The Role of MALAT1 in Regulating the Proangiogenic Functions, Invasion, and Migration of Trophoblasts in Selective Fetal Growth Restriction
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants and Placental Tissue Collection
2.2. Cell Culture
2.3. RNA Extraction, Reverse Transcription, and Real-Time Quantitative PCR (RT-qPCR)
2.4. Western Blotting
2.5. Fluorescence In Situ Hybridization (FISH)
2.6. Immunohistochemistry (IHC) Staining and Analysis of Angiogenesis
2.7. Cell Transfection
2.8. Preparation of Conditioned Medium (CM) of Trophoblasts
2.9. Tube Formation Assay
2.10. Immunofluorescent (IF) Staining of Ki-67
2.11. Dual-Luciferase Reporter Assay
2.12. Cell Proliferation Assay
2.13. Transwell Invasion Assay
2.14. Wound Healing Assay
2.15. Apoptosis Detected via Flow Cytometry
2.16. Statistical Analysis
3. Results
3.1. Participant Demographics
3.2. Decreased Expression of MALAT1, ERRγ, and HSD17B1 in the Placental Share of the Smaller Fetus in sFGR Pregnancies
3.3. Angiogenesis Is Impaired in the Placental Share of the Smaller Fetus in sFGR Pregnancies and Conditioned Medium of MALAT1-Decreased Trophoblasts
3.4. MALAT1 Serves as a Sponge of miR-424 to Regulate ERRγ and HSD17B1 Expression
3.5. MALAT1 Regulates the Paracrine Effects of Trophoblasts on the Endothelium, Trophoblast Invasion, and Migration by Sponging miR-424
3.6. MALAT1 Affects the Proliferation and Apoptosis of Trophoblasts under Hypoxia by Sponging miR-424
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Khalil, A. The rate of twin birth is declining. Ultrasound Obstet. Gynecol. 2021, 58, 784–785. [Google Scholar] [CrossRef] [PubMed]
- Chen, P.; Li, M.; Mu, Y.; Wang, Y.; Liu, Z.; Li, Q.; Li, X.; Dai, L.; Xie, Y.; Liang, J.; et al. Temporal trends and adverse perinatal outcomes of twin pregnancies at differing gestational ages: An observational study from China between 2012-2020. BMC Pregnancy Childbirth 2022, 22, 467. [Google Scholar] [CrossRef]
- Kilby, M.D.; Bricker, L.; on behalf of the Royal College of Obstetricians and Gynaecologists. Management of Monochorionic Twin Pregnancy: Green-top Guideline No. 51. BJOG Int. J. Obstet. Gynecol. 2017, 124, e1–e45. [Google Scholar] [CrossRef]
- Cheong-See, F.; Schuit, E.; Arroyo-Manzano, D.; Khalil, A.; Barrett, J.; Joseph, K.S.; Asztalos, E.; Hack, K.; Lewi, L.; Lim, A.; et al. Prospective risk of stillbirth and neonatal complications in twin pregnancies: Systematic review and meta-analysis. BMJ Br. Med. J. 2016, 354, i4353. [Google Scholar] [CrossRef] [PubMed]
- Buca, D.; Pagani, G.; Rizzo, G.; Familiari, A.; Flacco, M.E.; Manzoli, L.; Liberati, M.; Fanfani, F.; Scambia, G.; D’Antonio, F. Outcome of monochorionic twin pregnancy with selective intrauterine growth restriction according to umbilical artery Doppler flow pattern of smaller twin: Systematic review and meta-analysis. Ultrasound Obstet. Gynecol. 2017, 50, 559–568. [Google Scholar] [CrossRef]
- Li, M.; Wang, C.; Yang, Y.; Mao, L.; Chen, J.; He, S.; Gou, C.; Zhang, X. Characteristics of vascular anastomoses in monochorionic twin 587 placentas with selective intrauterine growth restriction via 89 three-dimensional computed tomography angiography. Prenat. Diagn. 2020, 40, 715–723. [Google Scholar] [CrossRef]
- Wu, J.; He, Z.; Gao, Y.; Zhang, G.; Huang, X.; Fang, Q. Placental NFE2L2 is discordantly activated in monochorionic twins with selective intrauterine growth restriction and possibly regulated by hypoxia. Free Radic. Res. 2017, 51, 351–359. [Google Scholar] [CrossRef]
