Lignin Degradation Efficiency of Chemical Pre-Treatments on Banana Rachis Destined to Bioethanol Production
Abstract
:1. Introduction
2. Materials and Methods
2.1. Banana Rachis Samples
2.2. Chemical Pretreatments
2.2.1. Acid-organosolv Pretreatment with Acetic Acid and Acetone (AA)
2.2.2. Alcohol-organosolv Pretreatment with Ethanol (ET)
2.2.3. Oxidative Pretreatment with Sodium Hypochlorite (SH)
2.2.4. Oxidative Pretreatment with Electro Chemical Activated Solution Based on Hypochlorous Acid (ECA)
2.2.5. Oxidative Pretreatment with Hydrogen Peroxide and Hydrogen Peroxide with Alkali (HP and HPA)
2.2.6. Combination of Electro Chemical Activated solution based on Hypochlorous Acid and Ethanol (ECA + ET)
2.2.7. Combination of Electro Chemical Activated Solution Based on Hypochlorous Acid and Acetic acid and Acetone (ECA + AA)
2.3. Hydrolysis of Pretreated Samples
2.4. Analytical Methods
2.5. Statistics
3. Results and Discussion
3.1. Chemical Characterization of Untreated Banana Rachis
3.2. Delignification Efficiency of Chemical Pretreatments
3.3. Enzymatic Saccharification
3.4. Comparison of Pre-Treatments Effect on Lignocellulose Structure by Fourier Transform Infrared
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Midilli, A. Green hydrogen energy system: A policy on reducing petroleum-based global unrest. Int. J. Glob. Warm. 2016, 10, 354–370. [Google Scholar] [CrossRef]
- Saini, J.K.; Saini, R.; Tewari, L. Lignocellulosic agriculture wastes as biomass feedstocks for second-generation bioethanol production: Concepts and recent developments. 3 Biotech 2015, 5, 337–353. [Google Scholar] [CrossRef] [PubMed]
- Popp, J.; Lakner, Z.; Harangi-Rakos, M.; Fari, M. The effect of bioenergy expansion: Food, energy, and environment. Renew. Sustain. Energy Rev. 2014, 32, 559–578. [Google Scholar] [CrossRef]
- Cobuloglu, H.I.; Büyüktahtakın, İ.E. Food vs. biofuel: An optimization approach to the spatio-temporal analysis of land-use competition and environmental impacts. Appl. Energy 2015, 140, 418–434. [Google Scholar] [CrossRef]
- De Bhowmick, G.; Sarmah, A.K.; Sen, R. Lignocellulosic biorefinery as a model for sustainable development of biofuels and value added products. Bioresour. Technol. 2017, 247, 1144–1154. [Google Scholar] [CrossRef] [PubMed]
- Gillet, S.; Aguedo, M.; Petitjean, L.; Morais, A.R.C.; da Costa Lopes, A.M.; Łukasik, R.M.; Anastas, P.T. Lignin transformations for high value applications: Towards targeted modifications using green chemistry. Green Chem. 2017, 19, 4200–4233. [Google Scholar] [CrossRef]
- Kumar, R.; Singh, S.; Singh, O.V. Bioconversion of lignocellulosic biomass: Biochemical and molecular perspectives. J. Ind. Microbiol. Biotechnol. 2008, 35, 377–391. [Google Scholar] [CrossRef] [PubMed]
- Canilha, L.; Chandel, A.K.; Suzane dos Santos Milessi, T.; Antunes, F.A.F.; Luiz da Costa Freitas, W.; das Graças Almeida Felipe, M.; da Silva, S.S. Bioconversion of sugarcane biomass into ethanol: An overview about composition, pretreatment methods, detoxification of hydrolysates, enzymatic saccharification, and ethanol fermentation. BioMed Res. Int. 2012, 2012, 989572. [Google Scholar] [CrossRef] [PubMed]
- Chandra, R.P. Substrate pretreatment: The key to effective enzymatic hydrolysis of lignocellulosics? In Biofuels; Springer: Berlin/Heidelberg, Germany, 2007; pp. 67–93. [Google Scholar]
- Mosier, N.; Wyman, C.; Dale, B.; Elander, R.; Lee, Y.Y.; Holtzapple, M.; Ladisch, M. Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour. Technol. 2005, 96, 673–686. [Google Scholar] [CrossRef] [PubMed]
