Association between Serum Levels of Interleukin-25/Thymic Stromal Lymphopoietin and the Risk of Exacerbation of Chronic Obstructive Pulmonary Disease
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Clinical Characteristics
2.3. Measurement of IL-25 and TSLP
2.4. Statistical Analysis
3. Results
3.1. Baseline Characteristics
3.2. Clinical Characteristics of the IL-25-Low and IL-25-High Groups
3.3. Clinical Characteristics of the TSLP-Low and TSLP-High Groups
3.4. Differences in Decline Trajectories of FEV1
3.5. Differences in Exacerbation Risk
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Global Initiative for Chronic Obstructive Lung Disease (GOLD) Guidelines, Global Strategy for the Diagnosis, Management and Prevention of Chronic Obstructive Lung Disease. 2022. Available online: https://goldcopd.org/2022-gold-reports/ (accessed on 1 July 2022).
- Barnes, P.J. Targeting cytokines to treat asthma and chronic obstructive pulmonary disease. Nat. Rev. Immunol. 2018, 18, 454–466. [Google Scholar] [CrossRef]
- George, L.; Brightling, C.E. Eosinophilic airway inflammation: Role in asthma and chronic obstructive pulmonary disease. Ther. Adv. Chronic Dis. 2016, 7, 34–51. [Google Scholar] [CrossRef] [Green Version]
- David, B.; Bafadhel, M.; Koenderman, L.; De Soyza, A. Eosinophilic inflammation in COPD: From an inflammatory marker to a treatable trait. Thorax 2021, 76, 188–195. [Google Scholar] [CrossRef]
- Hospers, J.J.; Schouten, J.P.; Weiss, S.T.; Postma, D.S.; Rijcken, B. Eosinophilia is associated with increased all-cause mortality after a follow-up of 30 years in a general population sample. Epidemiology 2000, 11, 261–268. [Google Scholar] [CrossRef]
- Jo, Y.S.; Moon, J.Y.; Park, Y.B.; Kim, Y.H.; Um, S.J.; Kim, W.J.; Yoon, H.K.; Yoo, K.H.; Jung, K.-S.; Rhee, C.K. Longitudinal changes in forced expiratory volume in 1 s in patients with eosinophilic chronic obstructive pulmonary disease. BMC Pulm. Med. 2022, 22, 91. [Google Scholar] [CrossRef] [PubMed]
- Vedel-Krogh, S.; Nielsen, S.F.; Lange, P.; Vestbo, J.; Nordestgaard, B.G. Blood eosinophils and exacerbations in ehronic obstructive pulmonary disease. The Copenhagen General Population Study. Am. J. Respir. Crit. Care Med. 2016, 193, 965–974. [Google Scholar] [CrossRef] [PubMed]
- Pavord, I.D.; Chanez, P.; Criner, G.J.; Kerstjens, H.A.M.; Korn, S.; Lugogo, N.; Martinot, J.-B.; Sagara, H.; Albers, F.C.; Bradford, E.S.; et al. Mepolizumab for eosinophilic chronic obstructive pulmonary disease. N. Engl. J. Med. 2017, 377, 1613–1629. [Google Scholar] [CrossRef] [PubMed]
- Pavord, I.D.; Chapman, K.R.; Bafadhel, M.; Sciurba, F.C.; Bradford, E.S.; Schweiker Harris, S.; Mayer, B.; Rubin, D.B.; Yancey, S.W.; Paggiaro, P. Mepolizumab for eosinophil-associated COPD: Analysis of METREX and METREO. Int. J. Chronic Obstr. Pulm. Dis. 2021, 16, 1755–1770. [Google Scholar] [CrossRef]
