Altered Distribution of Unesterified Cholesterol among Lipoprotein Subfractions of Patients with Diabetes Mellitus Type 2
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients and Control Subjects
2.2. Clinical Laboratory Tests
2.3. Nuclear Magnetic Resonance (NMR) Spectroscopy of Plasma
2.4. Statistics
3. Results
3.1. Univariate Associations with Diabetes
3.2. Univariate Correlations between Variables
- -
- In both control subjects and diabetic patients, clusters contain several features of one lipoprotein subclass or even several subclasses of one lipoprotein, for example, medium, large, and very large HDL or large, very large, and extremely large VLDL.
- -
- -
- -
- In the diabetes heatmap (Figure 3), some triglyceride-containing HDLs (M-HDL-TG, XL-HDL-TG, S-HDL-TG, HDL-TG), as well as S-LDL-TG and IDL-TG, are in the VLDL cluster D4.
- -
- The diabetes heatmap (Figure 3) contains triglyceride features in clusters otherwise characterized by cholesterol-rich lipoproteins (LDL-TG, M-LDL-TG, L-LDL-TG in cluster D1 and S-LDL-TG, IDL-TG, HDL-TG, XL-HDL-TG in cluster D4).
- -
- Features of small HDLs do not cluster with features of the other HDL (medium, large, or very large HDL). Two of them (S-HDL-PL and S-HDL-FC) in the diabetes heatmap (Figure 3) are even linked to the two LDL subclusters, D1 and D2.
- -
- VLDLs of different sizes are distributed among two subclusters (D4 and D5 in the diabetes heatmap shown in Figure 3, and C2 and C3 in the control heatmap shown in Figure 2). All features of very small VLDL (except XS-VLDL-TG, which clusters with other VLDL features) and some features of small VLDL (S-VLDL-C in diabetes, S-VLDL-CE in controls and diabetes) cluster with features of LDL in C1, respectively, in D1 and D2 rather than large and very large VLDL.
3.3. Multivariate Associations with Diabetes
3.4. Altered Distribution of Free Cholesterol among Lipoprotein Subclasses
3.5. Correlations with HbA1c
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Athyros, V.G.; Doumas, M.; Imprialos, K.P.; Stavropoulos, K.; Georgianou, E.; Katsimardou, A.; Karagiannis, A. Diabetes and lipid metabolism. Hormones 2018, 17, 61–67. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rao Kondapally Seshasai, S.; Kaptoge, S.; Thompson, A.; Di Angelantonio, E.; Gao, P.; Sarwar, N.; Whincup, P.H.; Mukamal, K.J.; Gillum, R.F.; Holme, I.; et al. Diabetes mellitus, fasting glucose, and risk of cause-specific death. N. Engl. J. Med. 2011, 364, 829–841. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- American Diabetes Association. 10. Cardiovascular Disease and Risk Management: Standards of Medical Care in Diabetes—2021. Diabetes Care 2021, 44 (Suppl. 1), S125–S150. [Google Scholar] [CrossRef] [PubMed]
- American Diabetes Association. 9. Pharmacologic Approaches to Glycemic Treatment: Standards of Medical Care in Diabetes—2021. Diabetes Care 2021, 44 (Suppl. 1), S111–S124. [Google Scholar] [CrossRef]
- Lodge, S.; Nitschke, P.; Loo, R.L.; Kimhofer, T.; Bong, S.H.; Richards, T.; Begum, S.; Spraul, M.; Schaefer, H.; Lindon, J.C.; et al. Low Volume in Vitro Diagnostic Proton NMR Spectroscopy of Human Blood Plasma for Lipoprotein and Metabolite Analysis: Application to SARS-CoV-2 Biomarkers. J. Proteome Res. 2021, 20, 1415–1423. [Google Scholar] [CrossRef]
- Clouet-Foraison, N.; Gaie-Levrel, F.; Gillery, P.; Delatour, V. Advanced lipoprotein testing for cardiovascular diseases risk assessment: A review of the novel approaches in lipoprotein profiling. Clin. Chem. Lab. Med. 2017, 55, 1453–1464. [Google Scholar] [CrossRef]
- Cardner, M.; Yalcinkaya, M.; Goetze, S.; Luca, E.; Balaz, M.; Hunjadi, M.; Hartung, J.; Shemet, A.; Kränkel, N.; Radosavljevic, S.; et al. Structure-function relationships of HDL in diabetes and coronary heart disease. JCI Insight 2020, 5, e131491. [Google Scholar] [CrossRef] [Green Version]
- Nightingale Health. Available online: https://nightingalehealth.com/biomarkers (accessed on 10 December 2022).
