Molecular Diversity from Longipinenes of Santolina viscosa Lag. through Acid Catalysis: Biocidal Activity
Abstract
:1. Introduction
2. Results and Discussion
3. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- European Comission. Pacto Verde: Propuestas Pioneras para Restaurar la Naturaleza en Europa de Aquí a 2050 y Reducir a la Mitad el uso de Plaguicidas de Aquí a 2030. Available online: https://ec.europa.eu/commission/presscorner/detail/es/ip_22_3746 (accessed on 12 July 2023).
- European Comission. Glyphosate. Available online: https://food.ec.europa.eu/plants/pesticides/approval-active-substances/renewal-approval/glyphosate_en (accessed on 27 January 2024).
- Roman, L.U.; Hernandez, J.D.; Del Rio, R.E.; Bucio, M.A.; Cerda-Garcia-Rojas, C.M.; Joseph-Nathan, P. Wagner-Meerwein rearrangements of longipinane derivatives. J. Org. Chem. 1991, 56, 1938. [Google Scholar] [CrossRef]
- Borgo, J.; Laurella, L.C.; Martini, F.; Catalán, C.A.N.; Sülsen, V.P. Stevia Genus: Phytochemistry and Biological Activities Update. Molecules 2021, 26, 2733. [Google Scholar] [CrossRef]
- Román, L.U.; Zepeda, L.G.; Morales, N.R.; Hernández, J.D.; Cerda-García-Rojas, C.M.; Joseph-Nathan, P. Molecular Rearrangement of Rastevione Mesylate into Arteagane Derivatives. J. Nat. Prod. 1995, 58, 1808. [Google Scholar] [CrossRef]
- Román, L.U.; Zepeda, L.G.; Morales, N.R.; Flores, S.; Hernández, J.D.; Cerda-García-Rojas, C.M.; Joseph-Nathan, P. Mechanistic Studies of the Longipinane to Arteagane Rearrangement. J. Nat. Prod. 1996, 59, 391. [Google Scholar] [CrossRef]
- Cerda-García-Rojas, C.M.; Flores-Sandoval, C.A.; Román, L.U.; Hernández, J.D.; Joseph-Nathan, P. A regioselective Wagner–Meerwein rearrangement directed towards the six-membered ring of the longipinane skeleton. Tetrahedron 2002, 58, 1061. [Google Scholar] [CrossRef]
- Román, L.U.; Cerda-García-Rojas, C.M.; Guzmán, R.; Armenta, C.; Hernández, J.D.; Joseph-Nathan, P. Jiquilpane Hydrocarbon Skeleton Generated by Two Successive Wagner−Meerwein Rearrangements of Longipinane Derivatives. J. Nat. Prod. 2002, 65, 1540. [Google Scholar] [CrossRef]
- Chacón-Morales, P.A.; Amaro-Luis, J.M. Meridane and Uladane, two unprecedented sesquiterpene skeletons obtained by Wagner–Meerwein rearrangements of Longipinane derivatives. Tetrahedron Lett. 2016, 57, 2713. [Google Scholar] [CrossRef]
- Reddy, D.S.; Kutateladze, A.G. Computational structure revision of a longipinane derivative meridane. Tetrahedron Lett. 2016, 57, 4727. [Google Scholar] [CrossRef]
- Román, L.U.; Rebeca Morales, N.; Hernández, J.D.; Cerda-García-Rojas, C.M.; Gerardo Zepeda, L.; Flores-Sandoval, C.A.; Joseph-Nathan, P. Generation of the new quirogane skeleton by a vinylogous retro-Michael type rearrangement of longipinene derivatives. Tetrahedron 2001, 57, 7269. [Google Scholar] [CrossRef]
