Epitope-Specific Anti-SerpinB3 Antibodies for SerpinB3 Recognition and Biological Activity Inhibition
Abstract
:1. Introduction
2. Methods
2.1. Peptide Synthesis
2.2. Oligoclonal Region-Specific SB3 Antibody Production and Purification
2.3. Biotinylation of Region-Specific SB3 Antibodies
2.4. Dot-Blot
2.5. Direct ELISA
2.6. Indirect ELISA
2.7. SDS-PAGE and Western Blot Analysis
2.8. Immunohistochemistry
2.9. Immunofluorescence
2.10. Proliferation and Invasion Assays
2.11. Statistical Analysis
3. Results
3.1. Antibody Generation
3.2. Antibody Characterization
3.2.1. Direct ELISA
3.2.2. Western Blot
3.2.3. Indirect ELISA
3.2.4. Imaging Results
3.3. Antibody Biological Activity
4. Discussion
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Silverman, G.A.; Bird, P.I.; Carrell, R.W.; Church, F.C.; Coughlin, P.B.; Gettins, P.G.W.; Irving, J.A.; Lomas, D.A.; Luke, C.J.; Moyer, R.W.; et al. The Serpins Are an Expanding Superfamily of Structurally Similar but Functionally Diverse Proteins. Evolution, Mechanism of Inhibition, Novel Functions, and a Revised Nomenclature. J. Biol. Chem. 2001, 276, 33293–33296. [Google Scholar] [CrossRef]
- Gettins, P.G.W. Serpin Structure, Mechanism, and Function. Chem. Rev. 2002, 102, 4751–4803. [Google Scholar] [CrossRef]
- Silverman, G.A.; Whisstock, J.C.; Askew, D.J.; Pak, S.C.; Luke, C.J.; Cataltepe, S.; Irving, J.A.; Bird, P.I. Human Clade B Serpins (Ov-Serpins) Belong to a Cohort of Evolutionarily Dispersed Intracellular Proteinase Inhibitor Clades That Protect Cells from Promiscuous Proteolysis. Cell. Mol. Life Sci. 2004, 61, 301–325. [Google Scholar] [CrossRef] [PubMed]
- Askew, D.J.; Askew, Y.S.; Kato, Y.; Turner, R.F.; Dewar, K.; Lehoczky, J.; Silverman, G.A. Comparative Genomic Analysis of the Clade B Serpin Cluster at Human Chromosome 18q21: Amplification within the Mouse Squamous Cell Carcinoma Antigen Gene Locus. Genomics 2004, 84, 176–184. [Google Scholar] [CrossRef]
- Al-Khunaizi, M.; Luke, C.J.; Askew, Y.S.; Pak, S.C.; Askew, D.J.; Cataltepe, S.; Miller, D.; Mills, D.R.; Tsu, C.; Brömme, D.; et al. The Serpin SQN-5 Is a Dual Mechanistic-Class Inhibitor of Serine and Cysteine Proteinases. Biochemistry 2002, 41, 3189–3199. [Google Scholar] [CrossRef]
- Kato, H.; Torigoe, T. Radioimmunoassay for Tumor Antigen of Human Cervical Squamous Cell Carcinoma. Cancer 1977, 40, 1621–1628. [Google Scholar] [CrossRef] [PubMed]
- Cataltepe, S.; Gornstein, E.R.; Schick, C.; Kamachi, Y.; Chatson, K.; Fries, J.; Silverman, G.A.; Upton, M.P. Co-Expression of the Squamous Cell Carcinoma Antigens 1 and 2 in Normal Adult Human Tissues and Squamous Cell Carcinomas. J. Histochem. Cytochem. 2000, 48, 113–122. [Google Scholar] [CrossRef] [PubMed]
