Renal Dysfunction Phenotypes in Patients Undergoing Obesity Surgery
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population and Inclusion Criteria
2.2. Data Acquisition
2.3. Statistical Analysis
3. Results
3.1. Subjects
3.2. Markers of Kidney Injury
3.3. Clinically Relevant Associations
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Forouzanfar, M.H.; Afshin, A.; Alexander, L.T.; Anderson, H.R.; Bhutta, Z.A.; Biryukov, S.; Brauer, M.; Burnett, R.; Cercy, K.; Charlson, F.J.; et al. Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks, 1990–2015: A systematic analysis for the Global Burden of Disease Study 2015. Lancet 2016, 388, 1659–1724. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Chen, X.; Song, Y.; Caballero, B.; Cheskin, L.J. Association between obesity and kidney disease: A systematic review and meta-analysis. Kidney Int. 2008, 73, 19–33. [Google Scholar] [CrossRef] [PubMed]
- Bonnet, F.; Deprele, C.; Sassolas, A.; Moulin, P.; Alamartine, E.; Berthezène, F.; Berthoux, F. Excessive body weight as a new independent risk factor for clinical and pathological progression in primary IgA nephritis. Am. J. Kidney Dis. 2001, 37, 720–727. [Google Scholar] [CrossRef] [PubMed]
- D’Agati, V.D.; Chagnac, A.; de Vries, A.P.; Levi, M.; Porrini, E.; Herman-Edelstein, M.; Praga, M. Obesity-related glomerulopathy: Clinical and pathologic characteristics and pathogenesis. Nat. Rev. Nephrol. 2016, 12, 453–471. [Google Scholar] [CrossRef]
- Griffin, K.A.; Kramer, H.; Bidani, A.K. Adverse renal consequences of obesity. Am. J. Physiol.-Renal Physiol. 2008, 294, F685–F696. [Google Scholar] [CrossRef]
- Strazzullo, P.; Barba, G.; Cappuccio, F.P.; Siani, A.; Trevisan, M.; Farinaro, E.; Pagano, E.; Barbato, A.; Iacone, R.; Galletti, F. Altered renal sodium handling in men with abdominal adiposity: A link to hypertension. J. Hypertens. 2001, 19, 2157–2164. [Google Scholar] [CrossRef]
- Engeli, S.; Böhnke, J.; Gorzelniak, K.; Janke, J.; Schling, P.; Bader, M.; Luft, F.C.; Sharma, A.M. Weight loss and the renin-angiotensin-aldosterone system. Hypertension 2005, 45, 356–362. [Google Scholar] [CrossRef]
- Tsuboi, N.; Okabayashi, Y.; Shimizu, A.; Yokoo, T. The Renal Pathology of Obesity. Kidney Int. Rep. 2017, 2, 251–260. [Google Scholar] [CrossRef]
- de Vries, A.P.; Ruggenenti, P.; Ruan, X.Z.; Praga, M.; Cruzado, J.M.; Bajema, I.M.; D’Agati, V.D.; Lamb, H.J.; Pongrac Barlovic, D.; Hojs, R.; et al. Fatty kidney: Emerging role of ectopic lipid in obesity-related renal disease. Lancet Diabetes Endocrinol. 2014, 2, 417–426. [Google Scholar] [CrossRef]
- Bramante, C.; Wise, E.; Chaudhry, Z. Care of the Patient After Metabolic and Bariatric Surgery. Ann. Intern. Med. 2022, 175, itc65–itc80. [Google Scholar] [CrossRef]
- Inker, L.A.; Eneanya, N.D.; Coresh, J.; Tighiouart, H.; Wang, D.; Sang, Y.; Crews, D.C.; Doria, A.; Estrella, M.M.; Froissart, M.; et al. New Creatinine- and Cystatin C-Based Equations to Estimate GFR without Race. N. Engl. J. Med. 2021, 385, 1737–1749. [Google Scholar] [CrossRef] [PubMed]