- Zhang, C.; Wang, Y.; Zhang, M.; Su, X.; Lei, T.; Yu, H.; Liu, J. Monoclonal antibodies targeting IL-5 or IL-5Rα in eosinophilic chronic obstructive pulmonary disease: A systematic review and meta-analysis. Front. Pharmacol. 2021, 12, 754268. [Google Scholar] [CrossRef]
- Joo, H.; Park, S.J.; Min, K.H.; Rhee, C.K. Association between plasma interleukin-33 level and acute exacerbation of chronic obstructive pulmonary disease. BMC Pulm. Med. 2021, 21, 86. [Google Scholar]
- Kim, S.W.; Rhee, C.K.; Kim, K.U.; Lee, S.H.; Hwang, H.G.; Kim, Y.I.; Kim, D.K.; Oh, Y.M.; Yoon, H.K. Factors associated with plasma IL-33 levels in patients with chronic obstructive pulmonary disease. Int. J. Chronic Obstr. Pulm. Dis. 2017, 12, 395–402. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rabe, K.F.; Celli, B.R.; Wechsler, M.E.; Abdulai, R.M.; Luo, X.; Boomsma, M.M.; Staudinger, H.; Horowitz, J.E.; Baras, A.; Ferreira, M.A.; et al. Safety and efficacy of itepekimab in patients with moderate-to-severe COPD: A genetic association study and randomised, double-blind, phase 2a trial. Lancet Respir. Med. 2021, 9, 1288–1298. [Google Scholar] [CrossRef] [PubMed]
- Yousuf, A.J.; Mohammed, S.; Carr, L.; Yavari Ramsheh, M.; Micieli, C.; Mistry, V.; Haldar, K.; Wright, A.; Novotny, P.; Parker, S.; et al. Astegolimab, an anti-ST2, in chronic obstructive pulmonary disease (COPD-ST2OP): A phase 2a, placebo-controlled trial. Lancet Respir. Med. 2022, 10, 469–477. [Google Scholar] [CrossRef]
- Menzies-Gow, A.; Corren, J.; Bourdin, A.; Chupp, G.; Israel, E.; Wechsler, M.E.; Brightling, C.E.; Griffiths, J.M.; Hellqvist, Å.; Bowen, K.; et al. Tezepelumab in adults and adolescents with severe, uncontrolled asthma. N. Engl. J. Med. 2021, 384, 1800–1809. [Google Scholar] [CrossRef]
- Moermans, C.; Damas, K.; Guiot, J.; Njock, M.S.; Corhay, J.L.; Henket, M.; Schleich, F.; Louis, R. Sputum IL-25, IL-33 and TSLP, IL-23 and IL-36 in airway obstructive diseases. Reduced levels of IL-36 in eosinophilic phenotype. Cytokine 2021, 140, 155421. [Google Scholar] [CrossRef] [PubMed]
- Brusselle, G.G.; Koppelman, G.H. Biologic therapies for severe asthma. N. Engl. J. Med. 2022, 386, 157–171. [Google Scholar] [CrossRef]
- Israel, E.; Reddel, H.K. Severe and difficult-to-treat asthma in adults. N. Engl. J. Med. 2017, 377, 965–976. [Google Scholar] [CrossRef]
- Mekov, E.; Nuñez, A.; Sin, D.D.; Ichinose, M.; Rhee, C.K.; Maselli, D.J.; Coté, A.; Ulrik, C.S.; Maltais, F.; Anzueto, A.; et al. Update on Asthma-COPD Overlap (ACO): A narrative review. Int. J. Chronic Obstr. Pulm. Dis. 2021, 16, 1783–1799. [Google Scholar] [CrossRef]
- Hiles, S.A.; Gibson, P.G.; McDonald, V.M. Disease burden of eosinophilic airway disease: Comparing severe asthma, COPD and asthma-COPD overlap. Respirology 2021, 26, 52–61. [Google Scholar] [CrossRef]