- Hsu, K.F.; Huang, S.C.; Shiau, A.L.; Cheng, Y.M.; Shen, M.R.; Chen, Y.F.; Lin, C.Y.; Lee, B.H.; Chou, C.Y. Increased Expression Level of Squamous Cell Carcinoma Antigen 2 and 1 Ratio Is Associated with Poor Prognosis in Early-Stage Uterine Cervical Cancer. Int. J. Gynecol. Cancer 2007, 17, 174–181. [Google Scholar] [CrossRef]
- Zhao, W.; Yu, H.; Han, Z.; Gao, N.; Xue, J.; Wang, Y. Clinical Significance of Joint Detection of Serum CEA, SCCA, and BFGF in the Diagnosis of Lung Cancer. Int. J. Clin. Exp. Pathol. 2015, 8, 9506–9511. [Google Scholar] [PubMed]
- Oshikiri, T.; Miyamoto, M.; Hiraoka, K.; Shichinohe, T.; Kawarada, Y.; Kato, K.; Suzuoki, M.; Nakakubo, Y.; Kondo, S.; Dosaka-Akita, H.; et al. Transcriptional Targeting of Adenovirus Vectors with the Squamous Cell Carcinoma-Specific Antigen-2 Promoter for Selective Apoptosis Induction in Lung Cancer. Cancer Gene Ther. 2006, 13, 856–863. [Google Scholar] [CrossRef]
- Turato, C.; Scarpa, M.; Kotsafti, A.; Cappon, A.; Quarta, S.; Biasiolo, A.; Cavallin, F.; Trevellin, E.; Guzzardo, V.; Fassan, M.; et al. Squamous Cell Carcinoma Antigen 1 Is Associated to Poor Prognosis in Esophageal Cancer through Immune Surveillance Impairment and Reduced Chemosensitivity. Cancer Sci. 2019, 110, 1552–1563. [Google Scholar] [CrossRef]
- Imai, R.; Takenaka, Y.; Yasui, T.; Nakahara, S.; Yamamoto, Y.; Hanamoto, A.; Takemoto, N.; Fukusumi, T.; Cho, H.; Yamamoto, M.; et al. Prognostic Significance of Serum Squamous Cell Carcinoma Antigen in Patients with Head and Neck Cancer. Acta Otolaryngol. 2015, 135, 295–301. [Google Scholar] [CrossRef]
- Yasumatsu, R.; Nakano, T.; Hashimoto, K.; Kogo, R.; Wakasaki, T.; Nakagawa, T. The Clinical Value of Serum Squamous Cell Carcinoma Antigens 1 and 2 in Head and Neck Squamous Cell Carcinoma. Auris. Nasus. Larynx 2019, 46, 135–140. [Google Scholar] [CrossRef] [PubMed]
- Turato, C.; Pontisso, P. SERPINB3 (Serpin Peptidase Inhibitor, Clade B (Ovalbumin), Member 3). Atlas Genet. Cytogenet. Oncol. Haematol. 2015, 19, 202. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Gao, Y.; Yang, B.; Liang, Z.; Wang, Y.; Zhai, D.; Jing, L.; Liu, T.; Wang, F.; Du, Z.; et al. Squamous Cell Carcinoma Antigen 1 and 2 MRNA and a New Variant Expressed in Hepatocellular Carcinoma. Neoplasma 2014, 61, 718–723. [Google Scholar] [CrossRef]
- Pontisso, P.; Calabrese, F.; Benvegnù, L.; Lise, M.; Belluco, C.; Ruvoletto, M.G.; De Falco, S.; Marino, M.; Valente, M.; Nitti, D.; et al. Overexpression of Squamous Cell Carcinoma Antigen Variants in Hepatocellular Carcinoma. Br. J. Cancer 2004, 90, 833–837. [Google Scholar] [CrossRef]
- Sun, Y.; Sheshadri, N.; Zong, W.X. SERPINB3 and B4: From Biochemistry to Biology. Semin. Cell Dev. Biol. 2017, 62, 170–177. [Google Scholar] [CrossRef]
- Parikh, N.D.; Mehta, A.S.; Singal, A.G.; Block, T.; Marrero, J.A.; Lok, A.S. Biomarkers for the Early Detection of Hepatocellular Carcinoma. Cancer Epidemiol. Biomark. Prev. 2020, 29, 2495–2503. [Google Scholar] [CrossRef] [PubMed]
