Role of Phytohormones in Biomass and Polyphenol Accumulation in Salvia bulleyana In Vitro Culture
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Culture Conditions
2.3. Phytochemical Analysis
2.3.1. Sample Preparation
2.3.2. Phenolic Acid Qualitative and Quantitative Analysis
2.4. Establishment of Optimal Growth Conditions
2.5. Statistical Analysis
3. Results and Discussion
3.1. Effect of Phytohormones on Culture Growth
3.2. Effect of Phytohormones on Metabolite Accumulation
3.3. Establishment of Optimal Conditions Based on the Obtained Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chandran, H.; Meena, M.; Barupal, T.; Sharma, K. Plant tissue culture as a perpetual source for production of industrially important bioactive compounds. Biotechnol. Rep. 2020, 26, e00450. [Google Scholar]
- Espinosa-Leal, C.A.; Puente-Garza, C.A.; García-Lara, S. In vitro plant tissue culture: Means for production of biological active compounds. Planta 2018, 248, 1–18. [Google Scholar] [CrossRef]
- Murthy, H.N.; Lee, E.; Paek, K.Y. Production of secondary metabolites from cell and organ cultures: Strategies and approaches for biomass improvement and metabolite accumulation. Plant Cell Tissue Organ Cult. 2014, 118, 1–16. [Google Scholar]
- Agboola, D.A.; Ogunyale, O.G.; Fawibe, O.O.; Ajiboye, A.A. A review of plant growth substances: Their forms, structures, synthesis and functions. J. Adv. Lab. Res. Biol. 2014, 5, 152–168. [Google Scholar]
- Łuczkiewicz, M.; Kokotkiewicz, A.; Glod, D. Plant growth regulators affect biosynthesis and accumulation profile of isoflavone phytoestrogens in high-productive in vitro cultures of Genista tinctoria. Plant Cell Tissue Organ Cult. 2014, 118, 419–429. [Google Scholar] [CrossRef] [Green Version]
- Aremu, A.O.; Bairu, M.W.; Szucova, L.; Dolezal, K.; Finnie, J.F.; Van Staden, J. Shoot and root proliferation in ‘Williams’ banana: Are the topolins better cytokinins? Plant Cell Tissue Organ Cult. 2012, 111, 209–218. [Google Scholar]
- Kucharska, D.; Orlikowska, T.; Maciorowski, R.; Kunka, M.; Wójcik, D.; Pluta, S. Application of meta-Topolin for improving micropropagation of gooseberry (Ribes grossularia). Sci. Hortic. 2020, 272, 109529. [Google Scholar]
- Sharifi-Rad, M.; Ozcelik, B.; Altın, G.; Daşkaya-Dikmen, C.; Martorell, M.; Ramírez-Alarcón, K.; Alarcón-Zapata, P.; Morais-Braga, M.F.B.; Carneiro, J.N.; Leal, A.L.A.B.; et al. Salvia spp. plants-from farm to food applications and phytopharmacotherapy. Trends Food Sci. Technol. 2018, 80, 242–263. [Google Scholar] [CrossRef]