- Stevens, P.E.; Levin, A. Evaluation and management of chronic kidney disease: Synopsis of the kidney disease: Improving global outcomes 2012 clinical practice guideline. Ann. Intern. Med. 2013, 158, 825–830. [Google Scholar] [CrossRef] [PubMed]
- Cachat, F.; Combescure, C.; Cauderay, M.; Girardin, E.; Chehade, H. A systematic review of glomerular hyperfiltration assessment and definition in the medical literature. Clin. J. Am. Soc. Nephrol. 2015, 10, 382–389. [Google Scholar] [CrossRef] [PubMed]
- Delanaye, P.; Mariat, C.; Cavalier, E.; Krzesinski, J.-M. Errors induced by indexing glomerular filtration rate for body surface area: Reductio ad absurdum. Nephrol. Dial. Transplant. 2009, 24, 3593–3596. [Google Scholar] [CrossRef]
- Levey, A.S.; Kramer, H. Obesity, glomerular hyperfiltration, and the surface area correction. Am. J. Kidney Dis. 2010, 56, 255–258. [Google Scholar] [CrossRef]
- Wuerzner, G.; Pruijm, M.; Maillard, M.; Bovet, P.; Renaud, C.; Burnier, M.; Bochud, M. Marked association between obesity and glomerular hyperfiltration: A cross-sectional study in an African population. Am. J. Kidney Dis. 2010, 56, 303–312. [Google Scholar] [CrossRef]
- Ogna, A.; Forni Ogna, V.; Bochud, M.; Guessous, I.; Paccaud, F.; Burnier, M.; Wuerzner, G. Association between obesity and glomerular hyperfiltration: The confounding effect of smoking and sodium and protein intakes. Eur. J. Nutr. 2016, 55, 1089–1097. [Google Scholar] [CrossRef]
- Bosma, R.J.; van der Heide, J.J.; Oosterop, E.J.; de Jong, P.E.; Navis, G. Body mass index is associated with altered renal hemodynamics in non-obese healthy subjects. Kidney Int. 2004, 65, 259–265. [Google Scholar] [CrossRef]
- Pecly, I.M.; Genelhu, V.; Francischetti, E.A. Renal functional reserve in obesity hypertension. Int. J. Clin. Pract. 2006, 60, 1198–1203. [Google Scholar] [CrossRef]
- Domislovic, M.; Domislovic, V.; Fucek, M.; Jelakovic, A.; Gellineo, L.; Dika, Z.; Jelakovic, B. Should the CKD EPI Equation Be Used for Estimation of the Glomerular Filtration Rate in Obese Subjects? Kidney Blood Press. Res. 2022, 47, 597–604. [Google Scholar] [CrossRef]
- Lee, S.M.; Park, J.Y.; Park, M.S.; Park, J.H.; Park, M.; Yoon, H.J. Association of renal hyperfiltration with incident proteinuria—A nationwide registry study. PLoS ONE 2018, 13, e0195784. [Google Scholar] [CrossRef] [PubMed]
- Melsom, T.; Stefansson, V.; Schei, J.; Solbu, M.; Jenssen, T.; Wilsgaard, T.; Eriksen, B.O. Association of Increasing GFR with Change in Albuminuria in the General Population. Clin. J. Am. Soc. Nephrol. 2016, 11, 2186–2194. [Google Scholar] [CrossRef] [PubMed]
- Wennmann, D.O.; Hsu, H.H.; Pavenstädt, H. The renin-angiotensin-aldosterone system in podocytes. Semin. Nephrol. 2012, 32, 377–384. [Google Scholar] [CrossRef] [PubMed]