- Uemura, Y.; Pak, S.C.; Luke, C.; Çataltepe, S.; Tsu, C.; Schick, C.; Kamachi, Y.; Pomeroy, S.L.; Perlmutter, D.H.; Silverman, G.A. Circulating Serpin Tumor Markers SCCA1 and SCCA2 Are Not Actively Secreted but Reside in the Cytosol of Squamous Carcinoma Cells. Int. J. Cancer 2000, 89, 368–377. [Google Scholar] [CrossRef]
- Izuhara, K.; Ohta, S.; Kanaji, S.; Shiraishi, H.; Arima, K. Recent Progress in Understanding the Diversity of the Human Ov-Serpin/Clade B Serpin Family. Cell. Mol. Life Sci. 2008, 65, 2541–2553. [Google Scholar] [CrossRef]
- Beneduce, L.; Castaldi, F.; Marino, M.; Quarta, S.; Ruvoletto, M.; Benvegnù, L.; Calabrese, F.; Gatta, A.; Pontisso, P.; Fassina, G. Squamous Cell Carcinoma Antigen-Immunoglobulin M Complexes as Novel Biomarkers for Hepatocellular Carcinoma. Cancer 2005, 103, 2558–2565. [Google Scholar] [CrossRef]
- Biasiolo, A.; Tono, N.; Ruvoletto, M.; Quarta, S.; Turato, C.; Villano, G.; Beneduce, L.; Fassina, G.; Merkel, C.; Gatta, A.; et al. IgM-Linked SerpinB3 and SerpinB4 in Sera of Patients with Chronic Liver Disease. PLoS ONE 2012, 7, e40658. [Google Scholar] [CrossRef]
- Turato, C.; Vitale, A.; Fasolato, S.; Ruvoletto, M.; Terrin, L.; Quarta, S.; Ramirez Morales, R.; Biasiolo, A.; Zanus, G.; Zali, N.; et al. SERPINB3 Is Associated with TGF-Β1 and Cytoplasmic β-Catenin Expression in Hepatocellular Carcinomas with Poor Prognosis. Br. J. Cancer 2014, 110, 2708–2715. [Google Scholar] [CrossRef]
- Correnti, M.; Cappon, A.; Pastore, M.; Piombanti, B.; Lori, G.; Oliveira, D.V.P.N.; Munoz-Garrido, P.; Lewinska, M.; Andersen, J.B.; Coulouarn, C.; et al. The Protease-Inhibitor SerpinB3 as a Critical Modulator of the Stem-like Subset in Human Cholangiocarcinoma. Liver Int. 2022, 42, 233–248. [Google Scholar] [CrossRef]
- Fassan, M.; Realdon, S.; Vianello, L.; Quarta, S.; Ruol, A.; Castoro, C.; Scarpa, M.; Zaninotto, G.; Guzzardo, V.; Sileni, V.C.; et al. Squamous Cell Carcinoma Antigen (SCCA) Is up-Regulated during Barrett’s Carcinogenesis and Predicts Esophageal Adenocarcinoma Resistance to Neoadjuvant Chemotherapy. Oncotarget 2017, 8, 24372–24379. [Google Scholar] [CrossRef]
- Terrin, L.; Agostini, M.; Ruvoletto, M.; Martini, A.; Pucciarelli, S.; Bedin, C.; Nitti, D.; Pontisso, P. SerpinB3 Upregulates the Cyclooxygenase-2/β-Catenin Positive Loop in Colorectal Cancer. Oncotarget 2017, 8, 15732–15743. [Google Scholar] [CrossRef]
- Zhu, H. Squamous Cell Carcinoma Antigen: Clinical Application and Research Status. Diagnostics 2022, 12, 1065. [Google Scholar] [CrossRef] [PubMed]
- Fields, G.B.; Noble, R.L. Solid Phase Peptide Synthesis Utilizing 9-Fluorenylmethoxycarbonyl Amino Acids. Int. J. Pept. Protein Res. 1990, 35, 161–214. [Google Scholar] [CrossRef] [PubMed]
- Carpino, L.A.; Ferrer, F.J. The 5,6- and 4,5-Benzo Derivatives of 1-Hydroxy-7-Azabenzotriazole. Org. Lett. 2001, 3, 2793–2795. [Google Scholar] [CrossRef]
