Unmodulated 40 Hz Stimulation as a Therapeutic Strategy for Aging: Improvements in Metabolism, Frailty, and Cognitive Function in Senescence-Accelerated Prone 10 Mice
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals
2.2. U40Hz Stimulation
2.3. Oral Glucose-Tolerance Test
2.4. Food Intake Experiment
2.5. FI Assessment
2.6. Physical Function Measurements
2.7. Open-Field Test
2.8. Y-Maze Test
2.9. Microarray Analysis
2.10. Statistical Analyses
3. Results
3.1. U40Hz Stimulation Improves Glucose Tolerance in Aging SAMP-10 Mice
3.2. U40Hz Stimulation Prevents Age-Related Muscle Weakness and Significantly Improves FI
3.3. U40Hz Stimulation Could Potentially Improve Spatial Memory and Learning Skills
3.4. U40Hz Stimulation Results in Upregulation of Genes Associated with the PPARγ Pathway and β-Oxidation Pathway While Downregulating the Expression of a Clock Gene
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Satake, S.; Arai, H. The revised Japanese version of the Cardiovascular Health Study criteria (revised J-CHS criteria). Geriatr. Gerontol. Int. 2020, 20, 992–993. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.K.; Arai, H.; Assantachai, P.; Akishita, M.; Chew, S.T.H.; Dumlao, L.C.; Duque, G.; Woo, J. Roles of nutrition in muscle health of community-dwelling older adults: Evidence-based expert consensus from Asian Working Group for Sarcopenia. J. Cachexia Sarcopenia Muscle 2022, 13, 1653–1672. [Google Scholar] [CrossRef] [PubMed]
- Sayer, A.A.; Cruz-Jentoft, A. Sarcopenia definition, diagnosis and treatment: Consensus is growing. Age Ageing 2022, 51, afac220. [Google Scholar] [CrossRef] [PubMed]
- Calvani, R.; Picca, A.; Coelho-Junior, H.J.; Tosato, M.; Marzetti, E.; Landi, F. Diet for the prevention and management of sarcopenia. Metabolism 2023, 146, 155637. [Google Scholar] [CrossRef]
- Shimokata, H.; Muller, D.C.; Fleg, J.L.; Sorkin, J.; Ziemba, A.W.; Andres, R. Age as independent determinant of glucose tolerance. Diabetes 1991, 40, 44–51. [Google Scholar] [CrossRef]
- DeFronzo, R.A. Glucose intolerance and aging. Diabetes Care 1981, 4, 493–501. [Google Scholar] [CrossRef]
- IDF Diabetes Atlas. Available online: https://diabetesatlas.org/atlas/tenth-edition/ (accessed on 28 June 2024).
- Kalyani, R.R.; Egan, J.M. Diabetes and altered glucose metabolism with aging. Endocrinol. Metab. Clin. N. Am. 2013, 42, 333–347. [Google Scholar] [CrossRef]
- Goulet, E.D.; Hassaine, A.; Dionne, I.J.; Gaudreau, P.; Khalil, A.; Fulop, T.; Shatenstein, B.; Tessier, D.; Morais, J.A. Frailty in the elderly is associated with insulin resistance of glucose metabolism in the postabsorptive state only in the presence of increased abdominal fat. Exp. Gerontol. 2009, 44, 740–744. [Google Scholar] [CrossRef]
- Park, S.W.; Goodpaster, B.H.; Strotmeyer, E.S.; de Rekeneire, N.; Harris, T.B.; Schwartz, A.V.; Tylavsky, F.A.; Newman, A.B. Decreased muscle strength and quality in older adults with type 2 diabetes: The health, aging, and body composition study. Diabetes 2006, 55, 1813–1818. [Google Scholar] [CrossRef]
- Biessels, G.J.; Staekenborg, S.; Brunner, E.; Brayne, C.; Scheltens, P. Risk of dementia in diabetes mellitus: A systematic review. Lancet Neurol. 2006, 5, 64–74. [Google Scholar] [CrossRef]
- Suzuki, Y. Method of Extracting Sensibility from Time Series Data and Converting it to Vibrotactile. J. Robot. Netw. Artif. Life 2020, 7, 142–145. [Google Scholar] [CrossRef]