- Yano, Y.; Hoshide, S.; Ishikawa, J.; Hashimoto, T.; Eguchi, K.; Shimada, K.; Kario, K. Differential impacts of adiponectin on low-grade albuminuria between obese and nonobese persons without diabetes. J. Clin. Hypertens. 2007, 9, 775–782. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Wang, Z.; Chen, Y.; Dong, Y. Kidney Damage Caused by Obesity and Its Feasible Treatment Drugs. Int. J. Mol. Sci. 2022, 23, 747. [Google Scholar] [CrossRef]
- Pinto-Sietsma, S.J.; Navis, G.; Janssen, W.M.; de Zeeuw, D.; Gans, R.O.; de Jong, P.E. A central body fat distribution is related to renal function impairment, even in lean subjects. Am. J. Kidney Dis. 2003, 41, 733–741. [Google Scholar] [CrossRef]
- Rosenstock, J.L.; Pommier, M.; Stoffels, G.; Patel, S.; Michelis, M.F. Prevalence of Proteinuria and Albuminuria in an Obese Population and Associated Risk Factors. Front. Med. 2018, 5, 122. [Google Scholar] [CrossRef]
- Zhu, P.; Lewington, S.; Haynes, R.; Emberson, J.; Landray, M.J.; Cherney, D.; Woodward, M.; Baigent, C.; Herrington, W.G.; Staplin, N. Cross-sectional associations between central and general adiposity with albuminuria: Observations from 400,000 people in UK Biobank. Int. J. Obes. 2020, 44, 2256–2266. [Google Scholar] [CrossRef]
- Garg, A.X.; Kiberd, B.A.; Clark, W.F.; Haynes, R.B.; Clase, C.M. Albuminuria and renal insufficiency prevalence guides population screening: Results from the NHANES III. Kidney Int. 2002, 61, 2165–2175. [Google Scholar] [CrossRef]
- Echouffo-Tcheugui, J.B.; Narayan, K.M.; Weisman, D.; Golden, S.H.; Jaar, B.G. Association between prediabetes and risk of chronic kidney disease: A systematic review and meta-analysis. Diabet Med. 2016, 33, 1615–1624. [Google Scholar] [CrossRef]
- Melsom, T.; Schei, J.; Stefansson, V.T.; Solbu, M.D.; Jenssen, T.G.; Mathisen, U.D.; Wilsgaard, T.; Eriksen, B.O. Prediabetes and Risk of Glomerular Hyperfiltration and Albuminuria in the General Nondiabetic Population: A Prospective Cohort Study. Am. J. Kidney Dis. 2016, 67, 841–850. [Google Scholar] [CrossRef] [PubMed]
- Neves, J.S.; Correa, S.; Baeta Baptista, R.; Bigotte Vieira, M.; Waikar, S.S.; Mc Causland, F.R. Association of Prediabetes with CKD Progression and Adverse Cardiovascular Outcomes: An Analysis of the CRIC Study. J. Clin. Endocrinol. Metab. 2020, 105, e1772–e1780. [Google Scholar] [CrossRef] [PubMed]
- Oliveras, A.; Vázquez, S.; Soler, M.J.; Galceran, I.; Duran, X.; Goday, A.; Benaiges, D.; Crespo, M.; Pascual, J.; Riera, M. Exploring Renal Changes after Bariatric Surgery in Patients with Severe Obesity. J. Clin. Med. 2022, 11, 728. [Google Scholar] [CrossRef] [PubMed]
- Hermans, M.M.; Henry, R.; Dekker, J.M.; Kooman, J.P.; Kostense, P.J.; Nijpels, G.; Heine, R.J.; Stehouwer, C.D. Estimated glomerular filtration rate and urinary albumin excretion are independently associated with greater arterial stiffness: The Hoorn Study. J. Am. Soc. Nephrol. 2007, 18, 1942–1952. [Google Scholar] [CrossRef] [PubMed]
- Tabák, A.G.; Herder, C.; Rathmann, W.; Brunner, E.J.; Kivimäki, M. Prediabetes: A high-risk state for diabetes development. Lancet 2012, 379, 2279–2290. [Google Scholar] [CrossRef] [PubMed]
