Histone H3 N-Terminal Tail Residues Important for Meiosis in Saccharomyces cerevisiae
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Sporulation Efficiency of Yeast Cells Lacking Histone H3 Threonine 3
3.2. Spore Viability in Yeast Cells Lacking H3T3
3.3. H3 N-Terminal Tail Mutations Differentially Affect Spore Viability
3.4. The Spindle Assembly Checkpoint Rescues Spore Viability in Meiosis in the Absence of H3T3 Phosphorylation
3.5. Spore Viability Patterns Suggest the Spindle Assembly Checkpoint Rescues Meiotic Chromosome Segregation Errors in the Absence of H3 T3 Phosphorylation
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Borner, G.V.; Hochwagen, A.; MacQueen, A.J. Meiosis in budding yeast. Genetics 2023, 225, iyad125. [Google Scholar] [CrossRef] [PubMed]
- Neiman, A.M. Sporulation in the budding yeast Saccharomyces cerevisiae. Genetics 2011, 189, 737–765. [Google Scholar] [CrossRef] [PubMed]
- Tessarz, P.; Kouzarides, T. Histone core modifications regulating nucleosome structure and dynamics. Nat. Rev. Mol. Cell Biol. 2014, 15, 703–708. [Google Scholar] [CrossRef]
- Gu, L.; Wang, Q.; Sun, Q.Y. Histone modifications during mammalian oocyte maturation: Dynamics, regulation and functions. Cell Cycle 2010, 9, 1942–1950. [Google Scholar] [CrossRef]
- Xu, D.; Bai, J.; Duan, Q.; Costa, M.; Dai, W. Covalent modifications of histones during mitosis and meiosis. Cell Cycle 2009, 8, 3688–3694. [Google Scholar] [CrossRef]
- Wang, L.; Xu, Z.; Khawar, M.B.; Liu, C.; Li, W. The histone codes for meiosis. Reproduction 2017, 154, R65–R79. [Google Scholar] [CrossRef] [PubMed]
- Gao, J.; Colaiacovo, M.P. Zipping and Unzipping: Protein Modifications Regulating Synaptonemal Complex Dynamics. Trends Genet. 2018, 34, 232–245. [Google Scholar] [CrossRef]
- Tolsma, T.O.; Hansen, J.C. Post-translational modifications and chromatin dynamics. Essays Biochem. 2019, 63, 89–96. [Google Scholar] [CrossRef]
- Nie, H.; Kong, X.; Song, X.; Guo, X.; Li, Z.; Fan, C.; Zhai, B.; Yang, X.; Wang, Y. Roles of histone post-translational modifications in meiosisdagger. Biol. Reprod. 2024, 110, 648–659. [Google Scholar] [CrossRef]
- Rossetto, D.; Avvakumov, N.; Cote, J. Histone phosphorylation: A chromatin modification involved in diverse nuclear events. Epigenetics 2012, 7, 1098–1108. [Google Scholar] [CrossRef]
- Sundararajan, S.; Park, H.; Kawano, S.; Johansson, M.; Lama, B.; Saito-Fujita, T.; Saitoh, N.; Arnaoutov, A.; Dasso, M.; Wang, Z.; et al. Methylated histones on mitotic chromosomes promote topoisomerase IIalpha function for high fidelity chromosome segregation. Iscience 2023, 26, 106743. [Google Scholar] [CrossRef]
- Kniewel, R.; Murakami, H.; Liu, Y.; Ito, M.; Ohta, K.; Hollingsworth, N.M.; Keeney, S. Histone H3 Threonine 11 Phosphorylation Is Catalyzed Directly by the Meiosis-Specific Kinase Mek1 and Provides a Molecular Readout of Mek1 Activity in Vivo. Genetics 2017, 207, 1313–1333. [Google Scholar] [CrossRef]
- Bani Ismail, M.; Shinohara, M.; Shinohara, A. Dot1-dependent histone H3K79 methylation promotes the formation of meiotic double-strand breaks in the absence of histone H3K4 methylation in budding yeast. PLoS ONE 2014, 9, e96648. [Google Scholar] [CrossRef]
- Cavero, S.; Herruzo, E.; Ontoso, D.; San-Segundo, P.A. Impact of histone H4K16 acetylation on the meiotic recombination checkpoint in Saccharomyces cerevisiae. Microb. Cell 2016, 3, 606–620. [Google Scholar] [CrossRef] [PubMed]