- Shi, D.; Zhou, X.; Cai, L.; Wei, X.; Zhang, L.; Sun, Q.; Zhou, F.; Sun, L. Placental DNA methylation analysis of selective fetal growth restriction in monochorionic twins reveals aberrant methylated CYP11A1 gene for fetal growth restriction. FASEB J. 2023, 37, e23207. [Google Scholar] [CrossRef]
- Meng, M.; Cheng, Y.; Wu, L.; Chaemsaithong, P.; Leung, M.; Chim, S.; Sahota, D.S.; Li, W.; Poon, L.; Wang, C.C.; et al. Whole genome miRNA profiling revealed miR-199a as potential placental pathogenesis of selective fetal growth restriction in monochorionic twin pregnancies. Placenta 2020, 92, 44–53. [Google Scholar] [CrossRef]
- Zou, Z.; He, Z.; Cai, J.; Huang, L.; Zhu, H.; Luo, Y. Potential role of microRNA-424 in regulating ERRgamma to suppress trophoblast proliferation and invasion in fetal growth restriction. Placenta 2019, 83, 57–62. [Google Scholar] [CrossRef]
- Rehmsmeier, M.; Steffen, P.; Hochsmann, M.; Giegerich, R. Fast and effective prediction of microRNA/target duplexes. RNA 2004, 10, 1507–1517. [Google Scholar] [CrossRef] [PubMed]
- Lapehn, S.; Paquette, A.G. The Placental Epigenome as a Molecular Link between Prenatal Exposures and Fetal Health Outcomes through the DOHaD Hypothesis. Curr. Environ. Health Rep. 2022, 9, 490–501. [Google Scholar] [CrossRef] [PubMed]
- Apicella, C.; Ruano, C.; Mehats, C.; Miralles, F.; Vaiman, D. The Role of Epigenetics in Placental Development and the Etiology of Preeclampsia. Int. J. Mol. Sci. 2019, 20, 2837. [Google Scholar] [CrossRef] [PubMed]
- Goyal, B.; Yadav, S.; Awasthee, N.; Gupta, S.; Kunnumakkara, A.B.; Gupta, S.C. Diagnostic, prognostic, and therapeutic significance of long non-coding RNA MALAT1 in cancer. BBA Rev. Cancer 2021, 1875, 188502. [Google Scholar] [CrossRef] [PubMed]
- Wu, Q.; Wang, J.; Tan, W.; Jiang, Y.; Wang, S.; Li, Q.; Yu, X.; Tan, J.; Liu, S.; Zhang, P.; et al. Extracellular vesicles from human embryonic stem cell-derived cardiovascular progenitor cells promote cardiac infarct healing through reducing cardiomyocyte death and promoting angiogenesis. Cell Death Dis. 2020, 11, 354. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Liu, X.; Liu, W.; Zhang, Y.; Wu, M.; Chen, Z.; Zhao, Y.; Zou, L. MALAT1 sponges miR-26a and miR-26b to regulate endothelial cell angiogenesis via PFKFB3-driven glycolysis in early-onset preeclampsia. Mol. Ther. Nucleic Acids 2021, 23, 897–907. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.Y.; Wang, X.H.; Liu, K.; Zhang, J.L. LncRNA MALAT1 regulates trophoblast cells migration and invasion via miR-206/IGF-1 axis. Cell Cycle 2020, 19, 39–52. [Google Scholar] [CrossRef] [PubMed]
- Xing, F.; Han, F.; Wu, Y.; Lv, B.; Tian, H.; Wang, W.; Tian, X.; Xu, C.; Duan, H.; Zhang, D.; et al. An epigenome-wide association study of waist circumference in Chinese monozygotic twins. Int. J. Obes. 2024, 48, 1148–1156. [Google Scholar] [CrossRef] [PubMed]
- Ye, J.; Huang, Z.; Li, Q.; Li, Z.; Lan, Y.; Wang, Z.; Ni, C.; Wu, X.; Jiang, T.; Li, Y.; et al. Transition of allele-specific DNA hydroxymethylation at regulatory loci is associated with phenotypic variation in monozygotic twins discordant for psychiatric disorders. BMC Med. 2023, 21, 491. [Google Scholar] [CrossRef]