- Joseph-Nathan, P.; Meléndez-Rodríguez, M.; Cerda-García-Rojas, C.M.; Catalan, C.A.N. Photochemical rearrangements of highly functionalized longipinene derivatives. Tetrahedron Lett. 1996, 37, 8093. [Google Scholar] [CrossRef]
- Meléndez-Rodríguez, M.; Cerda-García-Rojas, C.M.; Joseph-Nathan, P. Quirogane, Prenopsane, and Patzcuarane Skeletons Obtained by Photochemically Induced Molecular Rearrangements of Longipinene Derivatives. J. Nat. Prod. 2002, 65, 1398. [Google Scholar] [CrossRef] [PubMed]
- Román, L.U.; Hernández, J.D.; Cerda-García-Rojas, C.M.; Domínguez-López, R.M.; Joseph-Nathan, P. Molecular Rearrangements in the Longipinene Series. J. Nat. Prod. 1992, 55, 577. [Google Scholar] [CrossRef]
- Joseph-Nathan, P.; Cerda-Garcia-Rojas, C.M. Molecular rearrangements in longipinane derivatives. Pure Appl. Chem. 1994, 66, 2361. [Google Scholar] [CrossRef]
- Chacón-Morales, P.A.; Amaro-Luis, J.M.; Kutateladze, A.G. Structure determination and mechanism of formation of a seco- moreliane derivative supported by computational analysis. J. Nat. Prod. 2017, 80, 1214. [Google Scholar] [CrossRef] [PubMed]
- Armenta-Salinas, C.; Guzmán-Mejía, R.; García-Gutiérrez, H.A.; Román-Marín, L.U.; Hernández-Hernández, J.D.; Cerda-García-Rojas, C.M.; Joseph-Nathan, P. Novel Sesquiterpene Skeletons by Multiple Wagner–Meerwein Rearrangements of a Longipinane-1,9-diol Derivative. J. Nat. Prod. 2019, 82, 3410. [Google Scholar] [CrossRef]
- Ruiz-Ferrer, C.; Román-Marín, L.U.; Hernández-Hernández, J.D.; Cerda-García-Rojas, C.M.; Joseph-Nathan, P. Novel Sesquiterpenoid Skeletons by Wagner–Meerwein Rearrangements of Longipinane-9,13-diol-1-one Derivatives. J. Nat. Prod. 2021, 84, 1087. [Google Scholar] [CrossRef] [PubMed]
- Meléndez-Rodríguez, M.; Cerda-García-Rojas, C.M.; Catalán, C.A.N.; Joseph-Nathan, P. Mechanistic studies of the photochemical rearrangement of 1-oxolongipin-2-ene derivatives. Tetrahedron 2002, 58, 2331. [Google Scholar] [CrossRef]
- Barrero, A.F.; Herrador, M.M.; Molina, J.M.; Quílez, J.F.; Quirós, M. α-Longipinene Derivatives from Santolina viscosa. A Conformational Analysis of the Cycloheptane Ring. J. Nat. Prod. 1994, 57, 873. [Google Scholar] [CrossRef]
- Barrero, A.F.; Herrador, M.M.; Álvarez-Manzaneda, R.J.; Quirós, M.; Lara, A.; Quílez del Moral, J. Longipinene Derivatives from Santolina viscosa. J. Nat. Prod. 2000, 63, 587. [Google Scholar] [CrossRef]
- Shastri, M.H.; Dev, S. Studies in sesquiterpenes-LXa,b reversion of longipinane to himachalane system: Revision of structure of isocentdarol. Tetrahedron 1992, 48, 4905. [Google Scholar] [CrossRef]