- Quadri, R.; Sertic, S.; Muzi-Falconi, M. Roles and regulation of Haspin kinase and its impact on carcinogenesis. Cell. Signal. 2022, 93, 110303. [Google Scholar] [CrossRef]
- Dai, J.; Higgins, J.M. Haspin: A mitotic histone kinase required for metaphase chromosome alignment. Cell Cycle 2005, 4, 665–668. [Google Scholar] [CrossRef] [PubMed]
- Dai, J.; Sultan, S.; Taylor, S.S.; Higgins, J.M. The kinase haspin is required for mitotic histone H3 Thr 3 phosphorylation and normal metaphase chromosome alignment. Genes Dev. 2005, 19, 472–488. [Google Scholar] [CrossRef]
- Yamagishi, Y.; Honda, T.; Tanno, Y.; Watanabe, Y. Two histone marks establish the inner centromere and chromosome bi-orientation. Science 2010, 330, 239–243. [Google Scholar] [CrossRef]
- Sawicka, A.; Seiser, C. Histone H3 phosphorylation—A versatile chromatin modification for different occasions. Biochimie 2012, 94, 2193–2201. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Dai, J.; Daum, J.R.; Niedzialkowska, E.; Banerjee, B.; Stukenberg, P.T.; Gorbsky, G.J.; Higgins, J.M. Histone H3 Thr-3 phosphorylation by Haspin positions Aurora B at centromeres in mitosis. Science 2010, 330, 231–235. [Google Scholar] [CrossRef]
- Kelly, A.E.; Ghenoiu, C.; Xue, J.Z.; Zierhut, C.; Kimura, H.; Funabiki, H. Survivin reads phosphorylated histone H3 threonine 3 to activate the mitotic kinase Aurora B. Science 2010, 330, 235–239. [Google Scholar] [CrossRef] [PubMed]
- Edgerton, H.; Johansson, M.; Keifenheim, D.; Mukherjee, S.; Chacon, J.M.; Bachant, J.; Gardner, M.K.; Clarke, D.J. A noncatalytic function of the topoisomerase II CTD in Aurora B recruitment to inner centromeres during mitosis. J. Cell Biol. 2016, 213, 651–664. [Google Scholar] [CrossRef]
- Yoshida, M.M.; Ting, L.; Gygi, S.P.; Azuma, Y. SUMOylation of DNA topoisomerase IIalpha regulates histone H3 kinase Haspin and H3 phosphorylation in mitosis. J. Cell Biol. 2016, 213, 665–678. [Google Scholar] [CrossRef]
- Wilkins, B.J.; Rall, N.A.; Ostwal, Y.; Kruitwagen, T.; Hiragami-Hamada, K.; Winkler, M.; Barral, Y.; Fischle, W.; Neumann, H. A cascade of histone modifications induces chromatin condensation in mitosis. Science 2014, 343, 77–80. [Google Scholar] [CrossRef]
- Nguyen, A.L.; Gentilello, A.S.; Balboula, A.Z.; Shrivastava, V.; Ohring, J.; Schindler, K. Phosphorylation of threonine 3 on histone H3 by haspin kinase is required for meiosis I in mouse oocytes. J. Cell Sci. 2014, 127, 5066–5078. [Google Scholar] [CrossRef]
- Wang, Q.; Wei, H.; Du, J.; Cao, Y.; Zhang, N.; Liu, X.; Liu, X.; Chen, D.; Ma, W. H3 Thr3 phosphorylation is crucial for meiotic resumption and anaphase onset in oocyte meiosis. Cell Cycle 2016, 15, 213–224. [Google Scholar] [CrossRef]
- Govin, J.; Dorsey, J.; Gaucher, J.; Rousseaux, S.; Khochbin, S.; Berger, S.L. Systematic screen reveals new functional dynamics of histones H3 and H4 during gametogenesis. Genes Dev. 2010, 24, 1772–1786. [Google Scholar] [CrossRef]
- Ng, T.M.; Lenstra, T.L.; Duggan, N.; Jiang, S.; Ceto, S.; Holstege, F.C.; Dai, J.; Boeke, J.D.; Biggins, S. Kinetochore function and chromosome segregation rely on critical residues in histones H3 and H4 in budding yeast. Genetics 2013, 195, 795–807. [Google Scholar] [CrossRef] [PubMed]