- Khalil, A.; Beune, I.; Hecher, K.; Wynia, K.; Ganzevoort, W.; Reed, K.; Lewi, L.; Oepkes, D.; Gratacos, E.; Thilaganathan, B.; et al. Consensus definition and essential reporting parameters of selective fetal growth restriction in twin pregnancy: A Delphi procedure. Ultrasound Obstet. Gynecol. 2019, 53, 47–54. [Google Scholar] [CrossRef]
- Uxa, S.; Castillo-Binder, P.; Kohler, R.; Stangner, K.; Muller, G.A.; Engeland, K. Ki-67 gene expression. Cell Death Differ. 2021, 28, 3357–3370. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.L.; He, Z.M.; Shi, X.M.; Gou, C.Y.; Gao, Y.; Fang, Q. Discordant HIF1A mRNA levels and oxidative stress in placental shares of monochorionic twins with selective intra-uterine growth restriction. Placenta 2015, 36, 297–303. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Tang, X.; Liu, K.; Hamblin, M.H.; Yin, K.J. Long Noncoding RNA Malat1 Regulates Cerebrovascular Pathologies in Ischemic Stroke. J. Neurosci. 2017, 37, 1797–1806. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, H.; Zhang, Z.; Li, S.; Jiang, W.; Li, X.; Lv, J. LncRNA MALAT1 cessation antagonizes hypoxia/reoxygenation injury in hepatocytes by inhibiting apoptosis and inflammation via the HMGB1-TLR4 axis. Mol. Immunol. 2019, 112, 22–29. [Google Scholar] [CrossRef]
- Chen, Y.T.; Yang, Q.Y.; Hu, Y.; Liu, X.D.; de Avila, J.M.; Zhu, M.J.; Nathanielsz, P.W.; Du, M. Imprinted lncRNA Dio3os preprograms intergenerational brown fat development and obesity resistance. Nat. Commun. 2021, 12, 6845. [Google Scholar] [CrossRef] [PubMed]
- Ji, P.; Diederichs, S.; Wang, W.; Boing, S.; Metzger, R.; Schneider, P.M.; Tidow, N.; Brandt, B.; Buerger, H.; Bulk, E.; et al. MALAT-1, a novel noncoding RNA, and thymosin beta4 predict metastasis and survival in early-stage non-small cell lung cancer. Oncogene 2003, 22, 8031–8041. [Google Scholar] [CrossRef] [PubMed]
- Ferretti, C.; Bruni, L.; Dangles-Marie, V.; Pecking, A.P.; Bellet, D. Molecular circuits shared by placental and cancer cells, and their implications in the proliferative, invasive and migratory capacities of trophoblasts. Hum. Reprod. Update 2007, 13, 121–141. [Google Scholar] [CrossRef]
- Valero, P.; Fuentes, G.; Cornejo, M.; Vega, S.; Grismaldo, A.; Pardo, F.; Garcia-Rivas, G.; Hillebrands, J.L.; Faas, M.M.; Casanello, P.; et al. Exposome and foetoplacental vascular dysfunction in gestational diabetes mellitus. Mol. Asp. Med. 2022, 87, 101019. [Google Scholar] [CrossRef]
- Brosens, I.; Puttemans, P.; Benagiano, G. Placental bed research: I. The placental bed: From spiral arteries remodeling to the great obstetrical syndromes. Am. J. Obstet. Gynecol. 2019, 221, 437–456. [Google Scholar] [CrossRef]
- Gou, C.; Li, M.; Zhang, X.; Liu, X.; Huang, X.; Zhou, Y.; Fang, Q. Placental characteristics in monochorionic twins with selective intrauterine growth restriction assessed by gradient angiography and three-dimensional reconstruction. J. Matern. Fetal Neo Med. 2017, 30, 2590–2595. [Google Scholar] [CrossRef]
- Sun, W.; Liu, J.; Zhang, Y.; Cai, A.; Yang, Z.; Zhao, Y.; Wang, Y.; Cao, Z.; Wei, Q. Quantitative assessment of placental perfusion by three-dimensional power Doppler ultrasound for twins with selective intrauterine growth restriction in one twin. Eur. J. Gynecol. Reprod. Biol. 2018, 226, 15–20. [Google Scholar] [CrossRef]
- Pratt, A.; Da, S.C.F.; Borg, A.J.; Kalionis, B.; Keogh, R.; Murthi, P. Placenta-derived angiogenic proteins and their contribution to the pathogenesis of preeclampsia. Angiogenesis 2015, 18, 115–123. [Google Scholar] [CrossRef]