- Singh, D.; Kolsum, U.; Brightling, C.E.; Locantore, N.; Agusti, A.; Tal-Singer, R. Eosinophilic inflammation in COPD: Prevalence and clinical characteristics. Eur. Respir. J. 2014, 44, 1697–1700. [Google Scholar] [CrossRef] [Green Version]
- Rogliani, P.; Puxeddu, E.; Ciaprini, C.; Ora, J.; Onorato, A.; Pezzuto, G.; Calzetta, L.; Cazzola, M. The time course of pulmonary function tests in COPD Patients with different levels of blood eosinophils. BioMed Res. Int. 2016, 2016, 4547953. [Google Scholar] [CrossRef] [Green Version]
- Ziegler, S.F.; Artis, D. Sensing the outside world: TSLP regulates barrier immunity. Nat. Immunol. 2010, 11, 289–293. [Google Scholar] [CrossRef]
- Li, Y.; Wang, W.; Lv, Z.; Li, Y.; Chen, Y.; Huang, K.; Corrigan, C.J.; Ying, S. Elevated expression of IL-33 and TSLP in the airways of human asthmatics in vivo: A Potential biomarker of severe refractory disease. J. Immunol. 2018, 200, 2253–2262. [Google Scholar] [CrossRef] [Green Version]
- Ying, S.; O’Connor, B.; Ratoff, J.; Meng, Q.; Mallett, K.; Cousins, D.; Robinson, D.; Zhang, G.; Zhao, J.; Lee, T.H.; et al. Thymic stromal lymphopoietin expression is increased in asthmatic airways and correlates with expression of Th2-attracting chemokines and disease severity. J. Immunol. 2005, 174, 8183–8190. [Google Scholar] [CrossRef] [Green Version]
- Ying, S.; O’Connor, B.; Ratoff, J.; Meng, Q.; Fang, C.; Cousins, D.; Zhang, G.; Gu, S.; Gao, Z.; Shamji, B.; et al. Expression and cellular provenance of thymic stromal lymphopoietin and chemokines in patients with severe asthma and chronic obstructive pulmonary disease. J. Immunol. 2008, 181, 2790–2798. [Google Scholar] [CrossRef] [Green Version]
- Hizawa, N.; Masuko, H.; Sakamoto, T.; Kaneko, Y.; Iijima, H.; Naito, T.; Noguchi, E.; Hirota, T.; Tamari, M. Lower FEV1 in non-COPD, nonasthmatic subjects: Association with smoking, annual decline in FEV1, total IgE levels, and TSLP genotypes. Int. J. Chronic Obstr. Pulm. Dis. 2011, 6, 181–189. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fang, C.; Siew, L.Q.; Corrigan, C.J.; Ying, S. The role of thymic stromal lymphopoietin in allergic inflammation and chronic obstructive pulmonary disease. Arch. Immunol. Ther. Exp. 2010, 58, 81–90. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.; Fang, L.; Xu, X.; Pei, D.; Zhou, W.; Wan, H. Effect of TSLP on the function of platelets and IL-25 in chronic obstructive pulmonary disease. Int. J. Clin. Exp. Med. 2019, 12, 4942–4948. [Google Scholar]
- Katoh, S.; Ikeda, M.; Shirai, R.; Abe, M.; Ohue, Y.; Kobashi, Y.; Oka, M. Biomarkers for differentiation of patients with asthma and chronic obstructive pulmonary disease. J. Asthma 2018, 55, 1052–1058. [Google Scholar] [CrossRef]
