An Enhanced Retroviral Vector for Efficient Genetic Manipulation and Selection in Mammalian Cells
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cloning of Retroviral Vectors
2.1.1. Cloning of pBMN-I-TagBFP
2.1.2. Cloning of pBMN-I-EGFP/Puro
2.1.3. Cloning of pBMN-I-EGFP/Puro Long
2.1.4. Cloning of pBMN-I-EGFP/Puro Myc Long
2.1.5. Cloning of pBMN-I-EGFP-T2A-Puro
2.1.6. Cloning of pBMN-I-EGFP-T2A-Puro Myc
2.2. Cell Lines and Culture Conditions
2.3. Transient Transfection of Platinum-E Cells for Retrovirus Production
2.4. Retroviral Infection of 38B9- and NIH3T3 Cells
2.5. Structural Alignment of Predicted EGFP/Puro Fusion Proteins
2.6. Western Blot Analysis
2.7. Flow Cytometry
3. Results
3.1. Modifying the EGFP/Puro Cassette by Extending the PAC C-Terminus
3.2. Testing the Functionality of the Puromycin Resistance Cassette
3.3. Cloning and Testing of an Improved Retroviral Vector with EGFP/Puro Cassette
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Supplementary Methods
Appendix A.1. Quantification of Reverse Transcriptase Activity by Real-Time PCR for Titration of Retroviral Vectors
Appendix A.2. Titration of Puromycin on 38B9- and NIH3T3 Cells
References
- Banerjee, P.; Crawford, L.; Samuelson, E.; Feuer, G. Hematopoietic stem cells and retroviral infection. Retrovirology 2010, 7, 8. [Google Scholar] [CrossRef] [PubMed]
- Saez-Cirion, A.; Manel, N. Immune Responses to Retroviruses. Annu. Rev. Immunol. 2018, 36, 193–220. [Google Scholar] [CrossRef] [PubMed]
- Vara, J.; Perez-Gonzalez, J.A.; Jimenez, A. Biosynthesis of puromycin by Streptomyces alboniger: Characterization of puro-mycin N-acetyltransferase. Biochemistry 1985, 24, 8074–8081. [Google Scholar] [CrossRef]
- Miller, A.D. Development and applications of retroviral vectors. In Retroviruses; Coffin, J.M., Hughes, S.H., Varmus, H.E., Eds.; Cold Spring Harbor: New York, NY, USA, 1997. [Google Scholar]
- Martinez-Salas, E.; Francisco-Velilla, R.; Fernandez-Chamorro, J.; Embarek, A.M. Insights into Structural and Mechanistic Features of Viral IRES Elements. Front. Microbiol. 2017, 8, 2629. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Zaro, J.L.; Shen, W.C. Fusion protein linkers: Property, design and functionality. Adv. Drug Deliv. Rev. 2013, 65, 1357–1369. [Google Scholar] [CrossRef]
- Liu, Z.; Chen, O.; Wall, J.B.J.; Zheng, M.; Zhou, Y.; Wang, L.; Vaseghi, H.R.; Qian, L.; Liu, J. Systematic comparison of 2A peptides for cloning multi-genes in a polycistronic vector. Sci. Rep. 2017, 7, 2193. [Google Scholar] [CrossRef]
- Villemure, J.F.; Savard, N.; Belmaaza, A. Promoter suppression in cultured mammalian cells can be blocked by the chicken beta-globin chromatin insulator 5′HS4 and matrix/scaffold attachment regions. J. Mol. Biol. 2001, 312, 963–974. [Google Scholar] [CrossRef]
- Abbate, J.; Lacayo, J.C.; Prichard, M.; Pari, G.; McVoy, M.A. Bifunctional protein conferring enhanced green fluorescence and puromycin resistance. Biotechniques 2001, 31, 336–340. [Google Scholar] [CrossRef]
- Alt, F.; Rosenberg, N.; Lewis, S.; Thomas, E.; Baltimore, D. Organization and reorganization of immunoglobulin genes in A-MULV-transformed cells: Rearrangement of heavy but not light chain genes. Cell 1981, 27, 381–390. [Google Scholar] [CrossRef]
- Jainchill, J.L.; Aaronson, S.A.; Todaro, G.J. Murine sarcoma and leukemia viruses: Assay using clonal lines of con-tact-inhibited mouse cells. J. Virol. 1969, 4, 549–553. [Google Scholar] [CrossRef]