- Ma, H.; Jiang, S.; Du, L.; Liu, J.; Xu, X.; Lu, X.; Ma, L.; Zhu, H.; Wei, J.; Yu, Y. Conditioned medium from primary cytotrophoblasts, primary placenta-derived mesenchymal stem cells, or sub-cultured placental tissue promoted HUVEC angiogenesis in vitro. Stem Cell Res. Ther. 2021, 12, 141. [Google Scholar] [CrossRef] [PubMed]
- Lamalice, L.; Le Boeuf, F.; Huot, J. Endothelial cell migration during angiogenesis. Circ. Res. 2007, 100, 782–794. [Google Scholar] [CrossRef]
- Qiu, J.J.; Lin, X.J.; Tang, X.Y.; Zheng, T.T.; Lin, Y.Y.; Hua, K.Q. Exosomal Metastasis-Associated Lung Adenocarcinoma Transcript 1 Promotes Angiogenesis and Predicts Poor Prognosis in Epithelial Ovarian Cancer. Int. J. Biol. Sci. 2018, 14, 1960–1973. [Google Scholar] [CrossRef] [PubMed]
- Teng, F.; Zhang, J.X.; Chang, Q.M.; Wu, X.B.; Tang, W.G.; Wang, J.F.; Feng, J.F.; Zhang, Z.P.; Hu, Z.Q. LncRNA MYLK-AS1 facilitates tumor progression and angiogenesis by targeting miR-424-5p/E2F7 axis and activating VEGFR-2 signaling pathway in hepatocellular carcinoma. J. Exp. Clin. Cancer Res. 2020, 39, 235. [Google Scholar] [CrossRef] [PubMed]
- Maliqueo, M.; Echiburu, B.; Crisosto, N. Sex Steroids Modulate Uterine-Placental Vasculature: Implications for Obstetrics and Neonatal Outcomes. Front. Physiol. 2016, 7, 152. [Google Scholar] [CrossRef]
- Wu, L.; Liu, Q.; Fan, C.; Yi, X.; Cheng, B. MALAT1 recruited the E3 ubiquitin ligase FBXW7 to induce CRY2 ubiquitin-mediated degradation and participated in trophoblast migration and invasion. J. Cell Physiol. 2021, 236, 2169–2177. [Google Scholar] [CrossRef]
- Li, Q.; Li, S.; Ding, J.; Pang, B.; Li, R.; Cao, H.; Ling, L. MALAT1 modulates trophoblast phenotype via miR-101-3p/VEGFA axis. Arch. Biochem. Biophys. 2023, 744, 109692. [Google Scholar] [CrossRef] [PubMed]
- Lei, L.; Chen, J.; Huang, J.; Lu, J.; Pei, S.; Ding, S.; Kang, L.; Xiao, R.; Zeng, Q. Functions and regulatory mechanisms of metastasis-associated lung adenocarcinoma transcript 1. J. Cell. Physiol. 2018, 234, 134–151. [Google Scholar] [CrossRef]
- Li, L.; Huang, X.; He, Z.; Xiong, Y.; Fang, Q. miRNA-210-3p regulates trophoblast proliferation and invasiveness through fibroblast growth factor 1 in selective intrauterine growth restriction. J. Cell. Mol. Med. 2019, 23, 4422–4433. [Google Scholar] [CrossRef] [PubMed]
- Burton, G.J.; Skepper, J.N.; Hempstock, J.; Cindrova, T.; Jones, C.J.; Jauniaux, E. A reappraisal of the contrasting morphological appearances of villous cytotrophoblast cells during early human pregnancy; evidence for both apoptosis and primary necrosis. Placenta 2003, 24, 297–305. [Google Scholar] [CrossRef] [PubMed]
- Sallé-Lefort, S.; Miard, S.; Nolin, M.A.; Boivin, L.; Paré, M.È.; Debigaré, R.; Picard, F. Hypoxia upregulates Malat1 expression through a CaMKK/AMPK/HIF-1α axis. Int. J. Oncol. 2016, 49, 1731–1736. [Google Scholar] [CrossRef] [PubMed]
- Shih, C.H.; Chuang, L.L.; Tsai, M.H.; Chen, L.H.; Chuang, E.Y.; Lu, T.P.; Lai, L.C. Hypoxia-Induced MALAT1 Promotes the Proliferation and Migration of Breast Cancer Cells by Sponging MiR-3064-5p. Front Oncol. 2021, 11, 658151. [Google Scholar] [CrossRef] [PubMed]
- Zhu, R.; Hu, X.; Xu, W.; Wu, Z.; Zhu, Y.; Ren, Y.; Cheng, L. LncRNA MALAT1 inhibits hypoxia/reoxygenation-induced human umbilical vein endothelial cell injury via targeting the microRNA-320a/RAC1 axis. Biol. Chem. 2020, 401, 349–360. [Google Scholar] [CrossRef]