- RCT. R: A Language and Environment for Statistical Computing. 2020. Available online: https://cran.microsoft.com/snapshot/2014-09-08/web/packages/dplR/vignettes/xdate-dplR.pdf (accessed on 10 December 2022).
- Morze, J.; Wittenbecher, C.; Schwingshackl, L.; Danielewicz, A.; Rynkiewicz, A.; Hu, F.B.; Guasch-Ferré, M. Metabolomics and Type 2 Diabetes Risk: An Updated Systematic Review and Meta-analysis of Prospective Cohort Studies. Diabetes Care 2022, 45, 1013–1024. [Google Scholar] [CrossRef]
- Adeva-Andany, M.; López-Ojén, M.; Funcasta-Calderón, R.; Ameneiros-Rodríguez, E.; Donapetry-García, C.; Vila-Altesor, M.; Rodríguez-Seijas, J. Comprehensive review on lactate metabolism in human health. Mitochondrion 2014, 17, 76–100. [Google Scholar] [CrossRef]
- Wu, J.H.Y.; Marklund, M.; Imamura, F.; Tintle, N.; Ardisson Korat, A.V.; de Goede, J.; Zhou, X.; Yang, W.S.; de Oliveira Otto, M.C.; Kröger, J.; et al. Omega-6 fatty acid biomarkers and incident type 2 diabetes: Pooled analysis of individual-level data for 39740 adults from 20 prospective cohort studies. Lancet Diabetes Endocrinol. 2017, 5, 965–974. [Google Scholar] [CrossRef] [Green Version]
- Ong, K.L.; Cochran, B.J.; Manandhar, B.; Thomas, S.; Rye, K.A. HDL maturation and remodelling. Biochim. Biophys Acta Mol. Cell Biol. Lipids 2022, 1867, 159119. [Google Scholar] [CrossRef] [PubMed]
- Mora, S.; Otvos, J.D.; Rosenson, R.S.; Pradhan, A.; Buring, J.E.; Ridker, P.M. Lipoprotein particle size and concentration by nuclear magnetic resonance and incident type 2 diabetes in women. Diabetes 2010, 59, 1153–1160. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buergel, T.; Steinfeldt, J.; Ruyoga, G.; Pietzner, M.; Bizzarri, D.; Vojinovic, D.; Upmeier Zu Belzen, J.; Loock, L.; Kittner, P.; Christmann, L.; et al. Metabolomic profiles predict individual multidisease outcomes. Nat. Med. 2022, 28, 2309–2320. [Google Scholar] [CrossRef] [PubMed]
- Gerl, M.J.; Vaz, W.L.C.; Domingues, N.; Klose, C.; Surma, M.A.; Sampaio, J.L.; Almeida, M.S.; Rodrigues, G.; Araujo-Goncalves, P.; Ferreira, J.; et al. Cholesterol is Inefficiently Converted to Cholesteryl Esters in the Blood of Cardiovascular Disease Patients. Sci. Rep. 2018, 8, 14764. [Google Scholar] [CrossRef] [Green Version]
- Fantappiè, S.; Catapano, A.L.; Cancellieri, M.; Fasoli, L.; De Fabiani, E.; Bertolini, M.; Bosisio, E. Plasma lipoproteins and cholesterol metabolism in Yoshida rats: An animal model of spontaneous hyperlipemia. Life Sci. 1992, 50, 1913–1924. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.Y.; Kuksis, A.; Steiner, G. Comparison of the effect of hyperinsulinemia on acyl-CoA:cholesterol acyltransferase activity in the liver and intestine of the rat. Atherosclerosis 1994, 107, 25–34. [Google Scholar] [CrossRef] [PubMed]
- Maechler, P.; Wollheim, C.B.; Bentzen, C.L.; Niesor, E. Role of the intestinal acyl-CoA:cholesterol acyltransferase activity in the hyperresponse of diabetic rats to dietary cholesterol. J. Lipid Res. 1992, 33, 1475–1484. [Google Scholar] [CrossRef] [PubMed]
- Hori, M.; Satoh, M.; Furukawa, K.; Sakamoto, Y.; Hakamata, H.; Komohara, Y.; Takeya, M.; Sasaki, Y.; Miyazaki, A.; Horiuchi, S. Acyl-coenzyme A:cholesterol acyltransferase-2 (ACAT-2) is responsible for elevated intestinal ACAT activity in diabetic rats. Arterioscler. Thromb. Vasc. Biol. 2004, 24, 1689–1695. [Google Scholar] [CrossRef]