- Turato, C.; Biasiolo, A.; Pengo, P.; Frecer, V.; Quarta, S.; Fasolato, S.; Ruvoletto, M.; Beneduce, L.; Zuin, J.; Fassina, G.; et al. Increased Antiprotease Activity of the SERPINB3 Polymorphic Variant SCCA-PD. Exp. Biol. Med. 2011, 236, 281–290. [Google Scholar] [CrossRef] [PubMed]
- Quarta, S.; Vidalino, L.; Turato, C.; Ruvoletto, M.; Calabrese, F.; Valente, M.; Cannito, S.; Fassina, G.; Parola, M.; Gatta, A.; et al. SERPINB3 Induces Epithelial–Mesenchymal Transition. J. Pathol. 2010, 221, 343–356. [Google Scholar] [CrossRef]
- Albiero, M.; Fullin, A.; Villano, G.; Biasiolo, A.; Quarta, S.; Bernardotto, S.; Turato, C.; Ruvoletto, M.; Fadini, G.P.; Pontisso, P.; et al. Semisolid Wet Sol–Gel Silica/Hydroxypropyl Methyl Cellulose Formulation for Slow Release of Serpin B3 Promotes Wound Healing In Vivo. Pharmaceutics 2022, 14, 1944. [Google Scholar] [CrossRef]
- Hancock, D.C.; O’Reilly, N.J. Synthetic Peptides as Antigens for Antibody Production. Methods Mol. Biol. 2005, 295, 13–26. [Google Scholar] [CrossRef]
- Lee, B.S.; Huang, J.S.; Jayathilaka, L.P.; Lee, J.; Gupta, S. Antibody Production with Synthetic Peptides. Methods Mol. Biol. 2016, 1474, 25–47. [Google Scholar] [CrossRef]
- Montagnana, M.; Danese, E.; Lippi, G. Squamous Cell Carcinoma Antigen in Hepatocellular Carcinoma: Ready for the Prime Time? Clin. Chim. Acta 2015, 445, 161–166. [Google Scholar] [CrossRef]
- Biasiolo, A.; Trotta, E.; Fasolato, S.; Ruvoletto, M.; Martini, A.; Gallotta, A.; Fassina, G.; Angeli, P.; Gatta, A.; Pontisso, P. Squamous Cell Carcinoma Antigen-IgM Is Associated with Hepatocellular Carcinoma in Patients with Cirrhosis: A Prospective Study. Dig. Liver Dis. 2016, 48, 197–202. [Google Scholar] [CrossRef] [PubMed]
- Ciscato, F.; Sciacovelli, M.; Villano, G.; Turato, C.; Bernardi, P.; Rasola, A.; Pontisso, P. SERPINB3 Protects from Oxidative Damage by Chemotherapeutics through Inhibition of Mitochondrial Respiratory Complex I. Oncotarget 2014, 5, 2418–2427. [Google Scholar] [CrossRef]
- Katagiri, C.; Nakanishi, J.; Kadoya, K.; Hibino, T. Serpin Squamous Cell Carcinoma Antigen Inhibits UV-Induced Apoptosis via Suppression of c-JUN NH2-Terminal Kinase. J. Cell Biol. 2006, 172, 983–990. [Google Scholar] [CrossRef] [PubMed]
- Murakami, A.; Suminami, Y.; Hirakawa, H.; Nawata, S.; Numa, F.; Kato, H. Squamous Cell Carcinoma Antigen Suppresses Radiation-Induced Cell Death. Br. J. Cancer 2001, 84, 851–858. [Google Scholar] [CrossRef] [PubMed]
- Ullman, E.; Pan, J.-A.; Zong, W.-X. Squamous Cell Carcinoma Antigen 1 Promotes Caspase-8-Mediated Apoptosis in Response to Endoplasmic Reticulum Stress While Inhibiting Necrosis Induced by Lysosomal Injury. Mol. Cell. Biol. 2011, 31, 2902–2919. [Google Scholar] [CrossRef] [PubMed]
