The Development of a Non-Invasive Screening Method Based on Serum microRNAs to Quantify the Percentage of Liver Steatosis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients and Human Samples
2.2. RNA Isolation, Small RNA Library Preparation and miRNAseq Analysis
2.3. miRNA Expression Analysis by RT-qPCR
2.4. Bioinformatic Analysis and Modeling
3. Results
3.1. Liver miRNAseq and Selection of miRNAs Showing Correlation with the Percentage of Steatosis
3.2. Liver miRNA Validation by RTqPCR and Confirmation of Correlation with the Percentage of Steatosis
3.3. Quantification of Selected miRNAs in Human Serum and Verification of Their Correlation with the Percentage of Steatosis
3.4. Development and Validation of a Predictive Model of the Steatosis Percentage Based on Serum miRNAs Correlating with the Hepatic Lipid Content
4. Discussion
- Were not pre-selected; rather, they were identified by high-throughput screening (miRNAseq) in the whole liver miRNome.
- Showed correlation with the % of steatosis in the liver of two independent cohorts of patients (with biopsy proven steatosis).
- Showed correlation with the % of steatosis in patients as determined by different alternative linear methods (biopsy WSI analysis, MRI-PDFF, µgTG/mg protein).
- Demonstrated this correlation using two alternative miRNA expression methods (miRNAseq and RT-qPCR).
- Showed correlation/association in paired liver and serum samples of the same patients.
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Riazi, K.; Azhari, H.; Charette, J.H.; Underwood, F.E.; King, J.A.; Afshar, E.E.; Swain, M.G.; Congly, S.E.; Kaplan, G.G.; Shaheen, A.-A. The Prevalence and Incidence of NAFLD Worldwide: A Systematic Review and Meta-Analysis. Lancet Gastroenterol. Hepatol. 2022, 7, 851–861. [Google Scholar] [CrossRef] [PubMed]
- Chan, W.-K.; Chuah, K.-H.; Rajaram, R.B.; Lim, L.-L.; Ratnasingam, J.; Vethakkan, S.R. Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD): A State-of-the-Art Review. J. Obes. Metab. Syndr. 2023, 32, 197–213. [Google Scholar] [CrossRef] [PubMed]
- Geng, Y.; Faber, K.N.; de Meijer, V.E.; Blokzijl, H.; Moshage, H. How Does Hepatic Lipid Accumulation Lead to Lipotoxicity in Non-Alcoholic Fatty Liver Disease? Hepatol. Int. 2021, 15, 21–35. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.H. Imaging Evaluation of Non-Alcoholic Fatty Liver Disease: Focused on Quantification. Clin. Mol. Hepatol. 2017, 23, 290. [Google Scholar] [CrossRef]
- Lv, S.; Jiang, S.; Liu, S.; Dong, Q.; Xin, Y.; Xuan, S. Noninvasive Quantitative Detection Methods of Liver Fat Content in Nonalcoholic Fatty Liver Disease. J. Clin. Transl. Hepatol. 2018, 6, 217–221. [Google Scholar] [CrossRef]