- Merzouk, H.; Madani, S.; Boualga, A.; Prost, J.; Bouchenak, M.; Belleville, J. Age-related changes in cholesterol metabolism in macrosomic offspring of rats with streptozotocin-induced diabetes. J. Lipid Res. 2001, 42, 1152–1159. [Google Scholar] [CrossRef]
- Ravid, Z.; Bendayan, M.; Delvin, E.; Sane, A.T.; Elchebly, M.; Lafond, J.; Lambert, M.; Mailhot, G.; Levy, E. Modulation of intestinal cholesterol absorption by high glucose levels: Impact on cholesterol transporters, regulatory enzymes, and transcription factors. Am. J. Physiol. Gastrointest. Liver Physiol. 2008, 295, G873–G885. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Darabi, M.; Kontush, A. High-density lipoproteins (HDL): Novel function and therapeutic applications. Biochim. Et Biophys. Acta (BBA)-Mol. Cell Biol. Lipids 2022, 1867, 159058. [Google Scholar] [CrossRef] [PubMed]
- Feng, M.; Darabi, M.; Tubeuf, E.; Canicio, A.; Lhomme, M.; Frisdal, E.; Lanfranchi-Lebreton, S.; Matheron, L.; Rached, F.; Ponnaiah, M.; et al. Free cholesterol transfer to high-density lipoprotein (HDL) upon triglyceride lipolysis underlies the U-shape relationship between HDL-cholesterol and cardiovascular disease. Eur. J. Prev. Cardiol. 2020, 27, 1606–1616. [Google Scholar] [CrossRef] [PubMed]
- Vitali, C.; Bajaj, A.; Nguyen, C.; Schnall, J.; Chen, J.; Stylianou, K.; Rader, D.J.; Cuchel, M. A systematic review of the natural history and biomarkers of primary lecithin:cholesterol acyltransferase deficiency. J. Lipid Res. 2022, 63, 100169. [Google Scholar] [CrossRef] [PubMed]
- Jones, R.J.; Owens, D.; Brennan, C.; Collins, P.B.; Johnson, A.H.; Tomkin, G.H. Increased esterification of cholesterol and transfer of cholesteryl ester to apo B-containing lipoproteins in Type 2 diabetes: Relationship to serum lipoproteins A-I and A-II. Atherosclerosis 1996, 119, 151–157. [Google Scholar] [CrossRef] [PubMed]
- Nakhjavani, M.; Morteza, A.; Karimi, R.; Banihashmi, Z.; Esteghamati, A. Diabetes induces gender gap on LCAT levels and activity. Life Sci. 2013, 92, 51–54. [Google Scholar] [CrossRef]
- Huang, Y.; von Eckardstein, A.; Assmann, G. Cell-derived unesterified cholesterol cycles between different HDLs and LDL for its effective esterification in plasma. Arter. Thromb. 1993, 13, 445–458. [Google Scholar] [CrossRef] [Green Version]
- Cedó, L.; Metso, J.; Santos, D.; García-León, A.; Plana, N.; Sabate-Soler, S.; Rotllan, N.; Rivas-Urbina, A.; Méndez-Lara, K.A.; Tondo, M.; et al. LDL Receptor Regulates the Reverse Transport of Macrophage-Derived Unesterified Cholesterol via Concerted Action of the HDL-LDL Axis: Insight From Mouse Models. Circ. Res. 2020, 127, 778–792. [Google Scholar] [CrossRef]
- von Eckardstein, A. LDL Contributes to Reverse Cholesterol Transport. Circ. Res. 2020, 127, 793–795. [Google Scholar] [CrossRef]
- Pownall, H.J.; Rosales, C.; Gillard, B.K.; Gotto, A.M. High-density lipoproteins, reverse cholesterol transport and atherogenesis. Nat. Rev. Cardiol. 2021, 18, 712–723. [Google Scholar] [CrossRef]
Variable | Controls (N = 51) | T2DM Patients (N = 66) | Adjusted p-Value |