- Lauko, A.; Volovetz, J.; Turaga, S.M.; Bayik, D.; Silver, D.J.; Mitchell, K.; Mulkearns-Hubert, E.E.; Watson, D.C.; Desai, K.; Midha, M.; et al. SerpinB3 Drives Cancer Stem Cell Survival in Glioblastoma. Cell Rep. 2022, 40, 111348. [Google Scholar] [CrossRef] [PubMed]
- Sheshadri, N.; Catanzaro, J.M.; Bott, A.J.; Sun, Y.; Ullman, E.; Chen, E.I.; Pan, J.-A.; Wu, S.; Crawford, H.C.; Zhang, J.; et al. Tumor and Stem Cell Biology SCCA1/SERPINB3 Promotes Oncogenesis and Epithelial-Mesenchymal Transition via the Unfolded Protein Response and IL6 Signaling. Cancer Res. 2014, 74, 6318–6329. [Google Scholar] [CrossRef] [PubMed]
- Turato, C.; Cannito, S.; Simonato, D.; Villano, G.; Morello, E.; Terrin, L.; Quarta, S.; Biasiolo, A.; Ruvoletto, M.; Martini, A.; et al. SerpinB3 and Yap Interplay Increases Myc Oncogenic Activity. Sci. Rep. 2015, 5, 17701. [Google Scholar] [CrossRef]
- Catanzaro, J.M.; Sheshadri, N.; Pan, J.A.; Sun, Y.; Shi, C.; Li, J.; Powers, R.S.; Crawford, H.C.; Zong, W.X. Oncogenic Ras Induces Inflammatory Cytokine Production by Upregulating the Squamous Cell Carcinoma Antigens SerpinB3/B4. Nat. Commun. 2014, 5, 3729. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Gao, Y.; Yang, B.; Jia, X.; Zhai, D.; Li, S.; Zhang, Q.; Jing, L.; Wang, Y.; Du, Z.; et al. Overexpression of Squamous Cell Carcinoma Antigen 1 Is Associated with the Onset and Progression of Human Hepatocellular Carcinoma. Arch. Med. Res. 2015, 46, 133–141. [Google Scholar] [CrossRef] [PubMed]
- Catanzaro, J.M.; Guerriero, J.L.; Liu, J.; Ullman, E.; Sheshadri, N.; Chen, J.J.; Zong, W.X. Elevated Expression of Squamous Cell Carcinoma Antigen (SCCA) Is Associated with Human Breast Carcinoma. PLoS ONE 2011, 6, e19096. [Google Scholar] [CrossRef]
- Giannelli, G.; Rani, B.; Dituri, F.; Cao, Y.; Palasciano, G. Moving towards Personalised Therapy in Patients with Hepatocellular Carcinoma: The Role of the Microenvironment. Gut 2014, 63, 1668–1676. [Google Scholar] [CrossRef] [PubMed]
- Greten, T.F.; Wang, X.W.; Korangy, F. Current Concepts of Immune Based Treatments for Patients with HCC: From Basic Science to Novel Treatment Approaches. Gut 2015, 64, 842–848. [Google Scholar] [CrossRef]
- Barrueto, L.; Caminero, F.; Cash, L.; Makris, C.; Lamichhane, P.; Deshmukh, R.R. Resistance to Checkpoint Inhibition in Cancer Immunotherapy. Transl. Oncol. 2020, 13, 100738. [Google Scholar] [CrossRef]
- Toor, S.M.; Sasidharan Nair, V.; Decock, J.; Elkord, E. Immune Checkpoints in the Tumor Microenvironment. Semin. Cancer Biol. 2020, 65, 1–12. [Google Scholar] [CrossRef]
- Sanmamed, M.F.; Chen, L. A Paradigm Shift in Cancer Immunotherapy: From Enhancement to Normalization. Cell 2018, 175, 313–326. [Google Scholar] [CrossRef] [PubMed]
- Callahan, M.K.; Postow, M.A.; Wolchok, J.D. Targeting T Cell Co-Receptors for Cancer Therapy. Immunity 2016, 44, 1069–1078. [Google Scholar] [CrossRef]