- Wu, Y.B.; Ni, Z.Y.; Shi, Q.W.; Dong, M.; Kiyota, H.; Gu, Y.C.; Cong, B. Constituents from Salvia species and their biological activities. Chem. Rev. 2012, 112, 5967–6026. [Google Scholar] [CrossRef]
- Xu, J.; Wei, K.; Zhang, G.; Lei, L.; Yang, D.; Wang, W.; Han, Q.; Xia, Y.; Bi, Y.; Yang, M.; et al. Ethnopharmacology, phytochemistry, and pharmacology of Chinese Salvia species: A review. J. Ethnopharmacol. 2018, 225, 18–30. [Google Scholar]
- Li, M.; Chen, J.; Peng, Y.; Wu, Q.; Xiao, P. Investigation of Danshen and related medicinal plants in China. J. Ethnopharmacol. 2008, 120, 419–425. [Google Scholar] [PubMed]
- Grzegorczyk-Karolak, I.; Krzemińska, M.; Kiss, A.K.; Olszewska, M.A.; Owczarek, A. Phytochemical profile and antioxidant activity of aerial and underground parts of Salvia bulleyana Diels. plants. Metabolites 2020, 10, 497. [Google Scholar] [CrossRef] [PubMed]
- Grzegorczyk-Karolak, I.; Hnatuszko-Konka, K.; Krzemińska, M.; Olszewska, M.A.; Owczarek, A. Cytokinin-based tissue cultures for stable medicinal plant production: Regeneration and phytochemical profiling of Salvia bulleyana shoots. Biomolecules 2021, 11, 1513. [Google Scholar] [CrossRef]
- Makunga, N.P.; Van Staden, J. An efficient system for the production of clonal plantlets of the medicinally important aromatic plant: Salvia africana-lutea L. Plant Cell Tissue Organ Cult. 2008, 92, 63–72. [Google Scholar]
- Echeverrigaray, S.; Carrer, R.P.; Andrade, L. Micropropagation of Salvia guaranitica Benth through axillary shoot proliferation. Braz. Arch. Biol. Technol. 2010, 53, 883–888. [Google Scholar] [CrossRef] [Green Version]
- Gostin, I. Effects of different plant hormones on Salvia officinalis cultivated in vitro. Int. J. Bot. 2008, 4, 430–436. [Google Scholar]
- Assaf, M.; Korkmaz, A.; Karaman, Ş.; Kulak, M. Effect of plant growth regulators and salt stress on secondary metabolite composition in Lamiaceae species. S. Afr. J. Bot. 2022, 144, 480–493. [Google Scholar]
- Murashige, T.; Skoog, F. A revised medium for rapid growth and bioassay with tobacco tissue culture. Physiol. Plant. 1962, 15, 473–497. [Google Scholar]
- Wojciechowska, M.; Owczarek, A.; Kiss, A.K.; Grąbkowska, R.; Olszewska, M.A.; Grzegorczyk-Karolak, I. Establishment of hairy root cultures of Salvia bulleyana Diels for production of polyphenolic compounds. J. Biotechnol. 2020, 318, 10–19. [Google Scholar] [CrossRef]