- Morita, S.; Kojima, T.; Kitamura, T. Plat-E: An efficient and stable system for transient packaging of retroviruses. Gene Ther. 2000, 7, 1063–1066. [Google Scholar] [CrossRef] [PubMed]
- Porstner, M.; Winkelmann, R.; Daum, P.; Schmid, J.; Pracht, K.; Corte-Real, J.; Schreiber, S.; Haftmann, C.; Brandl, A.; Mashreghi, M.F.; et al. miR-148a promotes plasma cell differentiation and targets the germinal center transcription factors Mitf and Bach2. Eur. J. Immunol. 2015, 45, 1206–1215. [Google Scholar] [CrossRef] [PubMed]
- Jumper, J.; Evans, R.; Pritzel, A.; Green, T.; Figurnov, M.; Ronneberger, O.; Tunyasuvunakool, K.; Bates, R.; Žídek, A.; Potapenko, A.; et al. Highly Accurate Protein Structure Prediction with AlphaFold. Nature 2021, 596, 583–589. [Google Scholar] [CrossRef] [PubMed]
- Berman, H.M.; Westbrook, J.; Feng, Z.; Gilliland, G.; Bhat, T.N.; Weissig, H.; Shindyalov, I.N.; Bourne, P.E. The Protein Data Bank. Nucleic Acids Res. 2000, 28, 235–242. [Google Scholar] [CrossRef]
- Zhang, Y. TM-Align: A Protein Structure Alignment Algorithm Based on the TM-Score. Nucleic Acids Res. 2005, 33, 2302–2309. [Google Scholar] [CrossRef]
- Laemmli, U.K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 1970, 227, 680–685. [Google Scholar] [CrossRef]
- Wittmann, J.; Hol, E.M.; Jack, H.M. hUPF2 silencing identifies physiologic substrates of mammalian nonsense-mediated mRNA decay. Mol. Cell. Biol. 2006, 26, 1272–1287. [Google Scholar] [CrossRef]
- Evan, G.I.; Lewis, G.K.; Ramsay, G.; Bishop, J.M. Isolation of Monoclonal Antibodies Specific for Human C-Myc Proto-Oncogene Product. Mol. Cell. Biol. 1985, 5, 3610–3616. [Google Scholar] [CrossRef]
- Vermeire, J.; Naessens, E.; Vanderstraeten, H.; Landi, A.; Iannucci, V.; Van Nuffel, A.; Taghon, T.; Pizzato, M.; Verhasselt, B. Quantification of reverse transcriptase activity by real-time PCR as a fast and accurate method for titration of HIV, lenti- and retroviral vectors. PLoS ONE 2012, 7, e50859. [Google Scholar] [CrossRef]
- Cabrera, A.; Edelstein, H.I.; Glykofrydis, F.; Love, K.S.; Palacios, S.; Tycko, J.; Zhang, M.; Lensch, S.; Shields, C.E.; Livingston, M.; et al. The Sound of Silence: Transgene Silencing in Mammalian Cell Engineering. Cell Syst. 2022, 13, 950–973. [Google Scholar] [CrossRef]
- Reinhardt, A.; Kagawa, H.; Woltjen, K. N-Terminal Amino Acids Determine KLF4 Protein Stability in 2A Peptide-Linked Polycistronic Reprogramming Constructs. Stem Cell Rep. 2020, 14, 520–527. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Triller, J.; Prots, I.; Jäck, H.-M.; Wittmann, J. An Enhanced Retroviral Vector for Efficient Genetic Manipulation and Selection in Mammalian Cells. Biomolecules 2024, 14, 1131. https://doi.org/10.3390/biom14091131
Triller J, Prots I, Jäck H-M, Wittmann J. An Enhanced Retroviral Vector for Efficient Genetic Manipulation and Selection in Mammalian Cells. Biomolecules. 2024; 14(9):1131. https://doi.org/10.3390/biom14091131
Chicago/Turabian StyleTriller, Jana, Iryna Prots, Hans-Martin Jäck, and Jürgen Wittmann. 2024. "An Enhanced Retroviral Vector for Efficient Genetic Manipulation and Selection in Mammalian Cells" Biomolecules 14, no. 9: 1131. https://doi.org/10.3390/biom14091131
APA StyleTriller, J., Prots, I., Jäck, H.-M., & Wittmann, J. (2024). An Enhanced Retroviral Vector for Efficient Genetic Manipulation and Selection in Mammalian Cells. Biomolecules, 14(9), 1131. https://doi.org/10.3390/biom14091131