- Oeda, S.; Takahashi, H.; Imajo, K.; Seko, Y.; Ogawa, Y.; Moriguchi, M.; Yoneda, M.; Anzai, K.; Aishima, S.; Kage, M.; et al. Accuracy of Liver Stiffness Measurement and Controlled Attenuation Parameter Using FibroScan® M/XL Probes to Diagnose Liver Fibrosis and Steatosis in Patients with Nonalcoholic Fatty Liver Disease: A Multicenter Prospective Study. J. Gastroenterol. 2020, 55, 428–440. [Google Scholar] [CrossRef]
- Patel, V.; Sanyal, A.J.; Sterling, R. Clinical Presentation and Patient Evaluation in Nonalcoholic Fatty Liver Disease. Clin. Liver Dis. 2016, 20, 277–292. [Google Scholar] [CrossRef]
- Hochreuter, M.Y.; Dall, M.; Treebak, J.T.; Barrès, R. MicroRNAs in Non-Alcoholic Fatty Liver Disease: Progress and Perspectives. Mol. Metab. 2022, 65, 101581. [Google Scholar] [CrossRef]
- López-Riera, M.; Conde, I.; Quintas, G.; Pedrola, L.; Zaragoza, Á.; Perez-Rojas, J.; Salcedo, M.; Benlloch, S.; Castell, J.V.; Jover, R. Non-Invasive Prediction of NAFLD Severity: A Comprehensive, Independent Validation of Previously Postulated Serum microRNA Biomarkers. Sci. Rep. 2018, 8, 10606. [Google Scholar] [CrossRef]
- Quintás, G.; Caiment, F.; Rienda, I.; Pérez-Rojas, J.; Pareja, E.; Castell, J.V.; Jover, R. Quantitative Prediction of Steatosis in Patients with Non-Alcoholic Fatty Liver by Means of Hepatic MicroRNAs Present in Serum and Correlating with Hepatic Fat. Int. J. Mol. Sci. 2022, 23, 9298. [Google Scholar] [CrossRef]
- Gastrointestinal Surgery for Severe Obesity: National Institutes of Health Consensus Development Conference Statement. Am. J. Clin. Nutr. 1992, 55, 615S–619S. [CrossRef] [PubMed]
- Brunt, E.M.; Janney, C.G.; Di Bisceglie, A.M.; Neuschwander-Tetri, B.A.; Bacon, B.R. Nonalcoholic Steatohepatitis: A Proposal for Grading and Staging the Histological Lesions. Am. J. Gastroenterol. 1999, 94, 2467–2474. [Google Scholar] [CrossRef] [PubMed]
- Bedossa, P.; FLIP Pathology Consortium. Utility and Appropriateness of the Fatty Liver Inhibition of Progression (FLIP) Algorithm and Steatosis, Activity, and Fibrosis (SAF) Score in the Evaluation of Biopsies of Nonalcoholic Fatty Liver Disease. Hepatol. Baltim. Md. 2014, 60, 565–575. [Google Scholar] [CrossRef] [PubMed]
- Rienda, I.; Ten-Doménech, I.; Moro, E.; Moreno-Torres, M.; Pérez-Rojas, J.; Pareja, E.; Pérez-Rubio, Á.; Trullenque, R.; Jover, R.; Lendl, B.; et al. Enhancing the Accuracy of Mid-Infrared Spectroscopy-Based Liver Steatosis Quantification Using Digital Image Analysis as a Reference. Analyst 2023, 148, 3097–3106. [Google Scholar] [CrossRef]
- Patil, A.H.; Halushka, M.K. miRge3.0: A Comprehensive microRNA and tRF Sequencing Analysis Pipeline. NAR Genom. Bioinform. 2021, 3, lqab068. [Google Scholar] [CrossRef]