- Dolomanov, O.V.; Bourhis, L.J.; Gildea, R.J.; Howard, J.A.K.; Puschmann, H. OLEX2: A complete structure solution, refinement and analysis program. J. Appl. Crystallogr. 2009, 42, 339. [Google Scholar] [CrossRef]
- Sheldrick, G.M. SHELXT—Integrated space-group and crystal-structure determination. Acta Crystallogr. Sect. A Found. Adv. 2015, 71, 3. [Google Scholar] [CrossRef] [PubMed]
- Sheldrick, G.M. Crystal structure refinement with SHELXL. Acta Crystallogr. Sect. C Struct. Chem. 2015, 71, 3. [Google Scholar] [CrossRef] [PubMed]
- Hehre, W.; Klunzinger, P.; Deppmeier, B.; Driessen, A.; Uchida, N.; Hashimoto, M.; Fukushi, E.; Takata, Y. Efficient protocol for accurately calculating 13C chemical shifts of conformationally flexible natural products: Scope, assessment, and limitations. J. Nat. Prod. 2019, 82, 2299. [Google Scholar] [CrossRef] [PubMed]
- Navarro-Rocha, J.; Andrés, M.F.; Díaz, C.E.; Burillo, J.; González-Coloma, A. Composition and biocidal properties of essential oil from pre-domesticated Spanish Satureja Montana. Ind. Crops Prod. 2020, 145, 111958. [Google Scholar] [CrossRef]
- Rueden, C.T.; Schindelin, J.; Hiner, M.C.; DeZonia, B.E.; Walter, A.E.; Arena, E.T.; Eliceiri, K.W. ImageJ2: ImageJ for the next generation of scientific image data. BMC Bioinform. 2017, 18, 529. [Google Scholar] [CrossRef] [PubMed]
- Santana, O.; Andrés, M.F.; Sanz, J.; Errahmani, N.; Abdeslam, L.; González-Coloma, A. Valorization of essential oils from Moroccan aromatic plants. Nat. Prod. Commun. 2014, 9, 1109. [Google Scholar] [CrossRef] [PubMed]
- González, J.; Valcárcel, F.; Aguilar, A.; Olmeda, A.S. In vitro feeding of Hyalomma lusitanicum ticks on artificial membranes. Exp. Appl. Acarol. 2017, 72, 449. [Google Scholar] [CrossRef]
- Andrés, M.F.; González-Coloma, A.; Muñoz, R.; De la Peña, F.; Julio, L.F.; Burillo, J. Nematicidal potential of hydrolates from the semi industrial vapor-pressure extraction of Spanish aromatic plants. Environ. Sci. Pollut. Res. 2018, 25, 29834. [Google Scholar] [CrossRef]
- Püntener, W. Manual for Field Trials in Plant Protection; Ciba-Geigy Limited: Basel, Switzerland, 1981; Volume 205. [Google Scholar]
Acid Catalyst | Longipinene 1 | Longipinene 2 | Longipinene 5 |
---|---|---|---|
zeolite Y-CBV720 | 8 * 12 (10%) 16 (5%) 17 (7%) | 9 (30%) 18 * | 10 (5%) 5 * |
H6SiW12O41 | 12 (18%) 17 * | 13 (38%) 18 * | 10 (4%) 15 * |
InCl3 | 8 * 16 (4%) 17 (4%) | 9 (14%) 11 (4%) 13 (3%) 14 (24%) 18 (26%) | 15 (36%) |
HSO3F | 8 * 12 (19%) 17 (10%) | 9 (16%) 13 (15%) 18 (29%) | 15 * |
C | 12 | 15 | 17 | 18 | ||||
---|---|---|---|---|---|---|---|---|
13C NMR Exp. | 13C NMR Theory | 13C NMR Exp. | 13C NMR Theory | 13C NMR Exp. | 13C NMR Theory | 13C NMR Exp. | 13C NMR Theory | |
1 | 44.0 | 44.4 | 44.1 | 44.6 | 41.3 | 41.2 | 36.8 | 39.3 |
2 | 49.4 | 49.9 | 50.9 | 50.7 | 83.8 | 81.9 | 76.5 | 75.9 |