- Martínez, A.T.; Camarero, S.; Ruiz-Dueñas, F.J.; Martínez, M.J. Biological lignin degradation. Lignin Valoriz. Emerg. Approaches 2018, 19, 199–207. [Google Scholar]
- Zhang, L.; Wang, T.; Jiao, S.; Hao, C.; Mao, Z. Effect of steam-explosion on biodegradation of lignin in wheat straw. In Proceedings of the 2007 ASAE Annual Meeting, Minneapolis, MN, USA, 17–20 June 2007. Paper number 077076. [Google Scholar]
- Dai, J.; Patti, A.F.; Saito, K. Recent developments in chemical degradation of lignin: Catalytic oxidation and ionic liquids. Tetrahedron Lett. 2016, 57, 4945–4951. [Google Scholar] [CrossRef]
- Shirkavand, E.; Baroutian, S.; Gapes, D.J.; Young, B.R. Combination of fungal and physicochemical processes for lignocellulosic biomass pretreatment—A review. Renew. Sustain. Energy Rev. 2016, 54, 217–234. [Google Scholar] [CrossRef]
- Sørensen, A.; Lübeck, M.; Lübeck, P.S.; Ahring, B.K. Fungal beta-glucosidases: A bottleneck in industrial use of lignocellulosic materials. Biomolecules 2013, 3, 612–631. [Google Scholar] [CrossRef] [PubMed]
- Rabemanolontsoa, H.; Saka, S. Various pretreatments of lignocellulosics. Bioresour. Technol. 2016, 199, 83–91. [Google Scholar] [CrossRef] [PubMed]
- Jönsson, L.J.; Martín, C. Pretreatment of lignocellulose: Formation of inhibitory by-products and strategies for minimizing their effects. Bioresour. Technol. 2016, 199, 103–112. [Google Scholar] [CrossRef] [PubMed]
- Behera, S.; Arora, R.; Nandhagopal, N.; Kumar, S. Importance of chemical pretreatment for bioconversion of lignocellulosic biomass. Renew. Sustain. Energy Rev. 2014, 36, 91–106. [Google Scholar] [CrossRef]
- Rocha, G.J.M.; Nascimento, V.M.; da Silva, V.F.N.; Corso, D.L.S.; Gonçalves, A.R. Contributing to the environmental sustainability of the second generation ethanol production: Delignification of sugarcane bagasse with sodium hydroxide recycling. Ind. Crops Prod. 2014, 59, 63–68. [Google Scholar] [CrossRef]
- Medina, C.O.M.; Marcet, M.; Thomsen, A.B. Comparison of wet oxidation and steam explosion as pretreatment methods for bioethanol production from sugarcane bagasse. BioResources 2008, 3, 670–683. [Google Scholar]
- Li, M.-F.; Yang, S.; Sun, R.-C. Recent advances in alcohol and organic acid fractionation of lignocellulosic biomass. Bioresour. Technol. 2016, 200, 971–980. [Google Scholar] [CrossRef] [PubMed]
- Keshav, P.K.; Shaik, N.; Koti, S.; Linga, V.R. Bioconversion of alkali delignified cotton stalk using two-stage dilute acid hydrolysis and fermentation of detoxified hydrolysate into ethanol. Ind. Crops Prod. 2016, 91, 323–331. [Google Scholar] [CrossRef]
- Cybulska, I. Organosolv delignification of agricultural residues (date palm fronds, Phoenix dactylifera L.) of the United Arab Emirates. Appl. Energy 2017, 185, 1040–1050. [Google Scholar] [CrossRef]
- Coca, M.; González-Benito, G.; García-Cubero, M.T. Chemical Oxidation with Ozone as an Efficient Pretreatment of Lignocellulosic Materials. In Biomass Fractionation Technologies for a Lignocellulosic Feedstock Based Biorefinery; Elsevier: Amsterdam, The Netherlands, 2016; pp. 409–429. [Google Scholar]
- Yin, Y.; Song, X.; Li, C.; Nie, S. A Method for Integrated Optimization of Chlorine Dioxide Delignification of Bagasse Pulp. BioResources 2017, 13, 1065–1074. [Google Scholar] [CrossRef]