- Luo, X.; Zhang, J.; Wang, H.; Du, Y.; Yang, L.; Zheng, F.; Ma, D. PolyA RT-PCR-Based Quantification of microRNA by Using Universal TaqMan Probe. Biotechnol. Lett. 2012, 34, 627–633. [Google Scholar] [CrossRef]
- Andersen, C.L.; Jensen, J.L.; Ørntoft, T.F. Normalization of Real-Time Quantitative Reverse Transcription-PCR Data: A Model-Based Variance Estimation Approach to Identify Genes Suited for Normalization, Applied to Bladder and Colon Cancer Data Sets. Cancer Res. 2004, 64, 5245–5250. [Google Scholar] [CrossRef]
- Byrne, C.D.; Patel, J.; Scorletti, E.; Targher, G. Tests for Diagnosing and Monitoring Non-Alcoholic Fatty Liver Disease in Adults. BMJ 2018, 362, k2734. [Google Scholar] [CrossRef]
- van Werven, J.R.; Marsman, H.A.; Nederveen, A.J.; Smits, N.J.; ten Kate, F.J.; van Gulik, T.M.; Stoker, J. Assessment of Hepatic Steatosis in Patients Undergoing Liver Resection: Comparison of US, CT, T1-Weighted Dual-Echo MR Imaging, and Point-Resolved 1H MR Spectroscopy. Radiology 2010, 256, 159–168. [Google Scholar] [CrossRef]
- Afonso, M.B.; Rodrigues, P.M.; Simão, A.L.; Castro, R.E. Circulating microRNAs as Potential Biomarkers in Non-Alcoholic Fatty Liver Disease and Hepatocellular Carcinoma. J. Clin. Med. 2016, 5, 30. [Google Scholar] [CrossRef]
- Yamada, H.; Suzuki, K.; Ichino, N.; Ando, Y.; Sawada, A.; Osakabe, K.; Sugimoto, K.; Ohashi, K.; Teradaira, R.; Inoue, T.; et al. Associations between Circulating microRNAs (miR-21, miR-34a, miR-122 and miR-451) and Non-Alcoholic Fatty Liver. Clin. Chim. Acta Int. J. Clin. Chem. 2013, 424, 99–103. [Google Scholar] [CrossRef] [PubMed]
- Kang, M.H.; Zhang, L.-H.; Wijesekara, N.; de Haan, W.; Butland, S.; Bhattacharjee, A.; Hayden, M.R. Regulation of ABCA1 Protein Expression and Function in Hepatic and Pancreatic Islet Cells by miR-145. Arterioscler. Thromb. Vasc. Biol. 2013, 33, 2724–2732. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Shi, H.; Luo, J.; Yi, Y.; Yao, D.; Zhang, X.; Ma, G.; Loor, J.J. MiR-145 Regulates Lipogenesis in Goat Mammary Cells Via Targeting INSIG1 and Epigenetic Regulation of Lipid-Related Genes. J. Cell Physiol. 2017, 232, 1030–1040. [Google Scholar] [CrossRef]
- Lyu, M.; Li, F.; Wang, X.; Xu, K.; Sun, S. miR-145 Modulates Fatty Acid Metabolism by Targeting FOXO1 to Affect SERBP1 Activity in Bovine Mammary Epithelial Cells. J. Agric. Food Chem. 2023, 71, 7440–7450. [Google Scholar] [CrossRef]
- DiStefano, J.K. Angiopoietin-like 8 (ANGPTL8) Expression Is Regulated by miR-143-3p in Human Hepatocytes. Gene 2019, 681, 1–6. [Google Scholar] [CrossRef]