- Grzegorczyk-Karolak, I.; Kuźma, Ł.; Skała, E.; Kiss, A.K. Hairy root cultures of Salvia viridis L. for production of polyphenolic compounds. Ind. Crops Prod. 2018, 117, 235–244. [Google Scholar] [CrossRef]
- Krzemińska, M.; Owczarek, A.; Olszewska, M.A.; Grzegorczyk-Karolak, I. In vitro strategy for the enhancement of the production of bioactive polyphenols in transformed roots of Salvia bulleyana. Int。 J. Mol. Sci. 2022, 23, 7771. [Google Scholar] [CrossRef]
- Petrova, L.; Nikolova, M.; Dimitrova, L.; Zayova, E. Micropropagation and evaluation of flavonoid content and antioxidant activity of Salvia officinalis L. Genet. Plant Physiol. 2015, 5, 48–60. [Google Scholar]
- Misic, D.; Grubisic, D.; Konjevic, R. Micropropagation of Salvia brachyodon through nodal explants. Biol. Plant. 2006, 50, 473–476. [Google Scholar]
- Arikat, N.A.; Fawzia, M.J.; Nabila, S.K.; Rida, A.S. Micropropagation and accumulation of essential oils in wild sage (Salvia fruticosa Mill.). Sci. Hortic. 2004, 100, 193–202. [Google Scholar] [CrossRef]
- Molina, M.; Luis, A.; Luis, J.G. In vitro mass propagation of Salvia canariensis by axillary shoots. Acta Soc. Bot. Pol. 1997, 66, 351–354. [Google Scholar]
- Cuenca, S.; Amo-Marco, J.B. In vitro propagation of two Spanish endemic species of Salvia through bud proliferation. In Vitro Cell. Dev. Biol. Plant 2000, 36, 225–229. [Google Scholar] [CrossRef]
- Grzegorczyk-Karolak, I.; Hnatuszko-Konka, K.; Zarzycka, M.; Kuźma, Ł. The stimulatory effect of purine-type cytokinins on proliferation and polyphenolic compound accumulation in shoot culture of Salvia viridis. Biomolecules 2020, 10, 178. [Google Scholar] [CrossRef] [Green Version]
- Weremczuk-Jeżyna, I.; Skała, E.; Kuźma, Ł.; Kiss, A.K.; Grzegorczyk-Karolak, I. The effect of purine-type cytokinin on the proliferation and production of phenolic compounds in transformed shoots of Dracocephalum forrestii. J. Biotechnol. 2019, 306, 125–133. [Google Scholar] [CrossRef]
- Moyo, M.; Finnie, J.F.; Van Staden, J. Topolins in Pelargonium sidoides micropropagation: Do the new brooms really sweep cleaner? Plant Cell Tissue Organ Cult. 2012, 110, 319–327. [Google Scholar]
- Gentile, A.; Jàquez, M.G.; Martinez, J.; Frattarelli, A.; Nota, P.; Caboni, E. Effect of meta-topolin on micropropagation and adventitious shoot regeneration in Prunus rootstocks. Plant Cell Tissue Organ Cult. 2014, 118, 373–381. [Google Scholar]