- Gabryelska, A.; Kuna, P.; Antczak, A.; Białasiewicz, P.; Panek, M. IL-33 mediated inflammation in chronic respiratory diseases: Understanding the role of the member of IL-1 superfamily. Front. Immunol. 2019, 10, 692. [Google Scholar] [CrossRef]
Overall (n = 562) | |
---|---|
Age | 68.8 ± 7.6 |
Sex (male) | 544 (96.8%) |
Smoking history | |
| 396 (70.5%) |
| 166 (29.5%) |
BMI (kg/m2) | 23.2 ± 3.2 |
mMRC score | 1.1 ± 0.9 |
SGRQ score | 30.4 ± 18.7 |
CAT score | 14.0 ± 7.9 |
6MWT (m) | 409.6 ± 106.7 |
Hx of asthma | 131 (23.6%) |
Physician-diagnosed ACO | 97 (21.0%) |
GOLD stage | |
I | 87 (15.5%) |
II | 333 (59.4%) |
III | 108 (19.3%) |
IV | 33 (5.9%) |
FEV1 (L) | 1.9 ± 0.6 |
FEV1 (%) | 64.9 ± 18.7 |
FVC (L) | 3.6 ± 0.7 |
FVC (%) | 85.5 ± 15.1 |
FEV1/FVC | 52.4 ± 11.5 |
DLCO (mL/mmHg/min) | 64.9 ± 18.4 |
Blood eosinophil count (/mm3) | 226.8 ± 250.2 |
IgE (mg/dL) | 216.5 ± 247.0 |
FeNO (ppb) | 26.8 ± 17.1 |
Hx of exacerbation | 71 (12.9%) |
IL-25 (ng/mL) | 1.3 ± 0.4 |
TSLP (pg/mL) | 0.8 ± 0.7 |
IL-25-Low (n = 212) | IL-25-High (n = 350) | p-Value | |
---|---|---|---|
Age | 68.6 ± 7.8 | 68.9 ± 7.5 | 0.64 |
Sex (male) | 256 (97.3%) | 288 (96.3%) | 0.66 |
Smoking history | 0.48 | ||
| 181 (68.8%) | 215 (71.9%) | |
| 82 (31.2%) | 84 (28.1%) | |
BMI (kg/m2) | 23.2 ± 3.3 | 23.1 ± 3.1 | 0.77 |
mMRC score | 1.1 ± 0.8 | 1.2 ± 0.9 | 0.37 |
SGRQ score | 33.0 ± 19.6 | 28.1 ± 17.5 | <0.01 |
CAT score | 14.4 ± 8.0 | 13.5 ± 7.8 | 0.18 |
6MWT (m) | 401.2 ± 102.6 | 417.2 ± 110.0 | 0.11 |
Hx of asthma | 56 (21.6%) | 75 (25.4%) | 0.34 |
Physician-diagnosed ACO | 48 (22.2%) | 49 (19.9%) | 0.62 |
GOLD stage | 0.136 | ||
I | 40 (15.2%) | 47 (15.8%) | |
II | 151 (57.4%) | 182 (61.1%) | |
III | 50 (19.0%) | 58 (19.5%) | |
IV | 22 (8.4%) | 11 (3.7%) | |
FEV1 (L) | 1.9 ± 0.6 | 1.9 ± 0.6 | 0.33 |
FEV1 (%) | 64.2 ± 19.6 | 65.6 ± 17.9 | 0.39 |
FVC (L) | 3.5 ± 0.8 | 3.6 ± 0.7 | 0.49 |
FVC (%) | 85.0 ± 15.5 | 85.9 ± 14.8 | 0.48 |
FEV1/FVC | 51.6 ± 11.8 | 53.1 ± 11.2 | 0.11 |
DLCO (mL/mmHg/min) | 65.1 ± 18.5 | 64.7 ± 18.4 | 0.83 |
Blood eosinophil count (/mm3) | 206.2 ± 175.3 | 245.0 ± 300.5 | 0.07 |
IgE (mg/dL) | 221.3 ± 258.9 | 211.9 ± 235.4 | 0.69 |
FeNO (ppb) | 26.1 ± 16.4 | 27.7 ± 18.0 | 0.62 |
Hx of exacerbation | 28 (10.9%) | 43 (14.7%) | 0.23 |
IL-25 (ng/mL) | 1.2 ± 0.1 | 1.5 ± 0.5 | <0.01 |
TSLP (pg/mL) | 0.8 ± 0.4 | 0.9 ± 0.8 | 0.08 |
TSLP-Low (n = 212) | TSLP-High (n = 350) | p-Value | |
---|---|---|---|
Age | 67.8 ± 7.4 | 69.4 ± 7.7 | 0.02 |
Sex (male) | 203 (95.8%) | 341 (97.4%) | 0.40 |
Smoking history | 0.04 | ||
| 138 (65.1%) | 258 (73.7%) | |
| 74 (34.9%) | 92 (26.3%) | |
BMI (kg/m2) | 23.5 ± 3.2 | 23.0 ± 3.2 | 0.08 |
mMRC score | 1.1 ± 0.9 | 1.2 ± 0.9 | 0.35 |
SGRQ score | 31.3 ± 19.2 | 29.8 ± 18.3 | 0.33 |
CAT score | 14.2 ± 8.0 | 13.8 ± 7.9 | 0.60 |
6MWT (m) | 422.7 ± 106.0 | 400.6 ± 106.5 | 0.03 |
Hx of asthma | 49 (23.8%) | 82 (23.6%) | 1.00 |