- Wang, T.; Li, M.; Guan, J.; Li, P.; Wang, H.; Guo, Y.; Shuai, S.; Li, X. MicroRNAs miR-27a and miR-143 Regulate Porcine Adipocyte Lipid Metabolism. Int. J. Mol. Sci. 2011, 12, 7950–7959. [Google Scholar] [CrossRef]
- Zhang, L.; Wu, Z.-Q.; Wang, Y.-J.; Wang, M.; Yang, W.-C. MiR-143 Regulates Milk Fat Synthesis by Targeting Smad3 in Bovine Mammary Epithelial Cells. Animals 2020, 10, 1453. [Google Scholar] [CrossRef]
- Lin, Y.; Ding, D.; Huang, Q.; Liu, Q.; Lu, H.; Lu, Y.; Chi, Y.; Sun, X.; Ye, G.; Zhu, H.; et al. Downregulation of miR-192 Causes Hepatic Steatosis and Lipid Accumulation by Inducing SREBF1: Novel Mechanism for Bisphenol A-Triggered Non-Alcoholic Fatty Liver Disease. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 2017, 1862, 869–882. [Google Scholar] [CrossRef]
- Liu, X.-L.; Cao, H.-X.; Wang, B.-C.; Xin, F.-Z.; Zhang, R.-N.; Zhou, D.; Yang, R.-X.; Zhao, Z.-H.; Pan, Q.; Fan, J.-G. miR-192-5p Regulates Lipid Synthesis in Non-Alcoholic Fatty Liver Disease through SCD-1. World J. Gastroenterol. 2017, 23, 8140–8151. [Google Scholar] [CrossRef]
- Ma, L.; Song, H.; Zhang, C.-Y.; Hou, D. MiR-192-5p Ameliorates Hepatic Lipid Metabolism in Non-Alcoholic Fatty Liver Disease by Targeting Yy1. Biomolecules 2023, 14, 34. [Google Scholar] [CrossRef]
- Chai, C.; Rivkin, M.; Berkovits, L.; Simerzin, A.; Zorde-Khvalevsky, E.; Rosenberg, N.; Klein, S.; Yaish, D.; Durst, R.; Shpitzen, S.; et al. Metabolic Circuit Involving Free Fatty Acids, microRNA 122, and Triglyceride Synthesis in Liver and Muscle Tissues. Gastroenterology 2017, 153, 1404–1415. [Google Scholar] [CrossRef] [PubMed]
- Wen, J.; Friedman, J.R. miR-122 Regulates Hepatic Lipid Metabolism and Tumor Suppression. J. Clin. Investig. 2012, 122, 2773–2776. [Google Scholar] [CrossRef] [PubMed]
- Cheung, O.; Puri, P.; Eicken, C.; Contos, M.J.; Mirshahi, F.; Maher, J.W.; Kellum, J.M.; Min, H.; Luketic, V.A.; Sanyal, A.J. Nonalcoholic Steatohepatitis Is Associated with Altered Hepatic MicroRNA Expression. Hepatol. Baltim. Md. 2008, 48, 1810–1820. [Google Scholar] [CrossRef] [PubMed]
- Takaki, Y.; Saito, Y.; Takasugi, A.; Toshimitsu, K.; Yamada, S.; Muramatsu, T.; Kimura, M.; Sugiyama, K.; Suzuki, H.; Arai, E.; et al. Silencing of microRNA-122 Is an Early Event during Hepatocarcinogenesis from Non-Alcoholic Steatohepatitis. Cancer Sci. 2014, 105, 1254–1260. [Google Scholar] [CrossRef]
- Ding, J.; Li, M.; Wan, X.; Jin, X.; Chen, S.; Yu, C.; Li, Y. Effect of miR-34a in Regulating Steatosis by Targeting PPARα Expression in Nonalcoholic Fatty Liver Disease. Sci. Rep. 2015, 5, 13729. [Google Scholar] [CrossRef]