- Bairu, M.W.; Stirk, W.A.; Dolezal, K.; Van Staden, J. Optimizing the micropropagation protocol for the endangered Aloe polyphylla: Can meta-topolin and its derivatives serve as replacement for benzyladenine and zeatin? Plant Cell Tissue Organ Cult. 2007, 90, 15–23. [Google Scholar] [CrossRef]
- Van Staden, J.; Zazimalova, E.; George, E.F. Plant growth regulators II: Cytokinins, their analogues and antagonists. In Plant Propagation by Tissue Culture; George, E.F., Hall, M.A., De Klerk, G.J., Eds.; Springer: Dordrecht, The Netherlands, 2008; Volume 1, pp. 205–226. [Google Scholar]
- Grzegorczyk-Karolak, I.; Kuźma, Ł.; Wysokińska, H. The effect of cytokinins on shoot proliferation, secondary metabolite production and antioxidant potential in shoot cultures of Scutellaria alpina. Plant. Cell Tissue Organ. Cult. 2015, 122, 699–708. [Google Scholar] [CrossRef] [Green Version]
- Aremu, A.O.; Gruz, J.; Šubrtová, M.; Szüčová, L.; Doležal, K.; Bairu, M.W.; Finnie, J.F.; Van Staden, J. Antioxidant and phenolic acid profiles of tissue cultured and acclimatized Merwilla plumbea plantlets in relation to the applied cytokinins. J. Plant Physiol. 2013, 170, 1303–1308. [Google Scholar]
- Baskaran, P.; Moyo, M.; Van Staden, J. In vitro plant regeneration, phenolic compound production and pharmacological activities of Coleonema pulchellum. S. Afr. J. Bot. 2014, 90, 74–79. [Google Scholar] [CrossRef] [Green Version]
- Karalija, E.; Ćavar Zeljković, S.; Tarkowski, P.; Muratović, E.; Parić, A. The effect of cytokinins on growth, phenolics, antioxidant and antimicrobial potential in liquid agitated shoot cultures of Knautia sarajevensis. Plant Cell Tissue Organ Cult. 2017, 131, 347–357. [Google Scholar]
- Uzun, B.; Taiwo, M.; Syidanova, A.; Uzun, D.O. The technique for order of preference by similarity to ideal solution (TOPSIS). In Application of Multi-Criteria Decision Analysis in Environmental and Civil Engineering; Ozsahin, D.U., Gökçekuş, H., Uzun, B., LaMoreaux, J., Eds.; Springer: Cham, Switzerland, 2021; pp. 25–30. [Google Scholar]
Rt | Tentative Compound | [M-H]- | Fragmentation Ion | |
---|---|---|---|---|
1 | 12.6 | Caffeoyl-threonic acid I (CTA I) | 297 | 179, 161, 135 |
2 | 14.5 | Caffeoyl-threonic acid II (CTA II) | 297 | 179, 161, 135 |
3 | 18.6 | Caffeic acid CA | 179 | 135 |
4 | 20.1 | Caffeoyl-threonic acid III (CTA III) | 297 | 179, 161, 135 |
5 | 24.2 | Protolithospermic acid isomer I (PLA I) | 357 | 313, 269, 203 |
6 | 24.8 | Protolithospermic acid isomer II (PLA II) | 357 | 313, 269, 203 |
7 | 31.5 | Rosmarinic acid hexoside (RAH) | 521 | 359 |