- Burgess, S.M.; Ajimura, M.; Kleckner, N. GCN5-dependent histone H3 acetylation and RPD3-dependent histone H4 deacetylation have distinct, opposing effects on IME2 transcription, during meiosis and during vegetative growth, in budding yeast. Proc. Natl. Acad. Sci. USA 1999, 96, 6835–6840. [Google Scholar] [CrossRef]
- Choy, J.S.; Tobe, B.T.; Huh, J.H.; Kron, S.J. Yng2p-dependent NuA4 histone H4 acetylation activity is required for mitotic and meiotic progression. J. Biol. Chem. 2001, 276, 43653–43662. [Google Scholar] [CrossRef] [PubMed]
- Nislow, C.; Ray, E.; Pillus, L. SET1, a yeast member of the trithorax family, functions in transcriptional silencing and diverse cellular processes. Mol. Biol. Cell 1997, 8, 2421–2436. [Google Scholar] [CrossRef] [PubMed]
- Sollier, J.; Lin, W.; Soustelle, C.; Suhre, K.; Nicolas, A.; Geli, V.; de La Roche Saint-Andre, C. Set1 is required for meiotic S-phase onset, double-strand break formation and middle gene expression. EMBO J. 2004, 23, 1957–1967. [Google Scholar] [CrossRef]
- Sarmento, O.F.; Digilio, L.C.; Wang, Y.; Perlin, J.; Herr, J.C.; Allis, C.D.; Coonrod, S.A. Dynamic alterations of specific histone modifications during early murine development. J. Cell Sci. 2004, 117, 4449–4459. [Google Scholar] [CrossRef]
- Borde, V.; Robine, N.; Lin, W.; Bonfils, S.; Geli, V.; Nicolas, A. Histone H3 lysine 4 trimethylation marks meiotic recombination initiation sites. EMBO J. 2009, 28, 99–111. [Google Scholar] [CrossRef]
- Buard, J.; Barthes, P.; Grey, C.; de Massy, B. Distinct histone modifications define initiation and repair of meiotic recombination in the mouse. EMBO J. 2009, 28, 2616–2624. [Google Scholar] [CrossRef]
- Hendzel, M.J.; Wei, Y.; Mancini, M.A.; Van Hooser, A.; Ranalli, T.; Brinkley, B.R.; Bazett-Jones, D.P.; Allis, C.D. Mitosis-specific phosphorylation of histone H3 initiates primarily within pericentromeric heterochromatin during G2 and spreads in an ordered fashion coincident with mitotic chromosome condensation. Chromosoma 1997, 106, 348–360. [Google Scholar] [CrossRef]
- Wei, Y.; Mizzen, C.A.; Cook, R.G.; Gorovsky, M.A.; Allis, C.D. Phosphorylation of histone H3 at serine 10 is correlated with chromosome condensation during mitosis and meiosis in Tetrahymena. Proc. Natl. Acad. Sci. USA 1998, 95, 7480–7484. [Google Scholar] [CrossRef]
- Wei, Y.; Yu, L.; Bowen, J.; Gorovsky, M.A.; Allis, C.D. Phosphorylation of histone H3 is required for proper chromosome condensation and segregation. Cell 1999, 97, 99–109. [Google Scholar] [CrossRef] [PubMed]
- Hsu, J.Y.; Sun, Z.W.; Li, X.; Reuben, M.; Tatchell, K.; Bishop, D.K.; Grushcow, J.M.; Brame, C.J.; Caldwell, J.A.; Hunt, D.F.; et al. Mitotic phosphorylation of histone H3 is governed by Ipl1/aurora kinase and Glc7/PP1 phosphatase in budding yeast and nematodes. Cell 2000, 102, 279–291. [Google Scholar] [CrossRef]
- Wang, Q.; Wang, C.M.; Ai, J.S.; Xiong, B.; Yin, S.; Hou, Y.; Chen, D.Y.; Schatten, H.; Sun, Q.Y. Histone phosphorylation and pericentromeric histone modifications in oocyte meiosis. Cell Cycle 2006, 5, 1974–1982. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Ai, J.S.; Idowu Ola, S.; Gu, L.; Zhang, Y.Z.; Chen, D.Y.; Sun, Q.Y. The spatial relationship between heterochromatin protein 1 alpha and histone modifications during mouse oocyte meiosis. Cell Cycle 2008, 7, 513–520. [Google Scholar] [CrossRef]