- Maric-Bilkan, C. Obesity and diabetic kidney disease. Med. Clin. N. Am. 2013, 97, 59–74. [Google Scholar] [CrossRef]
- Choi, J.W.; Oh, I.H.; Lee, C.H.; Park, J.S. Effect of synergistic interaction between abnormal adiposity-related metabolism and prediabetes on microalbuminuria in the general population. PLoS ONE 2017, 12, e0180924. [Google Scholar] [CrossRef]
- Liang, X.; Ye, M.; Tao, M.; Zheng, D.; Cai, R.; Zhu, Y.; Jin, J.; He, Q. The association between dyslipidemia and the incidence of chronic kidney disease in the general Zhejiang population: A retrospective study. BMC Nephrol. 2020, 21, 252. [Google Scholar] [CrossRef]
- Yamagata, K.; Ishida, K.; Sairenchi, T.; Takahashi, H.; Ohba, S.; Shiigai, T.; Narita, M.; Koyama, A. Risk factors for chronic kidney disease in a community-based population: A 10-year follow-up study. Kidney Int. 2007, 71, 159–166. [Google Scholar] [CrossRef]
- Wickman, C.; Kramer, H. Obesity and kidney disease: Potential mechanisms. Semin. Nephrol. 2013, 33, 14–22. [Google Scholar] [CrossRef]
- Guebre-Egziabher, F.; Alix, P.M.; Koppe, L.; Pelletier, C.C.; Kalbacher, E.; Fouque, D.; Soulage, C.O. Ectopic lipid accumulation: A potential cause for metabolic disturbances and a contributor to the alteration of kidney function. Biochimie 2013, 95, 1971–1979. [Google Scholar] [CrossRef] [PubMed]
- Ruan, X.Z.; Varghese, Z.; Moorhead, J.F. An update on the lipid nephrotoxicity hypothesis. Nat. Rev. Nephrol. 2009, 5, 713–721. [Google Scholar] [CrossRef] [PubMed]
- Chung, J.J.; Huber, T.B.; Gödel, M.; Jarad, G.; Hartleben, B.; Kwoh, C.; Keil, A.; Karpitskiy, A.; Hu, J.; Huh, C.J.; et al. Albumin-associated free fatty acids induce macropinocytosis in podocytes. J. Clin. Investig. 2015, 125, 2307–2316. [Google Scholar] [CrossRef] [PubMed]
- Jalal, D.I.; Rivard, C.J.; Johnson, R.J.; Maahs, D.M.; McFann, K.; Rewers, M.; Snell-Bergeon, J.K. Serum uric acid levels predict the development of albuminuria over 6 years in patients with type 1 diabetes: Findings from the Coronary Artery Calcification in Type 1 Diabetes study. Nephrol. Dial. Transplant. 2010, 25, 1865–1869. [Google Scholar] [CrossRef] [PubMed]
- Johnson, R.J.; Bakris, G.L.; Borghi, C.; Chonchol, M.B.; Feldman, D.; Lanaspa, M.A.; Merriman, T.R.; Moe, O.W.; Mount, D.B.; Sanchez Lozada, L.G.; et al. Hyperuricemia, Acute and Chronic Kidney Disease, Hypertension, and Cardiovascular Disease: Report of a Scientific Workshop Organized by the National Kidney Foundation. Am. J. Kidney Dis. 2018, 71, 851–865. [Google Scholar] [CrossRef]
- Hassan, W.; Shrestha, P.; Sumida, K.; Thomas, F.; Sweeney, P.L.; Potukuchi, P.K.; Rhee, C.M.; Streja, E.; Kalantar-Zadeh, K.; Kovesdy, C.P. Association of Uric Acid-Lowering Therapy With Incident Chronic Kidney Disease. JAMA Netw. Open 2022, 5, e2215878. [Google Scholar] [CrossRef]