- Liu, H.; Zhang, Z.; Xiong, W.; Zhang, L.; Du, Y.; Liu, Y.; Xiong, X. Long non-coding RNA MALAT1 mediates hypoxia-induced pro-survival autophagy of endometrial stromal cells in endometriosis. J. Cell. Mol. Med. 2019, 23, 439–452. [Google Scholar] [CrossRef] [PubMed]
- Salle-Lefort, S.; Miard, S.; Henry, C.; Arias-Reyes, C.; Marcouiller, F.; Beaulieu, M.J.; Aubin, S.; Lechasseur, A.; Jubinville, E.; Marsolais, D.; et al. Malat1 deficiency prevents hypoxia-induced lung dysfunction by protecting the access to alveoli. Front. Physiol. 2022, 13, 949378. [Google Scholar] [CrossRef] [PubMed]
- Ishibashi, O.; Ohkuchi, A.; Ali, M.M.; Kurashina, R.; Luo, S.S.; Ishikawa, T.; Takizawa, T.; Hirashima, C.; Takahashi, K.; Migita, M.; et al. Hydroxysteroid (17-beta) dehydrogenase 1 is dysregulated by miR-210 and miR-518c that are aberrantly expressed in preeclamptic placentas: A novel marker for predicting preeclampsia. Hypertension 2012, 59, 265–273. [Google Scholar] [CrossRef]
- Zou, Z.; Harris, L.K.; Forbes, K.; Heazell, A. Placental expression of estrogen-related receptor gamma is reduced in fetal growth restriction pregnancies and is mediated by hypoxia. Biol. Reprod. 2022, 107, 846–857. [Google Scholar] [CrossRef]
Gene | Forward (5′-3′) | Reverse (5′-3′) |
---|---|---|
MALAT1 | GGTCTCCCCACAAGCAACTT | AACCCACCAAAGACCTCGAC |
ERRγ | GTTCAGCCAGCCAAAAAGCC | AACCCACCAAAGACCTCGAC |
HSD17B1 | AGCTGGACGTAAGGGACTCA | ATGCTTCGCCCATCCAATGA |
β-actin | CATGTACGTTGCTATCCAGGC | CTCCTTAATGTCACGCACGAT |
miR-424 | AACAAGCAGCAGCAATTCATGTTTT | Provided by the kit EZB-miRT2 |
Characteristic | sFGR (n = 8) | Control (n = 8) | p Value |
---|---|---|---|
Age (years) | 28 (27–32) | 35 (32–38) | 0.007 |
Gestational age at delivery (weeks) | 34 + 1 (32 + 1–35 + 5) | 36 + 1 (35 + 6–36 + 6) | 0.005 |
Birth weight (g) | |||
Larger twin | 2140 (1870–2320) | 2420 (2360–2580) | 0.021 |
Smaller twin | 1480 (1230–1670) | 2270 (2160–2540) | <0.001 |
Birth weight discordance (%) | 32.9 (28.4–35.0) | 5.1 (1.8–8.7) | <0.001 |
Placenta share of smaller twins (%) | 22.2 (18.5–28.6) | 41.7 (40.0–47.6) | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xia, S.; Ye, Y.; Liu, J.; Qiu, H.; Lin, M.; He, Z.; Huang, L.; Wang, M.; Luo, Y. The Role of MALAT1 in Regulating the Proangiogenic Functions, Invasion, and Migration of Trophoblasts in Selective Fetal Growth Restriction. Biomolecules 2024, 14, 988. https://doi.org/10.3390/biom14080988
Xia S, Ye Y, Liu J, Qiu H, Lin M, He Z, Huang L, Wang M, Luo Y. The Role of MALAT1 in Regulating the Proangiogenic Functions, Invasion, and Migration of Trophoblasts in Selective Fetal Growth Restriction. Biomolecules. 2024; 14(8):988. https://doi.org/10.3390/biom14080988
Chicago/Turabian StyleXia, Shuting, Yingnan Ye, Jialiu Liu, Hanfei Qiu, Minhuan Lin, Zhiming He, Linhuan Huang, Malie Wang, and Yanmin Luo. 2024. "The Role of MALAT1 in Regulating the Proangiogenic Functions, Invasion, and Migration of Trophoblasts in Selective Fetal Growth Restriction" Biomolecules 14, no. 8: 988. https://doi.org/10.3390/biom14080988
APA StyleXia, S., Ye, Y., Liu, J., Qiu, H., Lin, M., He, Z., Huang, L., Wang, M., & Luo, Y. (2024). The Role of MALAT1 in Regulating the Proangiogenic Functions, Invasion, and Migration of Trophoblasts in Selective Fetal Growth Restriction. Biomolecules, 14(8), 988. https://doi.org/10.3390/biom14080988