8 | 36.5 | Rosmarinic acid (RA) | 359 | 197, 179, 161 |
9 | 37.5 | Salvianolic acid K (SAK) | 555 | 537,493, 359, 313, 269 |
10 | 40.2 | Lithospermic acid isomer (LA) | 537 | 493, 359 |
11 | 41.6 | Dehydrorosmarinic acid (DRA) | 343 | 325, 223, 197, 179, 135 |
12 | 42.2 | Caffeic acid derivative (CAD) | 343 | 181, 161 |
13 | 43.5 | Methyl rosmarinate (MR) | 373 | 179, 135 |
14 | 50.8 | Salvianolic acid F isomer I (SAF I) | 313 | 269, 161 |
15 | 53.6 | Salvianolic acid F isomer II (SAF II) | 313 | 269, 203, 161 |
Phytohormon combination | Compound [mg/g dw] | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
CTA I | CTA II | CA | CTA III | PSL I | PSL II | RAH | RA | SAK | LS | DRA+CAD | RM | SAF I | SAF II | |
0 | tr | 0.29 ± 0.036cd | 0.28 ± 0.037ab | 0.176 ± 0.021e | 0.066 ± 0.008ef | 0.062 ± 0.007cd | 0.125 ± 0.018g | 16.76 ± 1.86e | 1.208 ± 0.16ab | 0.307 ± 0.039b | 0.144 ± 0.020d | 0.146 ± 0.017gh | 0.163 ± 0.021cd | 0.106 ± 0.012d |
BAP 0.5 | tr | 0.036 ± 0.003h | 0.249 ± 0.017bc | 0.039 ± 0.003h | 0.214 ± 0.005b | 0.108 ± 0.010b | 0.023 ± 0.004i | 8.87 ± 0.74h | 0.481 ± 0.044h | tr | 0.062 ± 0.006g | 0.171 ± 0.022gf | 0.283 ± 0.014b | 0.190 ± 0.013b |
BAP 1 | tr | 0.017 ± 0.001i | 0.15 ± 0.001h | 0.022 ± 0.001i | 0.128 ± 0.004c | 0.064 ± 0.001d | 0.023 ± 0.001i | 11.77 ± 0.30fg | 0.654 ± 0.027f | tr | 0.094 ± 0.004e | 0.194 ± 0.008f | 0.14 ± 0.001d | 0.101 ± 0.001d |
BAP 2 | tr | 0.05 ± 0.002g | 0.284 ± 0.001a | 0.044 ± 0.001h | 0.285 ± 0.001a | 0.210 ± 0.001a | tr | 8.24 ± 0.76h | 0.242 ± 0.020j | tr | 0.064 ± 0.007g | 0.143 ± 0.029gh | 0.33 ± 0.008a | 0.238 ± 0.005a |
RBAP 0.5 | 0.148 ± 0.002a | 0.485 ± 0.003a | 0.186 ± 0.001f | 0.371 ± 0.008a | tr | 0.049 ± 0.003e | 0.243 ± 0.007d | 25.82 ± 0.51d | 0.708 ± 0.025e | 0.122 ± 0.001e | 0.143 ± 0.003d | 0.262 ± 0.007d | 0.071 ± 0.001g | 0.046 ± 0.001g |
RBAP 1 | 0.122 ± 0.007b | 0.418 ± 0.014b | 0.233 ± 0.006cd | 0.348 ± 0.029a | tr | 0.067 ± 0.001cd | 0.341 ± 0.032c | 29.58 ± 0.27b | 0.675 ± 0.191efg | 0.479 ± 0.095a | 0.23 ± 0.039b | 0.288 ± 0.034cd | 0.126 ± 0.013e | 0.094 ± 0.012de |
RBAP 2 | 0.064 ± 0.001e | 0.304 ± 0.005c | 0.226 ± 0.006d | 0.254 ± 0.004b | tr | 0.064 ± 0.001d | 0.463 ± 0.014a | 33.67 ± 0.80a | 1.37 ± 0.037a | 0.415 ± 0.019a | 0.306 ± 0.008a | 0.348 ± 0.006b | 0.125 ± 0.001e | 0.095 ± 0.001e |
BPA 0.5 | 0.077 ± 0.004d | 0.277 ± 0.014d | 0.187 ± 0.008f | 0.204 ± 0.006d | 0.028 ± 0.005g | 0.061 ± 0.006de | 0.187 ± 0.003f | 24.13 ± 0.96d | 0.962 ± 0.039b | 0.205 ± 0.033d | 0.183 ± 0.013c | 0.299 ± 0.012c | 0.090 ± 0.004f | 0.072 ± 0.006f |