- Smith, E.R.; Cai, M.M.; McMahon, L.P.; Wright, D.A.; Holt, S.G. The value of simultaneous measurements of urinary albumin and total protein in proteinuric patients. Nephrol. Dial. Transplant. 2012, 27, 1534–1541. [Google Scholar] [CrossRef]
- Ellam, T.; El Nahas, M. Urinary albumin to protein ratio: More of the same or making a difference? Nephrol. Dial. Transplant. 2012, 27, 1293–1296. [Google Scholar] [CrossRef]
- Bökenkamp, A. Proteinuria-take a closer look! Pediatr. Nephrol. 2020, 35, 533–541. [Google Scholar] [CrossRef]
- Wang, K.; Kestenbaum, B. Proximal Tubular Secretory Clearance: A Neglected Partner of Kidney Function. Clin. J. Am. Soc. Nephrol. 2018, 13, 1291–1296. [Google Scholar] [CrossRef]
- Kwon, O.C.; Park, Y.; Lee, J.S.; Oh, J.S.; Kim, Y.G.; Lee, C.K.; Yoo, B.; Hong, S. Non-albumin proteinuria as a parameter of tubulointerstitial inflammation in lupus nephritis. Clin. Rheumatol. 2019, 38, 235–241. [Google Scholar] [CrossRef]
- Pehlivan, E.; Ozen, G.; Taskapan, H.; Gunes, G.; Sahin, I.; Colak, C. Identifying the determinants of microalbuminuria in obese patients in primary care units: The effects of blood pressure, random plasma glucose and other risk factors. J. Endocrinol. Investig. 2016, 39, 73–82. [Google Scholar] [CrossRef] [PubMed]
- Jafar, T.H.; Qadri, Z.; Hashmi, S. Prevalence of microalbuminuria and associated electrocardiographic abnormalities in an Indo-Asian population. Nephrol. Dial. Transplant. 2009, 24, 2111–2116. [Google Scholar] [CrossRef] [PubMed]
- Fuchs, H.F.; Broderick, R.C.; Harnsberger, C.R.; Chang, D.C.; Sandler, B.J.; Jacobsen, G.R.; Horgan, S. Benefits of bariatric surgery do not reach obese men. J. Laparoendosc. Adv. Surg. Tech. A 2015, 25, 196–201. [Google Scholar] [CrossRef] [PubMed]
Total (n = 192) | ||
---|---|---|
Age (years) | 42 ± 11 | |
Sex, n (%) of females | 153 (79.7%) | |
Weight (kg) | 112 ± 18 | |
BMI (kg/m2) | 41.7 ± 5.4 | |
Glycaemic Status | No diabetes, n (%) | 152 (79.2%) |
Prediabetes (no metformin), n (%) | 40 (20.8%) | |
HTN, n (%) | 70 (36.5%) | |
Dyslipidaemia, n (%) | 110 (57.3%) | |
Glucose (mg/dL) | 92 ± 11 | |
Glycated haemoglobin (%) | 5.4 ± 0.4 | |
Serum urea (mg/dL) | 30.7 ± 7.8 | |
Serum creatinine (mg/dL) | 0.8 ± 0.1 | |
Uric acid (mg/dL) | 5.6 ± 1.3 | |
Total cholesterol (mg/dL) | 193.5 ± 36.0 | |
HDL cholesterol (mg/dL) | 49.2 ± 11.1 | |
LDL cholesterol (mg/dL) | 132.5 ± 35.9 | |
VLDL cholesterol (mg/dL) | 25.2 ± 12.6 | |
Triglycerides (mg/dL) | 126.0 ± 63,2 | |
Non-LDL Cholesterol (mg/dL) | 144.3 ± 35.4 | |
Atherogenic index | 0.4 ± 0.2 | |
Total Proteins (mg/dL) | 7.0 ± 0.3 | |
Diuresis (mL) | 1547.3 ± 569.6 | |
Albuminuria (mg/day) | 24.1 ± 43.6 | |
Proteinuria (mg/day) | 117.6 ± 76.1 | |
Creatinine clearance (mL/min) | 145.2 ± 44.1 | |
uAPR | 0.2 ± 0.1 | |
Creatinine Clearance | <90 mL/min, n (%) | 14 (7.3%) |
90–130 mL/min, n (%) | 66 (34.4%) | |
130–170 mL/min, n (%) | 59 (30.7%) | |
>170 mL/min, n (%) | 53 (27.6%) | |
Proteinuria | <150 mg/24 h, n (%) | 149 (77.6%) |
>150 mg/24 h, n (%) | 43 (22.4%) | |
Albuminuria | <30 mg/24 h, n (%) | 164 (85.4%) |