3 | 27.9 | 27.5 | 34.9 | 35.0 | 34.6 | 33.4 | 37.5 | 36.1 |
4 | 20.0 | 20.7 | 22.5 | 22.5 | 20.5 | 21.0 | 19.4 | 20.6 |
5 | 33.4 | 33.2 | 31.3 | 31.6 | 31.7 | 29.6 | 31.2 | 30.0 |
6 | 44.1 | 44.0 | 48.5 | 49.7 | 44.4 | 45.8 | 48.9 | 47.9 |
7 | 54.9 | 54.1 | 55.0 | 54.7 | 39.0 | 40.7 | 40.5 | 38.6 |
8 | 88.6 | 87.6 | 92.1 | 91.7 | 119.1 | 123.0 | 121.6 | 126.4 |
9 | 49.9 | 49.6 | 50.0 | 49.2 | 138.2 | 136.9 | 136.8 | 134.4 |
10 | 32.7 | 33.4 | 33.8 | 34.8 | 29.0 | 28.5 | 28.9 | 27.0 |
11 | 27.1 | 28.5 | 28.6 | 29.9 | 23.7 | 25.9 | 24.1 | 24.4 |
12 | 11.0 | 12.6 | 11.1 | 12.8 | 24.2 | 24.2 | 24.0 | 24.2 |
13 | 21.1 | 21.6 | 23.7 | 25.0 | 29.6 | 30.5 | 30.4 | 30.6 |
14 | 29.7 | 29.4 | 70.3 | 71.2 | 24.4 | 25.1 | 71.0 | 67.7 |
15 | 185.3 | 183.4 | 75.9 | 76.3 | 178.5 | 176.2 | 175.9 | 177.5 |
16 | - | - | - | - | - | - | 52.2 | 52.5 |
C | max absolute = 3.3; rms = 1.3 | max absolute = 3.5; rms = 1.7 | max absolute = 1.8; rms = 0.9 | max absolute = 17.1; rms = 7.8 | ||
13C NMR Exp | 13C NMR Theory | 13C NMR Theory | 13C NMR Exp. | 13C NMR Theory | 13C NMR Theory | |
1 | 85.4 | 84.1 | 85.6 | 44.2 | 44.6 | 42.1 |
2 | 42.4 | 42.5 | 40.7 | 51.3 | 50.8 | 51.0 |
3 | 32.4 | 31.6 | 31.6 | 35.2 | 35.2 | 35.4 |
4 | 22.0 | 21.9 | 20.8 | 22.7 | 22.6 | 28.6 |
5 | 41.7 | 40.4 | 39.9 | 32.7 | 32.8 | 26.7 |
6 | 48.4 | 47.8 | 47.8 | 55.0 | 55.3 | 65.3 |
7 | 45.2 | 46.2 | 42.0 | 55.1 | 54.5 | 72.2 |
8 | 119.6 | 122.9 | 123.1 | 91.7 | 91.1 | 83.8 |
9 | 135.7 | 136.2 | 136.9 | 48.6 | 49.3 | 65.5 |
10 | 24.7 | 24.7 | 24.7 | 33.7 | 34.8 | 42.7 |
11 | 31.8 | 32.8 | 33.0 | 28.5 | 29.7 | 24.1 |
12 | - | - | - | 10.9 | 12.7 | 15.6 |
13 | 16.2 | 17.1 | 17.4 | 23.8 | 25.1 | 27.4 |
14 | 22.5 | 23.5 | 23.3 | 176.7 | 177.5 | 76.1 |
15 | 183.4 | 181.4 | 181.2 | 74.5 | 75.1 | 177.7 |
16 | - | - | - | 52.0 | 52.5 | 52.9 |
Extract | μg/cm2 | S. littoralis | M. persicae | R. padi |
---|---|---|---|---|
E | %FI/SI | 23.1 ± 7.6 | 71.78 ± 6.87 | 48.25 ± 6.76 |
EC50 | >100 | 19.8 (11.4–34.3) | >100 | |
NF | %FI/SI | 78.2 ± 12.1 | 73.98 ± 6.95 | 60.9 ± 6.8 |
EC50 | 40.7 (24.8–67.2) | 19.5 (11.0–34.5) | ≈100 | |
AF | %FI/SI | 42.1 ± 10.5 | 53.47 ± 8.57 | 59.7 ± 6.3 |
EC50 | >100 | ≈100 | ≈100 | |
AEF | %FI/SI | 86.2 ± 8.7 | 80.8 ± 5.8 | 81.5 ± 5.8 |
EC50 | 32.2 (17.7–58.6) | 2.8 (1.2–6.3) | 13.7 (7.8–24.3) |
Compound | μg/cm2 | S. littoralis | M. persicae | R. padi |
---|---|---|---|---|
1 | %FI/SI | 18.0 ± 7.4 | 73.5 ± 7.5 | 63.2 ± 5.6 |
EC50 | >50 | 22.3 (16.0–31.2) | ≈50 | |
2 | %FI/SI | 39.7 ± 15.1 | 83.06 ± 8.14 | 62.56 ± 7.6 |
EC50 | >50 | 11.8 (8.2–17.0) | ≈50 | |
3 | %FI/SI | 29.9 ± 13.3 | 86.3 ± 6.02 | 78.7 ± 5.7 |
EC50 | >50 | 6.7 (3.7–12.2) | 8.0 (2.7–23.4) | |
4 | %FI/SI | 23.3 ± 5.7 | 85.8 ± 3.2 | 66 ± 6 |
EC50 | >50 | 11.5 (7.0–18.6) | >50 | |