- Llinas, R.; Ribary, U. Coherent 40-Hz oscillation characterizes dream state in humans. Proc. Natl. Acad. Sci. USA 1993, 90, 2078–2081. [Google Scholar] [CrossRef] [PubMed]
- Clements-Cortes, A.; Ahonen, H.; Evans, M.; Freedman, M.; Bartel, L. Short-Term Effects of Rhythmic Sensory Stimulation in Alzheimer’s Disease: An Exploratory Pilot Study. J. Alzheimer’s Dis. 2016, 52, 651–660. [Google Scholar] [CrossRef] [PubMed]
- Corbiere, T.F.; Koh, T.J. Local low-intensity vibration improves healing of muscle injury in mice. Physiol. Rep. 2020, 8, e14356. [Google Scholar] [CrossRef]
- Xie, J.; Wang, J.; Xu, G.; Li, S.; Wang, Y.; Fu, M.; Liu, G.; Ji, C.; Zhang, T.; Liu, S.; et al. Clinical efficacy of vibration stimulation therapy to relieve acute exercise fatigue. Technol. Health Care 2023, 31, 235–246. [Google Scholar] [CrossRef]
- Whitehead, J.C.; Hildebrand, B.A.; Sun, M.; Rockwood, M.R.; Rose, R.A.; Rockwood, K.; Howlett, S.E. A clinical frailty index in aging mice: Comparisons with frailty index data in humans. J. Gerontol. A Biol. Sci. Med. Sci. 2014, 69, 621–632. [Google Scholar] [CrossRef]
- Picard, F.; Auwerx, J. PPAR(gamma) and glucose homeostasis. Annu. Rev. Nutr. 2002, 22, 167–197. [Google Scholar] [CrossRef]
- Ristow, M.; Zarse, K.; Oberbach, A.; Kloting, N.; Birringer, M.; Kiehntopf, M.; Stumvoll, M.; Kahn, C.R.; Bluher, M. Antioxidants prevent health-promoting effects of physical exercise in humans. Proc. Natl. Acad. Sci. USA 2009, 106, 8665–8670. [Google Scholar] [CrossRef]
- Sasaki, T.; Nakata, R.; Inoue, H.; Shimizu, M.; Inoue, J.; Sato, R. Role of AMPK and PPARgamma1 in exercise-induced lipoprotein lipase in skeletal muscle. Am. J. Physiol. Endocrinol. Metab. 2014, 306, E1085–E1092. [Google Scholar] [CrossRef]
- Holloway, G.P.; Chou, C.J.; Lally, J.; Stellingwerff, T.; Maher, A.C.; Gavrilova, O.; Haluzik, M.; Alkhateeb, H.; Reitman, M.L.; Bonen, A. Increasing skeletal muscle fatty acid transport protein 1 (FATP1) targets fatty acids to oxidation and does not predispose mice to diet-induced insulin resistance. Diabetologia 2011, 54, 1457–1467. [Google Scholar] [CrossRef]
- Zhao, L.; Pascual, F.; Bacudio, L.; Suchanek, A.L.; Young, P.A.; Li, L.O.; Martin, S.A.; Camporez, J.P.; Perry, R.J.; Shulman, G.I.; et al. Defective fatty acid oxidation in mice with muscle-specific acyl-CoA synthetase 1 deficiency increases amino acid use and impairs muscle function. J. Biol. Chem. 2019, 294, 8819–8833. [Google Scholar] [CrossRef]
- Kurtz, D.M.; Rinaldo, P.; Rhead, W.J.; Tian, L.; Millington, D.S.; Vockley, J.; Hamm, D.A.; Brix, A.E.; Lindsey, J.R.; Pinkert, C.A.; et al. Targeted disruption of mouse long-chain acyl-CoA dehydrogenase gene reveals crucial roles for fatty acid oxidation. Proc. Natl. Acad. Sci. USA 1998, 95, 15592–15597. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Keung, W.; Samokhvalov, V.; Wang, W.; Lopaschuk, G.D. Role of fatty acid uptake and fatty acid beta-oxidation in mediating insulin resistance in heart and skeletal muscle. Biochim. Biophys. Acta 2010, 1801, 1–22. [Google Scholar] [CrossRef] [PubMed]
- Turcotte, L.P.; Fisher, J.S. Skeletal muscle insulin resistance: Roles of fatty acid metabolism and exercise. Phys. Ther. 2008, 88, 1279–1296. [Google Scholar] [CrossRef] [PubMed]
- Bonen, A.; Parolin, M.L.; Steinberg, G.R.; Calles-Escandon, J.; Tandon, N.N.; Glatz, J.F.; Luiken, J.J.; Heigenhauser, G.J.; Dyck, D.J. Triacylglycerol accumulation in human obesity and type 2 diabetes is associated with increased rates of skeletal muscle fatty acid transport and increased sarcolemmal FAT/CD36. FASEB J. 2004, 18, 1144–1146. [Google Scholar] [CrossRef]