- Xie, C.; Gong, W.; Yang, Q.; Zhu, Z.; Yan, L.; Hu, Z.; Peng, Y. White-rot fungi pretreatment combined with alkaline/oxidative pretreatment to improve enzymatic saccharification of industrial hemp. Bioresour. Technol. 2017, 243, 188–195. [Google Scholar] [CrossRef] [PubMed]
- Sarris, D.; Papanikolaou, S. Biotechnological production of ethanol: Biochemistry, processes and technologies. Eng. Life Sci. 2016, 16, 307–329. [Google Scholar] [CrossRef]
- Yoon, S.-Y.; Han, S.-H.; Shin, S.-J. The effect of hemicelluloses and lignin on acid hydrolysis of cellulose. Energy 2014, 77, 19–24. [Google Scholar] [CrossRef]
- Singhania, R.R.; Patel, A.K.; Sukumaran, R.K.; Larroche, C.; Pandey, A. Role and significance of beta-glucosidases in the hydrolysis of cellulose for bioethanol production. Bioresour. Technol. 2013, 127, 500–507. [Google Scholar] [CrossRef] [PubMed]
- Rawat, R.; Srivastava, N.; Chadha, B.S.; Oberoi, H.S. Generating fermentable sugars from rice straw using functionally active cellulolytic enzymes from Aspergillus niger HO. Energy Fuels 2014, 28, 5067–5075. [Google Scholar] [CrossRef]
- Zhao, X.; Cheng, K.; Liu, D. Organosolv pretreatment of lignocellulosic biomass for enzymatic hydrolysis. Appl. Microbiol. Biotechnol. 2015, 82, 815. [Google Scholar] [CrossRef] [PubMed]
- Ni, Y. A new mechanism for pulp delignification during chlorination. J. Pulp. Pap. Sci. 1990, 16, J13–J19. [Google Scholar]
- Sun, R.C.; Fang, J.M.; Tomkinson, J. Delignification of rye straw using hydrogen peroxide. Ind. Crops Prod. 2000, 12, 71–83. [Google Scholar] [CrossRef]
- Santa-Maria, M.; Ruiz-Colorado, A.; Cruz, G.; Jeoh, T. Assessing the feasibility of biofuel production from lignocellulosic banana waste in rural agricultural communities in Peru and Colombia. BioEnergy Res. 2013, 6, 1000–1011. [Google Scholar] [CrossRef]
- Cherian, B.M. A novel method for the synthesis of cellulose nanofibril whiskers from banana fibers and characterization. J. Agric. Food Chem. 2008, 56, 5617–5627. [Google Scholar] [CrossRef] [PubMed]
- Abdullah, N.; Sulaiman, F.; Miskam, M.A.; Taib, R.M. Characterization of banana (Musa spp.) pseudo-stem and fruit-bunch-stem as a potential renewable energy resource. Int. J. Biol. Vet. Agric. Food Eng. 2014, 8, 712–715. [Google Scholar]
- Guerrero, A.B.; Ballesteros, I.; Ballesteros, M. The potential of agricultural banana waste for bioethanol production. Fuel 2018, 213, 176–185. [Google Scholar] [CrossRef]
- Guerrero, A.B.; Aguado, P.L.; Sánchez, J.; Curt, M.D. GIS-based assessment of banana residual biomass potential for ethanol production and power generation: A case study. Waste Biomass Valoriz. 2016, 7, 405–415. [Google Scholar] [CrossRef]
- Tamburini, E.; Bernardi, T.; Castaldelli, G.; Tumiatti, G.; Ferro, S. Green electrochemical approach for delignification of wheat straw in second-generation bioethanol production. Energy Environ. Sci. 2011, 4, 551–557. [Google Scholar] [CrossRef]
- Helle, S.S.; Duff, S.J.B.; Cooper, D.G. Effect of surfactants on cellulose hydrolysis. Biotechnol. Bioeng. 1993, 42, 611–617. [Google Scholar] [CrossRef] [PubMed]
- TAPPI. Technical Association of Pulp and Paper Industry; TAPPI: Atlanta, GA, USA, 1992. [Google Scholar]
- Khiari, R.; Mhenni, M.F.; Belgacem, M.N.; Mauret, E. Chemical composition and pulping of date palm rachis and Posidonia oceanica–A comparison with other wood and non-wood fibre sources. Bioresour. Technol. 2010, 101, 775–780. [Google Scholar] [CrossRef] [PubMed]