- Wang, L.; Sun, M.; Cao, Y.; Ma, L.; Shen, Y.; Velikanova, A.A.; Li, X.; Sun, C.; Zhao, Y. miR-34a Regulates Lipid Metabolism by Targeting SIRT1 in Non-Alcoholic Fatty Liver Disease with Iron Overload. Arch. Biochem. Biophys. 2020, 695, 108642. [Google Scholar] [CrossRef]
- Hendy, O.M.; Rabie, H.; El Fouly, A.; Abdel-Samiee, M.; Abdelmotelb, N.; Elshormilisy, A.A.; Allam, M.; Ali, S.T.; Bahaa El-Deen, N.M.; Abdelsattar, S.; et al. The Circulating Micro-RNAs (-122, -34a and -99a) as Predictive Biomarkers for Non-Alcoholic Fatty Liver Diseases. Diabetes Metab. Syndr. Obes. Targets Ther. 2019, 12, 2715–2723. [Google Scholar] [CrossRef]
- Liu, X.-L.; Pan, Q.; Zhang, R.-N.; Shen, F.; Yan, S.-Y.; Sun, C.; Xu, Z.-J.; Chen, Y.-W.; Fan, J.-G. Disease-Specific miR-34a as Diagnostic Marker of Non-Alcoholic Steatohepatitis in a Chinese Population. World J. Gastroenterol. 2016, 22, 9844–9852. [Google Scholar] [CrossRef]
- Wang, Y.-D.; Wu, L.-L.; Mai, Y.-N.; Wang, K.; Tang, Y.; Wang, Q.-Y.; Li, J.-Y.; Jiang, L.-Y.; Liao, Z.-Z.; Hu, C.; et al. miR-32-5p Induces Hepatic Steatosis and Hyperlipidemia by Triggering de Novo Lipogenesis. Metabolism 2023, 146, 155660. [Google Scholar] [CrossRef]
- Khan, R.; Verma, A.K.; Datta, M. Mir-98-5p Regulates Gluconeogenesis and Lipogenesis by Targeting PPP1R15B in Hepatocytes. J. Cell Commun. Signal. 2023, 17, 881–895. [Google Scholar] [CrossRef]
- Liang, Q.; Chen, H.; Xu, X.; Jiang, W. miR-182-5p Attenuates High-Fat -Diet-Induced Nonalcoholic Steatohepatitis in Mice. Ann. Hepatol. 2019, 18, 116–125. [Google Scholar] [CrossRef] [PubMed]
- Lu, T.-P.; Lee, C.-Y.; Tsai, M.-H.; Chiu, Y.-C.; Hsiao, C.K.; Lai, L.-C.; Chuang, E.Y. miRSystem: An Integrated System for Characterizing Enriched Functions and Pathways of microRNA Targets. PLoS ONE 2012, 7, e42390. [Google Scholar] [CrossRef] [PubMed]
(A) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Mean | SD | Median | IQR | Min | Max | Disease Stage (% of Patients) | |||||
0 | 1 | 2 | 3 | 4 | |||||||
Age (years) | 46 | 12 | 47 | 21 | 26 | 63 | |||||
Gender Female (%) | 71% | ||||||||||
BMI Max (kg/m2) | 46 | 8 | 44 | 6 | 36 | 77 | |||||
BMI Surgery (kg/m2) | 38 | 5 | 37 | 4 | 31 | 51 | |||||
Glucose (mg/dL) | 102 | 22 | 92 | 18 | 83 | 172 | |||||
HbA1c (%) | 5.8 | 0.8 | 5.5 | 0.6 | 4.7 | 7.9 | |||||
Insulin (µU/mL) | 14.7 | 5.1 | 13.9 | 9.8 | 8.5 | 24.5 | |||||
HOMA-IR | 3.7 | 1.5 | 3.7 | 2.0 | 1.9 | 7.3 | |||||
Cholesterol (mg/dL) | 171 | 51 | 169 | 59 | 70 | 280 | |||||
HDL (mg/dL) | 42 | 11 | 43 | 12 | 26 | 65 | |||||
LDL (mg/dL) | 101 | 48 | 104 | 44 | 10 | 199 | |||||
Triglycerides (mg/dL) | 140 | 62 | 134 | 61 | 67 | 304 | |||||
AST (IU/L) | 19 | 6 | 17 | 6 | 11 | 38 | |||||
ALT (IU/L) | 24 | 13 | 19 | 13 | 10 | 57 | |||||
ALP (IU/L) | 79 | 22 | 70 | 24 | 45 | 138 | |||||