---|---|---|---|
Age (years) | 39 (22–72) | 61 (43–74) | 9.26 × 10−13 |
Male (%) | 35.3% | 74.2% | 3.90 × 10−9 |
CHD known | 0 | 25.7% | |
BMI (kg/m2) | 23.31 (16.54–44.22) | 30.74 (19.7–45.16) | 8.29 × 10−11 |
Waist circumference (cm) | 83.5 (65.6–127.6) | 112.25 (78–141.8) | 1.57 × 10−12 |
Smoking (%) | 9.8% | 18.2% | 2.17 × 10−2 |
systolic BP (mmHg) | 120 (98–158) | 136 (95–183) | 2.57 × 10−3 |
diastolic BP (mmHg) | 80 (60–105) | 85.5 (59–110) | 9.56 × 10−3 |
Heart.rate (bpm) | 68 (44–93) | 76.5 (58–102) | 3.56 × 10−5 |
Hemoglobin (g/L) | 141 (115–168) | 146.5 (100–189) | 3.42 × 10−2 |
Hematocrit (L/L) | 0.43 (0.36–0.48) | 0.44 (0.33–0.57) | 2.15 × 10−2 |
Erythrocytes (T/L) | 4.61 (3.73–5.68) | 4.88 (3.88–6.01) | 2.82 × 10−2 |
Leukocytes (G/L) | 5.5 (2.91–12.2) | 7.42 (3.29–14.7) | 8.44 × 10−7 |
Thrombocytes (G/L) | 247 (135–342) | 234 (46–498) | 4.27 × 10−1 |
CRP (mg/L) | 0.5 (0.21–9.4) | 1.75 (0.21–40.6) | 4.07 × 10−6 |
ALT (U/L) | 18 (9–59) | 26 (10–158) | 1.11 × 10−3 |
AST (U/L) | 22 (11–50) | 24 (14–84) | 1.62 × 10−1 |
GGT (U/L) | 15 (3–80) | 31.5 (11–216) | 7.02 × 10−8 |
Creatinine (µmol/L) | 72 (51–114) | 82 (48–273) | 3.28 × 10−4 |
eGFR (ml/min) | 97 (69–124) | 85 (20–109) | 8.22 × 10−6 |
Glucose (mmol/L) | 4.8 (3.8–5.9) | 8.05 (3.8–20.4) | 1.10 × 10−15 |
HbA1c.IFCC (nmol/mol) | 35 (27–45) | 55 (32–98) | 8.23 × 10−16 |
Cholesterol (mmol/L) | 4.7 (2.9–7.7) | 4.1 (2.3–8.1) | 5.95 × 10−5 |
Triglycerides (mmol/L) | 0.79 (0.27–3.89) | 1.665 (0.54–9.98) | 3.80 × 10−9 |
HDL-C (mmol/L) | 1.77 (0.8–2.68) | 1.145 (0.58–1.98) | 3.85 × 10−9 |
Non-HDL.C (mmol/L) | 2.9 (1.4–6.5) | 2.7 (1–7.3) | 2.96 × 10−1 |
LDL-C (mmol/L) | 2.5 (1–5.4) | 1.95 (0.08–3.7) | 1.19 × 10−4 |
Lp(a) (mg/dL) | 101 (14.14–666) | 93.5 (14.14–1816) | 6.50 × 10−1 |
ApoAI (g/L) | 1.62 (1.05–2.18) | 1.37 (0.96–1.96) | 3.38 × 10−5 |
ApoB (g/L) | 0.83 (0.43–1.67) | 0.8 (0.45–1.57) | 8.51 × 10−1 |
Statin (%) | 0 | 72.6 | |
Insulin (%) | 0 | 62.9 | |
Metformin (%) | 0 | 75.8 | |
GLP1-related drugs (%) | 0 | 51.6 | |
Sulfonylurea (%) | 0 | 12.9 | |
SGLT2 Inhibitor (%) | 0 | 17.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kolb, L.N.; Othman, A.; Rohrer, L.; Krützfeldt, J.; von Eckardstein, A. Altered Distribution of Unesterified Cholesterol among Lipoprotein Subfractions of Patients with Diabetes Mellitus Type 2. Biomolecules 2023, 13, 497. https://doi.org/10.3390/biom13030497
Kolb LN, Othman A, Rohrer L, Krützfeldt J, von Eckardstein A. Altered Distribution of Unesterified Cholesterol among Lipoprotein Subfractions of Patients with Diabetes Mellitus Type 2. Biomolecules. 2023; 13(3):497. https://doi.org/10.3390/biom13030497
Chicago/Turabian StyleKolb, Livia Noemi, Alaa Othman, Lucia Rohrer, Jan Krützfeldt, and Arnold von Eckardstein. 2023. "Altered Distribution of Unesterified Cholesterol among Lipoprotein Subfractions of Patients with Diabetes Mellitus Type 2" Biomolecules 13, no. 3: 497. https://doi.org/10.3390/biom13030497
APA StyleKolb, L. N., Othman, A., Rohrer, L., Krützfeldt, J., & von Eckardstein, A. (2023). Altered Distribution of Unesterified Cholesterol among Lipoprotein Subfractions of Patients with Diabetes Mellitus Type 2. Biomolecules, 13(3), 497. https://doi.org/10.3390/biom13030497