholar] [CrossRef]
- Dixon, D.R.; Bainbridge, B.W.; Darveau, R.P. Modulation of the innate immune response within the periodontium. Periodontology 2000 2004, 35, 53–74. [Google Scholar] [CrossRef]
- Koch, C.D.; Gladwin, M.T.; Freeman, B.A.; Lundberg, J.O.; Weitzberg, E.; Morris, A. Enterosalivary nitrate metabolism and the microbiome: Intersection of microbial metabolism, nitric oxide and diet in cardiac and pulmonary vascular health. Free. Radic. Biol. Med. 2017, 105, 48–67. [Google Scholar] [CrossRef]
- Kapil, V.; Haydar, S.M.; Pearl, V.; Lundberg, J.O.; Weitzberg, E.; Ahluwalia, A. Physiological role for nitrate-reducing oral bacteria in blood pressure control. Free. Radic. Biol. Med. 2013, 55, 93–100. [Google Scholar] [CrossRef]
- Gallimidi, A.B.; Fischman, S.; Revach, B.; Bulvik, R.; Maliutina, A.; Rubinstein, A.M.; Nussbaum, G.; Elkin, M. Periodontal pathogens Porphyromonas gingivalis and Fusobacterium nucleatum promote tumor progression in an oral-specific chemical carcinogenesis model. Oncotarget 2015, 6, 22613–22623. [Google Scholar] [CrossRef]
- Abushahba, F.; Gürsoy, M.; Hupa, L.; Närhi, T.O. Effect of bioactive glass air-abrasion on Fusobacterium nucleatum and Porphyromonas gingivalis biofilm formed on moderately rough titanium surface. Eur. J. Oral Sci. 2021, 129, e12783. [Google Scholar] [CrossRef] [PubMed]
- Caselli, E.; Fabbri, C.; D’accolti, M.; Soffritti, I.; Bassi, C.; Mazzacane, S.; Franchi, M. Defining the oral microbiome by whole-genome sequencing and resistome analysis: The complexity of the healthy picture. BMC Microbiol. 2020, 20, 120. [Google Scholar] [CrossRef]
- Ames, N.J.; Ranucci, A.; Moriyama, B.; Wallen, G.R. The human microbiome and understanding the 16s rRNA gene in trans-lational nursing science. Nurs. Res. 2017, 66, 184. [Google Scholar] [PubMed]
Experimental Group | Unassigned | k__Archaea | k__Bacteria |
---|---|---|---|
Biofilm without sucrose | 0.07 | 0.01 | 99.92 |
Biofilm with sucrose | 0.00 | 0.04 | 99.96 |
CHX0.1 | 0.00 | 0.00 | 100.00 |
CHX0.2 | 0.00 | 0.00 | 100.00 |
ISOWE120 | 0.00 | 0.03 | 99.97 |
CHX0.1 + ISOWE120 | 0.00 | 0.00 | 100.00 |
Experimental Group | Phylum | Class | Order | Family | Genus | Species |
---|---|---|---|---|---|---|
Biofilm without sucrose | 0.00 | 0.03 | 0.02 | 0.75 | 0.77 | 1.96 |
Biofilm with sucrose | 0.10 | 0.06 | 0.01 | 0.39 | 1.62 | 2.07 |
CHX0.1 | 0.00 | 0.00 | 0.01 | 0.14 | 1.01 | 1.51 |
CHX0.2 | 0.00 | 0.00 | 0.00 | 0.06 | 1.38 | 1.08 |
ISOWE120 | 0.08 | 0.07 | 0.00 | 0.27 | 1.25 | 2.93 |
CHX0.1 + ISOWE120 | 0.00 | 0.01 | 0.01 | 0.14 | 0.94 | 1.73 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saha, S.; Boesch, C.; Maycock, J.; Wood, S.; Do, T. Sweet Orange Juice Processing By-Product Extracts: A Caries Management Alternative to Chlorhexidine. Biomolecules 2023, 13, 1607. https://doi.org/10.3390/biom13111607
Saha S, Boesch C, Maycock J, Wood S, Do T. Sweet Orange Juice Processing By-Product Extracts: A Caries Management Alternative to Chlorhexidine. Biomolecules. 2023; 13(11):1607. https://doi.org/10.3390/biom13111607
Chicago/Turabian StyleSaha, Suvro, Christine Boesch, Joanne Maycock, Simon Wood, and Thuy Do. 2023. "Sweet Orange Juice Processing By-Product Extracts: A Caries Management Alternative to Chlorhexidine" Biomolecules 13, no. 11: 1607. https://doi.org/10.3390/biom13111607
APA StyleSaha, S., Boesch, C., Maycock, J., Wood, S., & Do, T. (2023). Sweet Orange Juice Processing By-Product Extracts: A Caries Management Alternative to Chlorhexidine. Biomolecules, 13(11), 1607. https://doi.org/10.3390/biom13111607