Bilirubin (mg/dL) | 0.59 | 0.61 | 0.45 | 0.17 | 0.25 | 2.48 | |||||
Albumin (g/dL) | 4.3 | 0.3 | 4.3 | 0.4 | 3.6 | 4.8 | |||||
PT (s) | 11.5 | 0.8 | 11.5 | 1.1 | 10.0 | 12.8 | |||||
Hemoglobin (g/dL) | 14 | 2 | 14 | 2 | 12 | 17 | |||||
Platelets (103/µL) | 259 | 57 | 248 | 61 | 174 | 377 | |||||
Histopathology | |||||||||||
% Steatosis—Digital HE-Stained Image | 3.2 | 3.9 | 1.8 | 2.9 | 0.2 | 14.7 | |||||
Steatosis | 1.1 | 0.8 | 1.0 | 1.0 | 0 | 3 | 21% | 50% | 25% | 4% | |
Balooning | 0.5 | 0.7 | 0.0 | 1.0 | 0 | 2 | 61% | 26% | 13% | ||
Lobular Inflammation | 0.7 | 0.6 | 1.0 | 1.0 | 0 | 2 | 35% | 61% | 4% | ||
Overall Activity | 1.3 | 1.1 | 1.0 | 2.0 | 0 | 4 | 29% | 33% | 25% | 8% | 4% |
Fibrosis | 0.4 | 0.9 | 0.0 | 0.3 | 0 | 4 | 75% | 21% | 0% | 0% | 4% |
MRI-PDFF | |||||||||||
% Steatosis | 10 | 7 | 8 | 8 | 2 | 30 | |||||
(B) | |||||||||||
Mean | SD | Median | IQR | Min | Max | Disease Stage (% of Patients) | |||||
0 | 1 | 2 | 3 | 4 | |||||||
Age (years) | 51 | 10 | 53 | 14 | 31 | 63 | |||||
Gender Female (%) | 67% | ||||||||||
BMI Max (kg/m2) | 47 | 8 | 46 | 7 | 39 | 73 | |||||
BMI Surgery (kg/m2) | 41 | 7 | 38 | 5 | 33 | 63 | |||||
Glucose (mg/dL) | 96 | 8 | 98 | 14 | 83 | 108 | |||||
HbA1c (%) | 5.3 | 0.4 | 5.4 | 0.5 | 4.6 | 6.2 | |||||
Insulin (µU/mL) | 16.9 | 6.9 | 15.9 | 8.4 | 6.8 | 31.8 | |||||
HOMA-IR | 4.0 | 1.5 | 4.2 | 2.3 | 1.7 | 7.3 | |||||
Cholesterol (mg/dL) | 167 | 34 | 166 | 28 | 126 | 271 | |||||
HDL (mg/dL) | 43 | 7 | 42 | 12 | 31 | 53 | |||||
LDL (mg/dL) | 94 | 28 | 90 | 16 | 54 | 177 | |||||
Triglycerides (mg/dL) | 149 | 63 | 148 | 101 | 65 | 274 | |||||
AST (IU/L) | 20 | 4 | 21 | 6 | 13 | 27 | |||||
ALT (IU/L) | 24 | 9 | 23 | 13 | 10 | 40 | |||||
ALP (IU/L) | 70 | 13 | 69 | 14 | 50 | 101 | |||||
Bilirubin (mg/dL) | 0.76 | 0.22 | 0.76 | 0.29 | 0.50 | 1.20 | |||||
Albumin (g/dL) | 4.4 | 0.2 | 4.4 | 0.2 | 4.0 | 4.8 | |||||
PT (s) | 11.2 | 0.5 | 11.1 | 0.6 | 10.0 | 11.9 | |||||
Hemoglobin (g/dL) | 14 | 1 | 14 | 2 | 12 | 17 | |||||
Platelets (103/µL) | 217 | 56 | 211 | 48 | 112 | 307 | |||||
Histopathology | |||||||||||
% Steatosis—Digital HE-Stained Image | 4.7 | 3.0 | 3.7 | 3.0 | 1.1 | 12.3 | |||||
Steatosis | 1.3 | 0.5 | 1.0 | 1.0 | 1 | 2 | 0% | 67% | 33% | 0% | |
Balooning | 0.7 | 0.6 | 1.0 | 1.0 | 0 | 2 | 40% | 53% | 7% | 0% | |
Lobular Inflammation | 0.9 | 0.3 | 1.0 | 0.0 | 0 | 1 | 7% | 93% | 0% | 0% | |
Overall Activity | 1.5 | 0.8 | 2.0 | 1.0 | 0 | 3 | 13% | 27% | 53% | 7% | 0% |
Fibrosis | 0.4 | 0.5 | 0.0 | 1.0 | 0 | 1 | 60% | 40% | 0% | 0% | 0% |
MRI-PDFF | |||||||||||
% Steatosis | 12 | 5 | 10 | 6 | 6 | 26 | |||||
(C) | |||||||||||
Mean | SD | Median | IQR | Min | Max | Disease Stage (% of Patients) | |||||