BPA 1 | 0.096 ± 0.002c | 0.313 ± 0.005c | 0.246 ± 0.004bc | 0.222 ± 0.001c | 0.131 ± 0.003c | 0.102 ± 0.001b | 0.199 ± 0.006e | 25.80 ± 0.4d | 0.801 ± 0.02d | 0.281 ± 0.005c | 0.209 ± 0.004b | 0.224 ± 0.002e | 0.151 ± 0.002c | 0.117 ± 0.002c |
BPA 2 | 0.064 ± 0.005e | 0.218 ± 0.020e | 0.234 ± 0.013cd | 0.170 ± 0.009e | 0.062 ± 0.007f | 0.106 ± 0.004b | 0.218 ± 0.013e | 29.33 ± 0.73b | 0.615 ± 0.016fg | 0.339 ± 0.004b | 0.229 ± 0.04b | 0.404 ± 0.017a | 0.165 ± 0.009c | 0.124 ± 0.009c |
M-T 0.5 | 0.073 ± 0.001d | 0.276 ± 0.002d | 0.18 ± 0.006f | 0.2 ± 0.002d | tr | 0.054 ± 0.001e | 0.24 ± 0.003d | 27.19 ± 0.37bc | 1.02 ± 0.02b | 0.203 ± 0.006d | 0.15 ± 0.002d | 0.396 ± 0.008a | 0.074 ± 0.001g | 0.05 ± 0.003g |
M-T 1 | 0.132 ± 0.005b | 0.423 ± 0.014b | 0.209 ± 0.003e | 0.348 ± 0.006a | 0.061 ± 0.001f | 0.093 ± 0.005b | 0.423 ± 0.002b | 25.38 ± 0.25d | 0.615 ± 0.008fg | 0.124 ± 0.002e | 0.1 ± 0.003e | 0.283 ± 0.003c | 0.105 ± 0.001f | 0.059 ± 0.001g |
M-T 2 | 0.066 ± 0.002e | 0.236 ± 0.011e | 0.186 ± 0.005f | 0.182 ± 0.008e | 0.019 ± 0.002g | 0.071 ± 0.001c | 0.195 ± 0.009ef | 26.03 ± 0.78cd | 0.561 ± 0.011g | 0.138 ± 0.008e | 0.182 ± 0.004c | 0.389 ± 0.009a | 0.108 ± 0.005f | 0.069 ± 0.003f |
K 0.5 | 0.025 ± 0.001f | 0.087 ± 0.002f | 0.156 ± 0.004h | 0.108 ± 0.001f | 0.070 ± 0.002e | 0.047 ± 0.002e | 0.042 ± 0.001h | 12.41 ± 0.1f | 0.745 ± 0.002e | 0.033 ± 0.001g | 0.103 ± 0.001e | 0.168 ± 0.002g | 0.147 ± 0.004cd | 0.093 ± 0.001e |
K 1 | 0.012 ± 0.001g | 0.052 ± 0.002g | 0.166 ± 0.004g | 0.082 ± 0.003g | 0.099 ± 0.007d | 0.066 ± 0.002cd | 0.025 ± 0.003i | 10.71 ± 0.14g | 0.803 ± 0.007d | 0.039 ± 0.001g | 0.079 ± 0.005f | 0.134 ± 0.001h | 0.15 ± 0.005c | 0.107 ± 0.003d |
K 2 | 0.014 ± 0.001g | 0.055 ± 0.001g | 0.166 ± 0.001g | 0.084 ± 0.001g | 0.071 ± 0.002e | 0.06 ± 0.001d | 0.041 ± 0.001h | 15.31 ± 0.03e | 0.868 ± 0.001c | 0.051 ± 0.001f | 0.15 ± 0.001d | 0.255 ± 0.004d | 0.146 ± 0.001cd | 0.092 ± 0.002e |
Phytohormon combination | Compound [mg/g dw] | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
CTA I | CTA II | CA | CTA III | PSL I | PSL II | RAH | RA | SAK | LS | DRA+CAD | RM | SAF I | SAF II | |
0 | 0.045 ± 0.003e | 0.186 ± 0.013e | 0.179 ± 0.014fg | 0.113 ± 0.007g | 0.042 ± 0.003h | 0.040 ± 0.002i | 0.080 ± 0.007b | 10.76 ± 0.62c | 0.774 ± 0.06c | 0.197 ± 0.014a | 0.092 ± 0.008c | 0.094 ± 0.006h | 0.104 ± 0.008i | 0.068 ± 0.004i |