- Tsuchiya, D.; Gonzalez, C.; Lacefield, S. The spindle checkpoint protein Mad2 regulates APC/C activity during prometaphase and metaphase of meiosis I in Saccharomyces cerevisiae. Mol. Biol. Cell 2011, 22, 2848–2861. [Google Scholar] [CrossRef] [PubMed]
- He, C.; Liu, N.; Xie, D.; Liu, Y.; Xiao, Y.; Li, F. Structural basis for histone H3K4me3 recognition by the N-terminal domain of the PHD finger protein Spp1. Biochem. J. 2019, 476, 1957–1973. [Google Scholar] [CrossRef] [PubMed]
- Krishnamoorthy, T.; Chen, X.; Govin, J.; Cheung, W.L.; Dorsey, J.; Schindler, K.; Winter, E.; Allis, C.D.; Guacci, V.; Khochbin, S.; et al. Phosphorylation of histone H4 Ser1 regulates sporulation in yeast and is conserved in fly and mouse spermatogenesis. Genes Dev. 2006, 20, 2580–2592. [Google Scholar] [CrossRef]
- Primig, M.; Williams, R.M.; Winzeler, E.A.; Tevzadze, G.G.; Conway, A.R.; Hwang, S.Y.; Davis, R.W.; Esposito, R.E. The core meiotic transcriptome in budding yeasts. Nat. Genet. 2000, 26, 415–423. [Google Scholar] [CrossRef] [PubMed]
- Mitchell, A.P. Control of meiotic gene expression in Saccharomyces cerevisiae. Microbiol. Rev. 1994, 58, 56–70. [Google Scholar] [CrossRef]
- Chu, S.; Herskowitz, I. Gametogenesis in yeast is regulated by a transcriptional cascade dependent on Ndt80. Mol. Cell 1998, 1, 685–696. [Google Scholar] [CrossRef]
- Chu, S.; DeRisi, J.; Eisen, M.; Mulholland, J.; Botstein, D.; Brown, P.O.; Herskowitz, I. The transcriptional program of sporulation in budding yeast. Science 1998, 282, 699–705. [Google Scholar] [CrossRef]
- Berenguer, I.; Lopez-Jimenez, P.; Mena, I.; Viera, A.; Page, J.; Gonzalez-Martinez, J.; Maestre, C.; Malumbres, M.; Suja, J.A.; Gomez, R. Haspin participates in AURKB recruitment to centromeres and contributes to chromosome congression in male mouse meiosis. J. Cell Sci. 2022, 135, jcs259546. [Google Scholar] [CrossRef]
- Cairo, G.; Greiwe, C.; Jung, G.I.; Blengini, C.; Schindler, K.; Lacefield, S. Distinct Aurora B pools at the inner centromere and kinetochore have different contributions to meiotic and mitotic chromosome segregation. Mol. Biol. Cell 2023, 34, ar43. [Google Scholar] [CrossRef]
- Cairo, G.; Lacefield, S. Establishing correct kinetochore-microtubule attachments in mitosis and meiosis. Essays Biochem. 2020, 64, 277–287. [Google Scholar] [CrossRef]
- Hadders, M.A.; Hindriksen, S.; Truong, M.A.; Mhaskar, A.N.; Wopken, J.P.; Vromans, M.J.M.; Lens, S.M.A. Untangling the contribution of Haspin and Bub1 to Aurora B function during mitosis. J. Cell Biol. 2020, 219, e201907087. [Google Scholar] [CrossRef]
- Johansson, M.; Azuma, Y.; Clarke, D.J. Role of Aurora B and Haspin kinases in the metaphase Topoisomerase II checkpoint. Cell Cycle 2021, 20, 345–352. [Google Scholar] [CrossRef] [PubMed]
- Kurihara, D.; Matsunaga, S.; Omura, T.; Higashiyama, T.; Fukui, K. Identification and characterization of plant Haspin kinase as a histone H3 threonine kinase. BMC Plant Biol. 2011, 11, 73. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Ulyanova, N.P.; Daum, J.R.; Patnaik, D.; Kateneva, A.V.; Gorbsky, G.J.; Higgins, J.M. Haspin inhibitors reveal centromeric functions of Aurora B in chromosome segregation. J. Cell Biol. 2012, 199, 251–268. [Google Scholar] [CrossRef]
- Pandey, N.; Keifenheim, D.; Yoshida, M.M.; Hassebroek, V.A.; Soroka, C.; Azuma, Y.; Clarke, D.J. Topoisomerase II SUMOylation activates a metaphase checkpoint via Haspin and Aurora B kinases. J. Cell Biol. 2020, 219, e201807189. [Google Scholar] [CrossRef]