0 | 1 | 2 | 3 | 4 | |||||||
Age (years) | 54 | 10 | 52 | 11 | 42 | 74 | |||||
Gender Female (%) | 40% | ||||||||||
BMI (kg/m2) | 31 | 4 | 30 | 4 | 25 | 38 | |||||
Glucose (mg/dL) | 119 | 48 | 97 | 37 | 85 | 241 | |||||
HbA1c (%) | 6.0 | 1.3 | 5.7 | 0.3 | 4.6 | 9.1 | |||||
Insulin (µU/mL) | 22.2 | 16.9 | 15.6 | 14.2 | 4.0 | 61.0 | |||||
HOMA-IR | 6.4 | 5.8 | 4.4 | 4.6 | 1.3 | 17.9 | |||||
Cholesterol (mg/dL) | 196 | 31 | 197 | 50 | 149 | 244 | |||||
HDL (mg/dL) | 49 | 24 | 40 | 11 | 26 | 109 | |||||
LDL (mg/dL) | 106 | 32 | 102 | 21 | 73 | 177 | |||||
Triglycerides (mg/dL) | 215 | 128 | 173 | 121 | 91 | 505 | |||||
AST (IU/L) | 57 | 45 | 36 | 51 | 19 | 156 | |||||
ALT (IU/L) | 66 | 41 | 59 | 42 | 19 | 134 | |||||
ALP (IU/L) | 72 | 30 | 64 | 46 | 44 | 124 | |||||
Bilirubin (mg/dL) | 0.67 | 0.29 | 0.61 | 0.21 | 0.25 | 1.30 | |||||
Albumin (g/dL) | 4.6 | 0.2 | 4.6 | 0.3 | 4.4 | 5.0 | |||||
PT (s) | 13.8 | 1.6 | 14.5 | 2.9 | 12.0 | 16.1 | |||||
Hemoglobin (g/dL) | 15 | 1 | 15 | 1 | 12 | 17 | |||||
Platelets (103/µL) | 248 | 48 | 267 | 77 | 173 | 294 | |||||
Histopathology | |||||||||||
% Steatosis—Digital HE-Stained Image | 7.5 | 6.2 | 7.4 | 9.2 | 1.1 | 18.9 | |||||
Steatosis | 1.7 | 1.2 | 2.0 | 1.8 | 0 | 3 | 20% | 20% | 30% | 30% | |
Balooning | 0.7 | 0.7 | 1.0 | 1.0 | 0 | 2 | 40% | 50% | 10% | ||
Lobular Inflammation | 0.8 | 0.4 | 1.0 | 0.0 | 0 | 1 | 20% | 80% | 0% | ||
Overall Activity | 1.5 | 1.0 | 2.0 | 1.0 | 0 | 3 | 20% | 20% | 50% | 10% | 0% |
Fibrosis | 1.1 | 1.2 | 1.0 | 1.8 | 0 | 3 | 40% | 30% | 10% | 20% | 0% |
MRI-PDFF | |||||||||||
% Steatosis | ND | ND | ND | ND | ND | ND |
Obese BS Patients % Fat Biopsy Digital Image | Obese BS Patients MRI-PDFF Dixon | |||||
---|---|---|---|---|---|---|
miRNA | Pearson r | p-Value | Pearson r | p-Value | ||
1 | 1180-3p | 0.28 | 0.186 | 0.15 | 0.493 | non-validated |
2 | 1247-5p | 0.07 | 0.755 | 0.04 | 0.867 | non-validated |
3 | 143-3p | −0.41 | 0.051 | −0.41 | 0.053 | |
4 | 145-3p | −0.48 | 0.024 | −0.51 | 0.016 | |
5 | 145-5p | −0.42 | 0.049 | −0.48 | 0.025 | |
6 | 148b-5p | 0.49 | 0.018 | 0.38 | 0.073 | |
7 | 15b-3p | 0.48 | 0.021 | 0.33 | 0.119 | |
8 | 182-5p | 0.42 | 0.048 | 0.33 | 0.125 | |
9 | 192-5p | −0.53 | 0.010 | −0.42 | 0.045 | |
10 | 194-3p | −0.41 | 0.045 | −0.37 | 0.078 | |
11 | 24-2-5p | −0.31 | 0.158 | −0.52 | 0.012 | |
12 | 30a-5p | −0.11 | 0.614 | −0.06 | 0.777 | non-validated |
13 | 30c-2-3p | 0.44 | 0.038 | 0.26 | 0.223 | |
14 | 32-5p | −0.47 | 0.020 | −0.50 | 0.013 | |
15 | 34a-5p | 0.54 | 0.006 | 0.63 | 0.001 | |
16 | 362-3p | 0.50 | 0.015 | 0.40 | 0.061 | |
17 | 500a-5p | 0.67 | 0.001 | 0.58 | 0.004 | |