- Calles-Escandon, J.; Arciero, P.J.; Gardner, A.W.; Bauman, C.; Poehlman, E.T. Basal fat oxidation decreases with aging in women. J. Appl. Physiol. 1995, 78, 266–271. [Google Scholar] [CrossRef]
- Morris, A.A.; Turnbull, D.M. Fatty acid oxidation defects in muscle. Curr. Opin. Neurol. 1998, 11, 485–490. [Google Scholar] [CrossRef]
- Rakshit, K.; Hsu, T.W.; Matveyenko, A.V. Bmal1 is required for beta cell compensatory expansion, survival and metabolic adaptation to diet-induced obesity in mice. Diabetologia 2016, 59, 734–743. [Google Scholar] [CrossRef]
- Rakshit, K.; Matveyenko, A.V. Induction of Core Circadian Clock Transcription Factor Bmal1 Enhances beta-Cell Function and Protects Against Obesity-Induced Glucose Intolerance. Diabetes 2021, 70, 143–154. [Google Scholar] [CrossRef]
- Tahira, K.; Ueno, T.; Fukuda, N.; Aoyama, T.; Tsunemi, A.; Matsumoto, S.; Nagura, C.; Matsumoto, T.; Soma, M.; Shimba, S.; et al. Obesity alters the expression profile of clock genes in peripheral blood mononuclear cells. Arch. Med. Sci. 2011, 7, 933–940. [Google Scholar] [CrossRef]
- Yu, F.; Wang, Z.; Zhang, T.; Chen, X.; Xu, H.; Wang, F.; Guo, L.; Chen, M.; Liu, K.; Wu, B. Deficiency of intestinal Bmal1 prevents obesity induced by high-fat feeding. Nat. Commun. 2021, 12, 5323. [Google Scholar] [CrossRef] [PubMed]
- Murdock, M.H.; Yang, C.Y.; Sun, N.; Pao, P.C.; Blanco-Duque, C.; Kahn, M.C.; Kim, T.; Lavoie, N.S.; Victor, M.B.; Islam, M.R.; et al. Multisensory gamma stimulation promotes glymphatic clearance of amyloid. Nature 2024, 627, 149–156. [Google Scholar] [CrossRef] [PubMed]
Control (n = 12) | u40Hz (n = 11) | p Value | |||
---|---|---|---|---|---|
Median | IQR | Median | IQR | ||
Pre-u40Hz stimulation | 0.25 | 0.69 | 0.25 | 0.3 | 0.83 |
Post-u40Hz stimulation | 3.23 | 1.43 | 2.25 | 1 | 0.02 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shimizu, T.; Ota, H.; Kodama, A.; Suzuki, Y.; Ohnuma, T.; Suzuki, R.; Sugawara, K.; Sato, Y.; Kodama, H. Unmodulated 40 Hz Stimulation as a Therapeutic Strategy for Aging: Improvements in Metabolism, Frailty, and Cognitive Function in Senescence-Accelerated Prone 10 Mice. Biomolecules 2024, 14, 1079. https://doi.org/10.3390/biom14091079
Shimizu T, Ota H, Kodama A, Suzuki Y, Ohnuma T, Suzuki R, Sugawara K, Sato Y, Kodama H. Unmodulated 40 Hz Stimulation as a Therapeutic Strategy for Aging: Improvements in Metabolism, Frailty, and Cognitive Function in Senescence-Accelerated Prone 10 Mice. Biomolecules. 2024; 14(9):1079. https://doi.org/10.3390/biom14091079
Chicago/Turabian StyleShimizu, Tatsunori, Hidetaka Ota, Ayuto Kodama, Yasuhiro Suzuki, Takako Ohnuma, Rieko Suzuki, Kaoru Sugawara, Yasushi Sato, and Hiroyuki Kodama. 2024. "Unmodulated 40 Hz Stimulation as a Therapeutic Strategy for Aging: Improvements in Metabolism, Frailty, and Cognitive Function in Senescence-Accelerated Prone 10 Mice" Biomolecules 14, no. 9: 1079. https://doi.org/10.3390/biom14091079
APA StyleShimizu, T., Ota, H., Kodama, A., Suzuki, Y., Ohnuma, T., Suzuki, R., Sugawara, K., Sato, Y., & Kodama, H. (2024). Unmodulated 40 Hz Stimulation as a Therapeutic Strategy for Aging: Improvements in Metabolism, Frailty, and Cognitive Function in Senescence-Accelerated Prone 10 Mice. Biomolecules, 14(9), 1079. https://doi.org/10.3390/biom14091079