>30 mg/24 h, n (%) | 28 (14.6%) | |
uAPR | <0.1, n (%) | 54 (28.1%) |
0.1–0.3, n (%) | 114 (59.4%) | |
>0.3, n (%) | 24 (12.5%) | |
>0.15% | 94 (49.0%) |
Creatinine Clearance | p | ||
---|---|---|---|
ClCr < 140 mL/min (n = 94) | ClCr > 140 mL/min (n = 98) | ||
Sex, n (%) of females | 86 (91.5%) | 67 (68.4%) | <0.001 |
HTA, n (%) | 56 (59.6%) | 66 (67.3%) | 0.295 |
Dyslipidaemia, n (%) | 46 (48.9%) | 36 (36.7%) | 0.109 |
Age, years | 42.6 ± 11.9 | 41.6 ± 10.6 | 0.513 |
Weight, kg | 106.6 ± 14.5 | 116.5 ± 19.9 | <0.001 |
BMI, kg/m2 | 41.0 ± 4.5 | 42.0 ± 7.1 | 0.121 |
Glucose, mg/dL | 90.6 ± 11.0 | 93.7 ± 11.7 | 0.046 |
HbA1c (%) | 5.3 ± 0.4 | 5.4 ± 0.4 | 0.115 |
Urea, mg/dL | 31.2 ± 8.0 | 30.26 ± 7.7 | 0.376 |
Creatinine, mg/dL | 0.8 ± 0.2 | 0.8 ± 0.1 | 0.280 |
Uric acid, mg/dL | 5.4 ± 1.2 | 5.78 ± 1.39 | 0.083 |
Total cholesterol, mg/dL | 191.0 ± 33.7 | 195.9 ± 38.0 | 0.352 |
HDL cholesterol, mg/dL | 50.7 ± 10.9 | 47.8 ± 11.1 | 0.074 |
LDL cholesterol, mg/dL | 127.0 ± 33.0 | 137.8 ± 37.9 | 0.083 |
VLD cholesterol, mg/dL | 25.5 ± 12.8 | 24.9 ± 12.5 | 0.797 |
Triglycerides, mg/dL | 127.4 ± 64.2 | 124.6 ± 62.6 | 0.785 |
Non-LDL Cholesterol, mg/dL | 140.4 ± 32.7 | 148.1 ± 37.6 | 0.221 |
Atherogenic index | 0.4 ± 0.2 | 0.4 ± 0.3 | 0.577 |
Total proteins, mg/dL | 7.0 ± 0.3 | 7.1 ± 0.3 | 0.028 |
Albuminuria, mg/day | 18.3 ± 34.2 | 29.6 ± 50.7 | <0.001 |
Proteinuria, mg/day | 97.8 ± 64.9 | 136.6 ± 81.3 | <0.001 |
uAPR | 0.2 ± 0.1 | 0.2 ± 0.1 | 0.242 |
Proteinuria Category | p | ||
---|---|---|---|
<150 mg/24 h (n = 149) | >150 mg/24 h (n = 43) | ||
Sex, n (%) of females | 123 (83.2%) | 29 (67.4%) | 0.023 |
HTA, n (%) | 98 (65.8%) | 24 (55.8%) | 0.281 |
Dyslipidaemia, n (%) | 67 (45.0%) | 15 (34.9%) | 0.294 |
Age, years | 41.9 ± 11.4 | 42.6 ± 11.0 | 0.725 |
Weight, kg | 110.8 ± 15.9 | 114.5 ± 24.4 | 0.765 |
BMI, kg/m2 | 41.3 ± 5.8 | 42.2 ± 6.8 | 0.898 |
Glucose, mg/dL | 91.6 ± 11.4 | 94.0 ± 11.4 | 0.214 |
HbA1c (%) | 5.3 ± 0.4 | 5.4 ± 0.4 | 0.098 |
Urea, mg/dL | 30.4 ± 7.6 | 32.0 ± 8.5 | 0.556 |
Creatinine, mg/dL | 0.8 ± 0.1 | 0.8 ± 0.2 | 0.663 |
Uric acid, mg/dL | 5.5 ± 1.3 | 5.9 ± 1.3 | 0.116 |
Total cholesterol, mg/dL | 192.8 ± 36.2 | 196.1 ± 35.5 | 0.590 |
HDL cholesterol, mg/dL | 50.0 ± 11.4 | 46.6 ± 9.8 | 0.066 |
LDL cholesterol, mg/dL | 131.6 ± 36.0 | 135.4 ± 35.9 | 0.553 |
VLD cholesterol, mg/dL | 24.5 ± 12.5 | 27.5 ± 12.9 | 0.128 |
Triglycerides, mg/dL | 122.7 ± 62.7 | 137.3 ± 64.6 | 0.127 |
Non-LDL Cholesterol, mg/dL | 142.8 ± 35.3 | 149.6 ± 35.5 | 0.229 |
Atherogenic index | 0.4 ± 0.2 | 0.4 ± 0.3 | 0.04 |
Total proteins, mg/dL | 7.0 ± 0.3 | 7.2 ± 0.4 | 0.04 |
Albuminuria, mg/day | 13.7 ± 9.2 | 60.0 ± 81.6 | <0.001 |
Creatinine clearance, mL/min | 139.8 ± 39.1 | 163.9 ± 54.6 | 0.002 |
uAPR | 0.2 ± 0.8 | 0.2 ± 0.2 | 0.220 |
Albuminuria Category | p | ||
---|---|---|---|
<30 mg/24 h (n = 164) | >30 mg/24 h (n = 28) | ||
Sex, n (%) of females | 139 (84.8%) | 14 (50.0%) | <0.001 |
HTA, n (%) | 108 (65.9%) | 14 (50.0%) | 0.137 |