BAP 0.5 | tr | 0.024 ± 0.002h | 0.255 ± 0.015d | 0.030 ± 0.002i | 0.272 ± 0.006ab | 0.15 ± 0.012bc | tr | 6.64 ± 0.55d | 0.367 ± 0.032f | tr | 0.039 ± 0.002f | 0.081 ± 0.009h | 0.345 ± 0.027de | 0.239 ± 0.022f |
BAP 1 | tr | tr | 0.152 ± 0.001g | 0.040 ± 0.001i | 0.119 ± 0.001e | 0.126 ± 0.002d | 0.030 ± 0.001d | 19.00 ± 0.09a | 0.899 ± 0.005b | tr | 0.165 ± 0.001b | 0.382 ± 0.002a | 0.130 ± 0.002h | 0.108 ± 0.001h |
BAP 2 | tr | 0.033 ± 0.001g | 0.197 ± 0.005f | 0.075 ± 0.002h | 0.083 ± 0.003g | 0.110 ± 0.005e | 0.044 ± 0.001c | 17.83 ± 0.39a | 0.979 ± 0.017a | 0.055 ± 0.002d | 0.198 ± 0.005a | 0.325 ± 0.01b | 0.210 ± 0.009g | 0.57 ± 0.009a |
RBAP 0.5 | 0.103 ± 0.001b | 0.327 ± 0.001b | 0.572 ± 0.019a | 0.205 ± 0.013c | 0.278 ± 0.011a | 0.185 ± 0.025b | 0.161 ± 0.001a | 18.02 ± 0.44a | 0.809 ± 0.158abc | 0.07 ± 0.003c | 0.173 ± 0.019ab | 0.206 ± 0.024ef | 0.614 ± 0.069a | 0.343 ± 0.057cd |
RBAP 1 | 0.126 ± 0.011ab | 0.372 ± 0.034ab | 0.536 ± 0.009a | 0.295 ± 0.023ab | 0.287 ± 0.005a | 0.135 ± 0.006d | 0.076 ± 0.001b | 18.70 ± 0.08a | 0.196 ± 0.01h | tr | 0.092 ± 0.007c | 0.233 ± 0.019de | 0.401 ± 0.025c | 0.18 ± 0.026fg |
RBAP 2 | 0.058 ± 0.003d | 0.189 ± 0.011e | 0.581 ± 0.029a | 0.142 ± 0.01f | 0.265 ± 0.026ab | 0.283 ± 0.015a | 0.049 ± 0.004c | 18.84 ± 0.87a | 0.568 ± 0.016e | 0.085 ± 0.004b | 0.188 ± 0.012a | 0.252 ± 0.018de | 0.676 ± 0.026a | 0.429 ± 0.021b |
BPA 0.5 | 0.14 ± 0.024a | 0.457 ± 0.054a | 0.395 ± 0.034b | 0.314 ± 0.015a | 0.293 ± 0.035ab | 0.176 ± 0.015b | 0.076 ± 0.001b | 19.61 ± 2.18ab | 0.166 ± 0.005i | 0.039 ± 0.016d | 0.027 ± 0.008g | 0.148 ± 0.033g | 0.488 ± 0.03b | 0.333 ± 0.023c |
BPA 1 | 0.142 ± 0.012a | 0.436 ± 0.037a | 0.323 ± 0.032bc | 0.261 ± 0.018b | 0.277 ± 0.026ab | 0.142 ± 0.014bcd | 0.029 ± 0.002d | 17.07 ± 1.17ab | 0.114 ± 0.013j | tr | 0.055 ± 0.009e | 0.143 ± 0.012g | 0.409 ± 0.036c | 0.276 ± 0.022de |
BPA 2 | 0.079 ± 0.003c | 0.29 ± 0.011c | 0.294 ± 0.009c | 0.205 ± 0.008c | 0.166 ± 0.007d | 0.125 ± 0.007d | 0.056 ± 0.002c | 20.74 ± 0.88a | 0.374 ± 0.019f | 0.058 ± 0.011d | 0.085 ± 0.024cd | 0.18 ± 0.014f | 0.305 ± 0.008e | 0.201 ± 0.007f |
M-T 0.5 | 0.065 ± 0.001d | 0.221 ± 0.003d | 0.306 ± 0.001c | 0.162 ± 0.001e | 0.097 ± 0.005f | 0.102 ± 0.001e | 0.04 ± 0.001c | 16.71 ± 0.05ab | 0.26 ± 0.002g | 0.02 ± 0.001e | 0.072 ± 0.001d | 0.285 ± 0.001c | 0.382 ± 0.002c | 0.282 ± 0.003d |
M-T 1 | 0.085 ± 0.003c | 0.279 ± 0.007c | 0.206 ± 0.001e | 0.215 ± 0.001c | 0.043 ± 0.008h | 0.076 ± 0.001g | 0.05 ± 0.001c | 15.86 ± 0.04b | 0.204 ± 0.004h | tr | 0.024 ± 0.001g | 0.212 ± 0.01e | 0.191 ± 0.006g | 0.11 ± 0.001h |