18 | 501-3p | −0.32 | 0.138 | −0.52 | 0.011 | |
19 | 93-5p | 0.70 | 0.000 | 0.59 | 0.003 | |
20 | 98-5p | 0.54 | 0.009 | 0.40 | 0.063 | |
21 | let-7a-3p | 0.25 | 0.231 | 0.18 | 0.394 | non-validated |
22 | let-7b-5p | 0.39 | 0.065 | 0.32 | 0.132 | |
23 | 122-5p | −0.55 | 0.008 | −0.46 | 0.033 |
Obese BS Patient % Fat Biopsy Digital Image | Obese BS Patient MRI-PDFF Dixon | |||||
---|---|---|---|---|---|---|
miRNA | Pearson r | p-Value | Pearson r | p-Value | ||
1 | 143-3p | 0.51 | 0.016 | 0.43 | 0.045 | |
2 | 145-3p | 0.66 | 0.001 | 0.55 | 0.010 | |
3 | 145-5p | 0.01 | 0.963 | −0.01 | 0.963 | non-validated |
4 | 148b-5p | −0.15 | 0.507 | −0.32 | 0.143 | non-validated |
5 | 182-5p | −0.32 | 0.156 | −0.31 | 0.172 | |
6 | 192-5p | 0.45 | 0.038 | 0.45 | 0.036 | |
7 | 32-5p | 0.06 | 0.793 | 0.39 | 0.067 | |
8 | 34a-5p | 0.34 | 0.118 | 0.28 | 0.201 | |
9 | 362-3p | −0.05 | 0.813 | −0.01 | 0.970 | non-validated |
10 | 500a-5p | 0.34 | 0.128 | 0.29 | 0.198 | |
11 | 501-3p | 0.02 | 0.913 | 0.01 | 0.981 | non-validated |
12 | 93-5p | −0.34 | 0.119 | −0.36 | 0.098 | |
13 | 98-5p | 0.07 | 0.755 | 0.45 | 0.034 | |
14 | 122-5p | 0.54 | 0.092 | 0.22 | 0.328 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Soluyanova, P.; Quintás, G.; Pérez-Rubio, Á.; Rienda, I.; Moro, E.; van Herwijnen, M.; Verheijen, M.; Caiment, F.; Pérez-Rojas, J.; Trullenque-Juan, R.; et al. The Development of a Non-Invasive Screening Method Based on Serum microRNAs to Quantify the Percentage of Liver Steatosis. Biomolecules 2024, 14, 1423. https://doi.org/10.3390/biom14111423
Soluyanova P, Quintás G, Pérez-Rubio Á, Rienda I, Moro E, van Herwijnen M, Verheijen M, Caiment F, Pérez-Rojas J, Trullenque-Juan R, et al. The Development of a Non-Invasive Screening Method Based on Serum microRNAs to Quantify the Percentage of Liver Steatosis. Biomolecules. 2024; 14(11):1423. https://doi.org/10.3390/biom14111423
Chicago/Turabian StyleSoluyanova, Polina, Guillermo Quintás, Álvaro Pérez-Rubio, Iván Rienda, Erika Moro, Marcel van Herwijnen, Marcha Verheijen, Florian Caiment, Judith Pérez-Rojas, Ramón Trullenque-Juan, and et al. 2024. "The Development of a Non-Invasive Screening Method Based on Serum microRNAs to Quantify the Percentage of Liver Steatosis" Biomolecules 14, no. 11: 1423. https://doi.org/10.3390/biom14111423
APA StyleSoluyanova, P., Quintás, G., Pérez-Rubio, Á., Rienda, I., Moro, E., van Herwijnen, M., Verheijen, M., Caiment, F., Pérez-Rojas, J., Trullenque-Juan, R., Pareja, E., & Jover, R. (2024). The Development of a Non-Invasive Screening Method Based on Serum microRNAs to Quantify the Percentage of Liver Steatosis. Biomolecules, 14(11), 1423. https://doi.org/10.3390/biom14111423