Dyslipidaemia, n (%) | 73 (44.5%) | 9 (32.1%) | 0.302 |
Age, years | 42.0 ± 11.3 | 42.7 ± 11.1 | 0.753 |
Weight, kg | 110.2 ± 15.6 | 120.4 ± 27.7 | 0.092 |
BMI, kg/m2 | 41.3 ± 5.6 | 43.1 ± 7.9 | 0.578 |
Glucose, mg/dL | 92.0 ± 11.3 | 93.0 ± 12.1 | 0.553 |
HbA1c (%) | 5.3 ± 0.4 | 5.6 ± 0.3 | <0.001 |
Urea, mg/dL | 30.7 ± 8.1 | 30.8 ± 5.8 | 0.887 |
Creatinine, mg/dL | 0.8 ± 0.1 | 0.8 ± 0.1 | 0.202 |
Uric acid, mg/dL | 5.5 ± 1.3 | 6.5 ± 1.3 | <0.001 |
Total cholesterol, mg/dL | 191.8 ± 35.5 | 203.5 ± 37.8 | 0.113 |
HDL cholesterol, mg/dL | 49.9 ± 11.2 | 45.1 ± 9.7 | 0.046 |
LDL cholesterol, mg/dL | 130.6 ± 35.4 | 143.7 ± 37.5 | 0.083 |
VLD cholesterol, mg/dL | 24.0 ± 11.8 | 32.0 ± 15.2 | 0.003 |
Triglycerides, mg/dL | 120.1 ± 59.1 | 160.1 ± 76.1 | 0.003 |
Non-LDL Cholesterol, mg/dL | 141.9 ± 34.9 | 158.4 ± 35.9 | 0.023 |
Atherogenic index | 0.3 ± 0.2 | 0.5 ± 0.2 | <0.001 |
Total proteins, mg/dL | 7.0 ± 0.3 | 7.2 ± 0.4 | 0.001 |
Proteinuria, mg/day | 99.8 ± 47.8 | 221.6 ± 118.3 | <0.001 |
Creatinine clearance, mL/min | 141.0 ± 39.2 | 170.2 ± 60.7 | 0.001 |
uAPR | 14.5 ± 7.4 | 36.5 ± 15.1 | <0.001 |
uAPR | p | ||
---|---|---|---|
uAPR < 0.15 (n = 98) | aAPR > 0.15 (n = 94) | ||
Sex, n (%) of females | 85 (86.7%) | 68 (72.3%) | 0.013 |
HTA, n (%) | 65 (66.3%) | 57 (60.6%) | 0.455 |
Dyslipidaemia, n (%) | 45 (45.9%) | 37 (39.4%) | 0.384 |
Age, years | 41.2 ± 10.6 | 43.0 ± 11.9 | 0.299 |
Weight, kg | 109.4 ± 15.5 | 114.0 ± 20.4 | 0.100 |
BMI, kg/m2 | 41.0 ± 4.4 | 42.0 ± 7.3 | 0.247 |
Glucose, mg/dL | 92.9 ± 12.1 | 91.4 ± 10.7 | 0.713 |
HbA1c (%) | 5.3 ± 0.4 | 5.4 ± 0.4 | 0.338 |
Urea, mg/dL | 30.1 ± 7.7 | 31.4 ± 7.9 | 0.345 |
Creatinine, mg/dL | 0.8 ± 0.2 | 0.8 ± 0.1 | 0.693 |
Uric acid, mg/dL | 5.4 ± 1.3 | 5.9 ± 1.4 | 0.014 |
Total cholesterol, mg/dL | 190.0 ± 31.7 | 197.2 ± 39.8 | 0.170 |
HDL cholesterol, mg/dL | 49.8 ± 11.6 | 48.6 ± 10.6 | 0.489 |
LDL cholesterol, mg/dL | 128.0 ± 31.2 | 137.2 ± 39.8 | 0.075 |
VLD cholesterol, mg/dL | 24.2 ± 11.7 | 26.3 ± 13.5 | 0.320 |
Triglycerides, mg/dL | 120.8 ± 58.6 | 131.4 ± 67.5 | 0.315 |
Non-LDL Cholesterol, mg/dL | 140.2 ± 30.4 | 148.6 ± 39.6 | 0.099 |
Atherogenic index | 0.4 ± 0.3 | 0.4 ± 0.2 | 0.227 |
Total proteins, mg/dL | 7.0 ± 0.3 | 7.1 ± 0.4 | 0.136 |
Albuminuria, mg/day | 10.6 ± 5.9 | 38.1 ± 59.0 | <0.001 |
Proteinuria, mg/day | 116.8 ± 57.2 | 118.5 ± 92.1 | 0.174 |
Creatinine clearance, mL/min | 139.9 ± 38.9 | 150.8 ± 48.5 | 0.145 |
Albuminuria Univariate | Albuminuria Multivariate | Proteinuria Univariate | |||||||
---|---|---|---|---|---|---|---|---|---|
Variable | HR (95% CI) | p | HR (95% CI) | p | HR (95% CI) | p | |||
Age | 1.006 | (0.971–1.042) | 0.752 | - | - | - | 1.005 | (0.976–1.036) | 0.723 |
Sex | 5.56 | (2.366–13.066) | <0.001 | 1.582 | (0.426– 5.879) | 0.494 | 2.394 | (1.110–5.167) | 0.026 |
BMI | 1.051 | (0.983–1.124) | 0.148 | - | - | - | 1.023 | (0.963–1.087) | 0.457 |
Glucose | 1.008 | (0.974–1.043) | 0.663 | - | - | - | 1.017 | (0.989–1.047) | 0.24 |