- Clarke, D.J.; Azuma, Y. Non-Catalytic Roles of the Topoisomerase IIalpha C-Terminal Domain. Int. J. Mol. Sci. 2017, 18, 2438. [Google Scholar] [CrossRef]
- Shonn, M.A.; Murray, A.L.; Murray, A.W. Spindle checkpoint component Mad2 contributes to biorientation of homologous chromosomes. Curr. Biol. 2003, 13, 1979–1984. [Google Scholar] [CrossRef] [PubMed]
Number | MAT | Group | Genotype |
---|---|---|---|
DCY2459 | a | Wild-type | ade2-1, ura3-1, his3-11,15, trp1-1, leu2-3112, can1-100 |
DCY 2460 | α | Wild-type | ade2-1, ura3-1, his3-11,15, trp1-1, leu2-3112, can1-100 |
DCY 4595 | α | T3A | hht1-hhf1::hphMX, hht2-T3A-HHF2(URA3) |
DCY 4596 | a | T3A | hht1-hhf1::hphMX, hht2-T3A-HHF2(URA3) |
DCY 4706 | a/α | Wild-type | Diploid, 2459 × 2460 |
DCY 4707 | a/α | T3A heterozygote | Diploid, 2459 × 4595 |
DCY 4730 | a/α | T3A homozygote | Diploid, 4595 × 4596 |
DCY 4824 | a/α | T3A heterozygote | Diploid, 2460 × 4596 |
DCY 4983 | a/α | Wild-type | Diploid, 4963 × 4970 |
DCY 4751 | α | K4A | hht1-hhf1::hphMX, hht2-K4A-HHF2(URA3) |
DCY 4752 | a | K4A | hht1-hhf1::hphMX, hht2-K4A-HHF2(URA3) |
DCY 4753 | a | S10A | hht1-hhf1::hphMX, hht2-S10A-HHF2(URA3) |
DCY 4754 | α | S10A | hht1-hhf1::hphMX, hht2-S10A-HHF2(URA3) |
DCY 5043 | a/α | S10A heterozygote | Diploid, 2460 × 4753 |
DCY 5045 | a/α | S10A heterozygote | Diploid, 2459 × 4754 |
DCY 5047 | a/α | S10A homozygote | Diploid, 4753 × 4754 |
DCY 5050 | a/α | K4A heterozygote | Diploid, 2459 × 4751 |
DCY 5052 | a/α | K4A heterozygote | Diploid, 2460 × 4752 |
DCY 5054 | a/α | K4A homozygote | Diploid, 4751 × 4752 |
DCY 5058 | a | Δmad2 | mad2::kanMX |
DCY 5061 | α | Δmad2 | mad2::kanMX |
DCY 5064 | α | T3A, Δmad2 | hht1-hhf1::hphMX, hht2-T3A-HHF2(URA3), mad2::kanMX |
DCY 5067 | a | T3A, Δmad2 | hht1-hhf1::hphMX, hht2-T3A-HHF2(URA3), mad2::kanMX |
DCY 5074 | a/α | Δmad2 | Diploid, 5058 × 5061 |
DCY 5077 | a/α | T3A, Δmad2 | Diploid, 5064 × 5067 |
Yeast Strain | % Successful Sporulation |
---|---|
Wild-type | 86% (n = 1433) |
WT/T3A | 80% (n = 590) and 78% (n = 567) |
T3A/T3A | 44% (n = 48) |
mad2Δ/mad2Δ | 64% (n = 721) |
T3A mad2Δ/T3A mad2Δ | 30% (n = 47) |
WT/S10A | 79% (n = 885) and 73% (n = 818) |
S10A/S10A | 37% (n = 263) |
WT/K4A | 77% (n = 975) and 79% (n = 736) |
K4A/K4A | 57% (n = 7) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Prichard, A.; Johansson, M.; Kirkpatrick, D.T.; Clarke, D.J. Histone H3 N-Terminal Tail Residues Important for Meiosis in Saccharomyces cerevisiae. Biomolecules 2025, 15, 1202. https://doi.org/10.3390/biom15081202
Prichard A, Johansson M, Kirkpatrick DT, Clarke DJ. Histone H3 N-Terminal Tail Residues Important for Meiosis in Saccharomyces cerevisiae. Biomolecules. 2025; 15(8):1202. https://doi.org/10.3390/biom15081202
Chicago/Turabian StylePrichard, Amy, Marnie Johansson, David T. Kirkpatrick, and Duncan J. Clarke. 2025. "Histone H3 N-Terminal Tail Residues Important for Meiosis in Saccharomyces cerevisiae" Biomolecules 15, no. 8: 1202. https://doi.org/10.3390/biom15081202
APA StylePrichard, A., Johansson, M., Kirkpatrick, D. T., & Clarke, D. J. (2025). Histone H3 N-Terminal Tail Residues Important for Meiosis in Saccharomyces cerevisiae. Biomolecules, 15(8), 1202. https://doi.org/10.3390/biom15081202