5 | %FI/SI | 41.6 ± 18.9 | 70.5 ± 9.2 | 69.3 ± 5.5 |
EC50 | >50 | 11.2 (6.1–20.7) | 21.5 (16.2–28.5) | |
6 | %FI/SI | 27.9 ± 8.3 | 74.7 ± 6.9 | 5.06 ± 5.6 |
EC50 | >50 | 14.7 (8.3–25.7) | ≈50 | |
7 | %FI/SI | 29.0 ± 16.1 | 72.0 ± 7.2 | 35.5 ± 7.7 |
EC50 | >50 | 11.6 (6.4–21.1) | >50 | |
8 | %FI/SI | 50.4 ± 14.8 | 85.9 ± 3.3 | 73 ± 5 |
EC50 | ≈50 | 17.1 (12.7–22.9) | 25–50 | |
9 | %FI/SI | 11.3 ± 7.1 | 36.5 ± 7.1 | 57.5 ± 5.8 |
EC50 | >50 | >50 | >50 | |
12 | %FI/SI | 49.2 ± 13.6 | 85.5 ± 6.7 | 97 ± 1 |
EC50 | ≈50 | 5.5 (5.4–5.6) | 7.6 (7.5–7.6) | |
13 | %FI/SI | 14.9 ± 7.4 | 47.9 ± 7.9 | 30.5 ± 6.7 |
EC50 | >50 | >50 | >50 | |
15 | %FI/SI | 27.4 ± 11.7 | 85.9 ± 4.8 | 56.1 ± 8.2 |
EC50 | >50 | 12.5–25.0 | ≈50 | |
17 | %FI/SI | 19.2 ± 10.5 | 81.6 ± 6.8 | 74.3.8 ± 7.0 * |
EC50 | >50 | 8.1 (8.1–8.2) | 11.8 (9.3–27.2) | |
18 | %FI/SI | 39 ± 10 | 86.5 ± 6.7 | 75.9 ± 6.0 |
EC50 | >50 | 7.7 (5.3–11.1) | 17.7 (11.5–27.2) | |
19/19a | %FI/SI | 58.7 ± 11.3 | 87.8 ± 3.2 | 83.2 ± 3.5 |
EC50 | ≈50 | <0.78 | Nc | |
22 | %FI/SI | 37.9 ± 16.3 | 56.9 ± 10.4 | 24.8 ± 6.3 |
EC50 | >50 | >50 | >50 | |
23 | %FI/SI | 28.6 ± 13.2 | 31.8 ± 6.6 | 31.0 ± 6.9 |
EC50 | >50 | >50 | >50 | |
24 | %FI/SI | 30.3 ± 8.0 | 33.3 ± 9.5 | 35.2 ± 6.4 |
EC50 | >50 | >50 | >50 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Torres-García, I.; Quílez del Moral, J.F.; Barrero, A.F.; González-Coloma, A.; Andrés, M.F.; López-Pérez, J.L.; Álvarez-Corral, M.; Rodríguez-García, I.; Muñoz-Dorado, M. Molecular Diversity from Longipinenes of Santolina viscosa Lag. through Acid Catalysis: Biocidal Activity. Biomolecules 2024, 14, 780. https://doi.org/10.3390/biom14070780
Torres-García I, Quílez del Moral JF, Barrero AF, González-Coloma A, Andrés MF, López-Pérez JL, Álvarez-Corral M, Rodríguez-García I, Muñoz-Dorado M. Molecular Diversity from Longipinenes of Santolina viscosa Lag. through Acid Catalysis: Biocidal Activity. Biomolecules. 2024; 14(7):780. https://doi.org/10.3390/biom14070780
Chicago/Turabian StyleTorres-García, Irene, José F. Quílez del Moral, Alejandro F. Barrero, Azucena González-Coloma, María Fe Andrés, José L. López-Pérez, Miriam Álvarez-Corral, Ignacio Rodríguez-García, and Manuel Muñoz-Dorado. 2024. "Molecular Diversity from Longipinenes of Santolina viscosa Lag. through Acid Catalysis: Biocidal Activity" Biomolecules 14, no. 7: 780. https://doi.org/10.3390/biom14070780
APA StyleTorres-García, I., Quílez del Moral, J. F., Barrero, A. F., González-Coloma, A., Andrés, M. F., López-Pérez, J. L., Álvarez-Corral, M., Rodríguez-García, I., & Muñoz-Dorado, M. (2024). Molecular Diversity from Longipinenes of Santolina viscosa Lag. through Acid Catalysis: Biocidal Activity. Biomolecules, 14(7), 780. https://doi.org/10.3390/biom14070780