- Diesendruck, Y.; Benhar, I. Novel Immune Check Point Inhibiting Antibodies in Cancer Therapy-Opportunities and Challenges. Drug Resist. Updat. 2017, 30, 39–47. [Google Scholar] [CrossRef] [PubMed]
- Jia, L.; Zhang, Q.; Zhang, R. PD-1/PD-L1 Pathway Blockade Works as an Effective and Practical Therapy for Cancer Immunotherapy. Cancer Biol. Med. 2018, 15, 116. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.T.; Liu, T.T.; Wu, M.; Chen, X.C.; Han, L.; Shi, Z.Z.; Li, Y.Y.; Li, X.Y.; Xu, H.X.; Gong, L.K.; et al. Development of a Nanobody-Based Immunoassay for the Sensitive Detection of Fibrinogen-like Protein 1. Acta Pharmacol. Sin. 2021, 42, 1921. [Google Scholar] [CrossRef]
- Wang, J.; Sanmamed, M.F.; Datar, I.; Su, T.T.; Ji, L.; Sun, J.; Chen, L.; Chen, Y.; Zhu, G.; Yin, W.; et al. Fibrinogen-like Protein 1 Is a Major Immune Inhibitory Ligand of LAG-3. Cell 2019, 176, 334–347.e12. [Google Scholar] [CrossRef] [PubMed]
- Yu, M.; Chen, Z.; Zhou, Q.; Zhang, B.; Huang, J.; Jin, L.; Zhou, B.; Liu, S.; Yan, J.; Li, X.; et al. PARG Inhibition Limits HCC Progression and Potentiates the Efficacy of Immune Checkpoint Therapy. J. Hepatol. 2022, 77, 140–151. [Google Scholar] [CrossRef]
SB3 Peptide (AA Position) | Peptide Amino Acid Sequence | Identity (%/aa Overlap) |
---|---|---|
#1 (16–30) | Cys-βAla-F1QQFRKSKENNIFYS15 | 60.0/15 aa (16–29:1–15) |
#2 (140–145) | Cys-βAla-P1EESRKKINSWVESQ15 | 92.9/14 aa (138–151:2–15) |
#3 (268–279) | Cys-βAla-E1WTSLQNMRETR12 | 54.5/11 aa (265–275:1–11) |
#4 (191–209) | Cys-βAla-K1EDTKEEKFWPNKNTYKS18 | 64.7/17 aa (189–205:1–17) |
#5 (340–368) | G1AEAAAATAVVGFGSSPTSTNEEFHCNHP29 | 80.0/10 aa (338–347:1–10) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Biasiolo, A.; Sandre, M.; Ferro, S.; Quarta, S.; Ruvoletto, M.; Villano, G.; Turato, C.; Guido, M.; Marin, O.; Pontisso, P. Epitope-Specific Anti-SerpinB3 Antibodies for SerpinB3 Recognition and Biological Activity Inhibition. Biomolecules 2023, 13, 739. https://doi.org/10.3390/biom13050739
Biasiolo A, Sandre M, Ferro S, Quarta S, Ruvoletto M, Villano G, Turato C, Guido M, Marin O, Pontisso P. Epitope-Specific Anti-SerpinB3 Antibodies for SerpinB3 Recognition and Biological Activity Inhibition. Biomolecules. 2023; 13(5):739. https://doi.org/10.3390/biom13050739
Chicago/Turabian StyleBiasiolo, Alessandra, Michele Sandre, Stefania Ferro, Santina Quarta, Mariagrazia Ruvoletto, Gianmarco Villano, Cristian Turato, Maria Guido, Oriano Marin, and Patrizia Pontisso. 2023. "Epitope-Specific Anti-SerpinB3 Antibodies for SerpinB3 Recognition and Biological Activity Inhibition" Biomolecules 13, no. 5: 739. https://doi.org/10.3390/biom13050739
APA StyleBiasiolo, A., Sandre, M., Ferro, S., Quarta, S., Ruvoletto, M., Villano, G., Turato, C., Guido, M., Marin, O., & Pontisso, P. (2023). Epitope-Specific Anti-SerpinB3 Antibodies for SerpinB3 Recognition and Biological Activity Inhibition. Biomolecules, 13(5), 739. https://doi.org/10.3390/biom13050739