HbA1c | 6.551 | (2.181–19.678) | <0.001 | 5.283 | (1.610–17.332) | 0.006 | 2.229 | (0.901–5.514) | 0.083 |
Urea | 1.001 | (0.951–1.054) | 0.967 | - | - | - | 1.025 | (0.983–1.070) | 0.245 |
Creatinine | 2.045 | (0.124–33.592) | 0.616 | - | - | - | 2.92 | (0.262–32.354) | 0.384 |
CrCl | 1.014 | (1.004–1.023) | 0.004 | 1.011 | (1.001–1.022) | 0.040 | 1.012 | (1.004–1.021) | 0.003 |
Uric Acid | 1.72 | (1.267–2.336) | <0.001 | 1.360 | (0.877–2.107) | 0.169 | 1.193 | (0.928–1.533) | 0.169 |
Total Cholesterol | 1.009 | (0.998–1.020) | 0.115 | - | - | - | 1.003 | (0.993–1.012) | 0.588 |
HDL | 0.957 | (0.918–0.997) | 0.037 | 0.999 | (0.954–1.047) | 0.979 | 0.97 | (0.939–1.003) | 0.077 |
LDL | 1.01 | (0.999–1.021) | 0.076 | - | - | - | 1.003 | (0.994–1.012) | 0.542 |
Age | 1.006 | (0.971–1.042) | 0.752 | - | - | - | 1.005 | (0.976–1.036) | 0.723 |
Sex | 5.56 | (2.366–13.066) | <0.001 | 1.582 | (0.426– 5.879) | 0.494 | 2.394 | (1.110–5.167) | 0.026 |
BMI | 1.051 | (0.983–1.124) | 0.148 | - | - | - | 1.023 | (0.963–1.087) | 0.457 |
Glucose | 1.008 | (0.974–1.043) | 0.663 | - | - | - | 1.017 | (0.989–1.047) | 0.24 |
HbA1c | 6.551 | (2.181–19.678) | <0.001 | 5.283 | (1.610–17.332) | 0.006 | 2.229 | (0.901–5.514) | 0.083 |
Urea | 1.001 | (0.951–1.054) | 0.967 | - | - | - | 1.025 | (0.983–1.070) | 0.245 |
Creatinine | 2.045 | (0.124–33.592) | 0.616 | - | - | - | 2.92 | (0.262–32.354) | 0.384 |
CrCl | 1.014 | (1.004–1.023) | 0.004 | 1.011 | (1.001–1.022) | 0.040 | 1.012 | (1.004–1.021) | 0.003 |
Uric Acid | 1.72 | (1.267–2.336) | <0.001 | 1.360 | (0.877–2.107) | 0.169 | 1.193 | (0.928–1.533) | 0.169 |
Total Cholesterol | 1.009 | (0.998–1.020) | 0.115 | - | - | - | 1.003 | (0.993–1.012) | 0.588 |
HDL | 0.957 | (0.918–0.997) | 0.037 | 0.999 | (0.954–1.047) | 0.979 | 0.97 | (0.939–1.003) | 0.077 |
LDL | 1.01 | (0.999–1.021) | 0.076 | - | - | - | 1.003 | (0.994–1.012) | 0.542 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pereira, P.R.; Pereira, J.; Braga, P.C.; Pereira, S.S.; Nora, M.; Guimarães, M.; Monteiro, M.P.; Rodrigues, A. Renal Dysfunction Phenotypes in Patients Undergoing Obesity Surgery. Biomolecules 2023, 13, 790. https://doi.org/10.3390/biom13050790
Pereira PR, Pereira J, Braga PC, Pereira SS, Nora M, Guimarães M, Monteiro MP, Rodrigues A. Renal Dysfunction Phenotypes in Patients Undergoing Obesity Surgery. Biomolecules. 2023; 13(5):790. https://doi.org/10.3390/biom13050790
Chicago/Turabian StylePereira, Pedro R., João Pereira, Patrícia C. Braga, Sofia S. Pereira, Mário Nora, Marta Guimarães, Mariana P. Monteiro, and Anabela Rodrigues. 2023. "Renal Dysfunction Phenotypes in Patients Undergoing Obesity Surgery" Biomolecules 13, no. 5: 790. https://doi.org/10.3390/biom13050790
APA StylePereira, P. R., Pereira, J., Braga, P. C., Pereira, S. S., Nora, M., Guimarães, M., Monteiro, M. P., & Rodrigues, A. (2023). Renal Dysfunction Phenotypes in Patients Undergoing Obesity Surgery. Biomolecules, 13(5), 790. https://doi.org/10.3390/biom13050790