Physician-diagnosed ACO | 43 (23.5%) | 54 (19.4%) | 0.34 |
GOLD stage | 0.681 | ||
I | 31 (14.7%) | 56 (16.0%) | |
II | 132 (62.6%) | 201 (57.4%) | |
III | 37 (17.5%) | 71 (20.3%) | |
IV | 11 (5.2%) | 22 (6.3%) | |
FEV1 (L) | 1.9 ± 0.6 | 1.9 ± 0.6 | 0.23 |
FEV1 (%) | 65.5 ± 18.2 | 64.5 ± 19.1 | 0.54 |
FVC (L) | 3.6 ± 0.7 | 3.5 ± 0.8 | 0.81 |
FVC (%) | 85.5 ± 15.2 | 85.4 ± 15.1 | 0.98 |
FEV1/FVC | 53.6 ± 11.4 | 51.6 ± 11.6 | 0.04 |
DLCO (mL/mmHg/min) | 67.7 ± 18.0 | 63.1 ± 18.4 | 0.01 |
Blood eosinophil count (/mm3) | 235.9 ± 278.4 | 221.4 ± 231.9 | 0.54 |
IgE (mg/dL) | 213.2 ± 262.7 | 218.4 ± 238. | 0.83 |
FeNO (ppb) | 26.6 ± 17.2 | 27.0 ± 17.2 | 0.91 |
Hx of exacerbation | 27 (12.9%) | 44 (12.9%) | 1.00 |
IL-25 (ng/mL) | 1.3 ± 0.2 | 1.4 ± 0.5 | 0.07 |
TSLP (pg/mL) | 0.4 ± 0.2 | 1.0 ± 0.8 | <0.01 |
Moderate-to-Severe Exacerbation | Severe Exacerbation | |||||
---|---|---|---|---|---|---|
OR | 95% CI | p-Value | OR | 95% CI | p-Value | |
Overall | ||||||
IL-25-high | 0.69 | 0.49–0.98 | 0.04 | 0.08 | 0.20–1.12 | 0.08 |
TSLP-high | 1.02 | 0.70–1.47 | 0.93 | 0.48 | 0.21–1.08 | 0.08 |
Eosinophil-high | ||||||
IL-25-high | 0.64 | 0.34–1.19 | 0.16 | 0.65 | 0.20–2.10 | 0.46 |
TSLP-high | 1.14 | 0.58–2.26 | 0.69 | 0.95 | 0.29–3.39 | 0.93 |
Eosinophil-low | ||||||
IL-25-high | 0.66 | 0.43–1.00 | 0.05 | 0.41 | 0.00–1.18 | 0.11 |
TSLP-high | 0.90 | 0.58–1.40 | 0.64 | 0.32 | 0.11–0.92 | 0.04 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Choi, J.Y.; Kim, T.-H.; Kang, S.-Y.; Park, H.J.; Lim, S.Y.; Kim, S.H.; Jung, K.-S.; Yoo, K.H.; Yoon, H.K.; Rhee, C.K. Association between Serum Levels of Interleukin-25/Thymic Stromal Lymphopoietin and the Risk of Exacerbation of Chronic Obstructive Pulmonary Disease. Biomolecules 2023, 13, 564. https://doi.org/10.3390/biom13030564
Choi JY, Kim T-H, Kang S-Y, Park HJ, Lim SY, Kim SH, Jung K-S, Yoo KH, Yoon HK, Rhee CK. Association between Serum Levels of Interleukin-25/Thymic Stromal Lymphopoietin and the Risk of Exacerbation of Chronic Obstructive Pulmonary Disease. Biomolecules. 2023; 13(3):564. https://doi.org/10.3390/biom13030564
Chicago/Turabian StyleChoi, Joon Young, Tae-Hyung Kim, Sung-Yoon Kang, Hye Jung Park, Seong Yong Lim, Sang Hyuk Kim, Ki-Suck Jung, Kwang Ha Yoo, Hyoung Kyu Yoon, and Chin Kook Rhee. 2023. "Association between Serum Levels of Interleukin-25/Thymic Stromal Lymphopoietin and the Risk of Exacerbation of Chronic Obstructive Pulmonary Disease" Biomolecules 13, no. 3: 564. https://doi.org/10.3390/biom13030564
APA StyleChoi, J. Y., Kim, T. -H., Kang, S. -Y., Park, H. J., Lim, S. Y., Kim, S. H., Jung, K. -S., Yoo, K. H., Yoon, H. K., & Rhee, C. K. (2023). Association between Serum Levels of Interleukin-25/Thymic Stromal Lymphopoietin and the Risk of Exacerbation of Chronic Obstructive Pulmonary Disease. Biomolecules, 13(3), 564. https://doi.org/10.3390/biom13030564