M-T 2 | 0.068 ± 0.002d | 0.215 ± 0.008d | 0.229 ± 0.003d | 0.178 ± 0.005d | 0.098 ± 0.001f | 0.062 ± 0.001h | 0.033 ± 0.002d | 14.59 ± 0.11b | 0.243 ± 0.004g | tr | 0.047 ± 0.002f | 0.255 ± 0.003d | 0.233 ± 0.003f | 0.146 ± 0.001g |
K 0.5 | 0.015 ± 0.001f | 0.063 ± 0.002f | 0.213 ± 0.004e | 0.074 ± 0.001h | 0.115 ± 0.005e | 0.09 ± 0.001f | 0.033 ± 0.001d | 11.07 ± 0.05c | 0.644 ± 0.004d | 0.044 ± 0.004d | 0.074 ± 0.001d | 0.171 ± 0.007f | 0.187 ± 0.012g | 0.141 ± 0.005g |
K 1 | tr | tr | 0.285 ± 0.009c | tr | 0.209 ± 0.002c | 0.157 ± 0.002c | tr | 6.15 ± 0.80d | 0.701 ± 0.098d | tr | 0.056 ± 0.011e | 0.127 ± 0.009g | 0.356 ± 0.001d | 0.296 ± 0.002c |
K 2 | tr | tr | 0.289 ± 0.005c | tr | 0.255 ± 0.001b | 0.153 ± 0.001c | tr | 5.14 ± 0.12d | 0.53 ± 0.011e | tr | 0.078 ± 0.005cd | 0.101 ± 0.007h | 0.365 ± 0.001d | 0.307 ± 0.002c |
Performance Score | IAA 0.1 g/L | IAA 0.5 mg/L |
---|---|---|
0 | 0.346 | 0.162 |
BAP 0.5 | 0.239 | 0.205 |
BAP 1 | 0.308 | 0.421 |
BAP 2 | 0.295 | 0.365 |
RBAP 0.5 | 0.637 | 0.425 |
RBAP 1 | 0.673 | 0.509 |
RBAP 2 | 0.641 | 0.548 |
BPA 0.5 | 0.589 | 0.487 |
BPA 1 | 0.700 | 0.436 |
BPA 2 | 0.764 | 0.542 |
M-T 0.5 | 0.663 | 0.380 |
M-T 1 | 0.763 | 0.386 |
M-T 2 | 0.758 | 0.386 |
K 0.5 | 0.186 | 0.160 |
K 1 | 0.100 | 0.056 |
K 2 | 0.195 | 0.065 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grzegorczyk-Karolak, I.; Krzemińska, M.; Kiss, A.K.; Owczarek-Januszkiewicz, A.; Olszewska, M.A. Role of Phytohormones in Biomass and Polyphenol Accumulation in Salvia bulleyana In Vitro Culture. Biomolecules 2023, 13, 227. https://doi.org/10.3390/biom13020227
Grzegorczyk-Karolak I, Krzemińska M, Kiss AK, Owczarek-Januszkiewicz A, Olszewska MA. Role of Phytohormones in Biomass and Polyphenol Accumulation in Salvia bulleyana In Vitro Culture. Biomolecules. 2023; 13(2):227. https://doi.org/10.3390/biom13020227
Chicago/Turabian StyleGrzegorczyk-Karolak, Izabela, Marta Krzemińska, Anna K. Kiss, Aleksandra Owczarek-Januszkiewicz, and Monika A. Olszewska. 2023. "Role of Phytohormones in Biomass and Polyphenol Accumulation in Salvia bulleyana In Vitro Culture" Biomolecules 13, no. 2: 227. https://doi.org/10.3390/biom13020227
APA StyleGrzegorczyk-Karolak, I., Krzemińska, M., Kiss, A. K., Owczarek-Januszkiewicz, A., & Olszewska, M. A. (2023). Role of Phytohormones in Biomass and Polyphenol Accumulation in Salvia bulleyana In Vitro Culture. Biomolecules, 13(2), 227. https://doi.org/10.3390/biom13020227