- Frey, M.; Widner, D.; Segmehl, J.S.; Casdorff, K.; Keplinger, T.; Burgert, I. Delignified and densified cellulose bulk materials with excellent tensile properties for sustainable engineering. ACS Appl. Mater. Interfaces 2018, 10, 5030–5037. [Google Scholar] [CrossRef] [PubMed]
- Badger, P.C. Ethanol from cellulose: A general review. Trends New Crops New Uses 2002, 1, 17–21. [Google Scholar]
- Lavarack, B.P.; Griffin, G.J.; Rodman, D. The acid hydrolysis of sugarcane bagasse hemicellulose to produce xylose, arabinose, glucose and other products. Biomass Bioenergy 2002, 23, 367–380. [Google Scholar] [CrossRef]
- Yang, B.; Wyman, C.E. Effect of xylan and lignin removal by batch and flowthrough pretreatment on the enzymatic digestibility of corn stover cellulose. Biotechnol. Bioenergy 2004, 86, 88–98. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, M.; Zhao, J.; Xia, L. Comparison of four different chemical pretreatments of corn stover for enhancing enzymatic digestibility. Biomass Bioenergy 2009, 33, 1381–1385. [Google Scholar] [CrossRef]
- Zhu, L.; O’Dwyer, J.P.; Chang, V.S.; Granda, C.B.; Holtzapple, M.T. Structural features affecting biomass enzymatic digestibility. Bioresour. Technol. 2008, 99, 3817–3828. [Google Scholar] [CrossRef] [PubMed]
- Gupta, R.; Sharma, K.K.; Kuhad, R.C. Separate hydrolysis and fermentation (SHF) of Prosopis juliflora, a woody substrate, for the production of cellulosic ethanol by Saccharomyces cerevisiae and Pichia stipitis-NCIM 3498. Bioresour. Technol. 2009, 100, 1214–1220. [Google Scholar] [CrossRef] [PubMed]
- Toscan, A.; Morais, A.R.C.; Paixão, S.M.; Alves, L.; Andreaus, J.; Camassola, M.; Lukasik, R.M. Effective extraction of lignin from elephant grass using imidazole and its effect on enzymatic saccharification to produce fermentable sugars. Ind. Eng. Chem. Res. 2017, 56, 5138–5145. [Google Scholar] [CrossRef]
- Sun, S.; Sun, S.; Cao, X.; Sun, R. The role of pretreatment in improving the enzymatic hydrolysis of lignocellulosic materials. Bioresour. Technol. 2016, 199, 49–58. [Google Scholar] [CrossRef] [PubMed]
- Tamburini, E.; Uria, C.F.L.; Dedenaro, G.; Costa, S.; Marchetti, M.G.; Pedrini, P. Potential of near Infrared spectroscopy for classification of different delignificant pre-treatments on banana rachis. J. Anal. Bioanal. Tech. 2016, 7, 311–317. [Google Scholar] [CrossRef]
- Draude, K.M.; Kurniawan, C.B.; Duff, S.J.B. Effect of oxygen delignification on the rate and extent of enzymatic hydrolysis of lignocellulosic material. Bioresour. Technol. 2001, 79, 113–120. [Google Scholar] [CrossRef]
- Yu, Z.; Jameel, H.; Chang, H.; Park, S. The effect of delignification of forest biomass on enzymatic hydrolysis. Bioresour. Technol. 2011, 102, 9083–9089. [Google Scholar] [CrossRef] [PubMed]
- Eglinton, T.I.; Goni, M.; Boon, J.J.; Xie, Y. Incorporation of 13C-labeled coniferyl alcohol into developing Ginkgo biloba L. lignin revealed by analytical pyrolysis and CuO oxidation in combination with isotope ratio monitoring-gas chromatography-mass spectrometry. Holzforschung 2000, 54, 39–54. [Google Scholar] [CrossRef]
- Yang, H.; Yan, R.; Chen, H.; Lee, D.H.; Zheng, C. Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel 2007, 86, 1781–1788. [Google Scholar] [CrossRef]
- Song, Q.; Wang, F.; Cai, J.; Wang, Y.; Zhang, J.; Yu, W.; Xu, J. Lignin depolymerization (LDP) in alcohol over nickel-based catalysts via a fragmentation–hydrogenolysis process. Energy Environ. Sci. 2013, 6, 994–1007. [Google Scholar] [CrossRef] [Green Version]
- Selig, M.J.; Vinzant, T.B.; Himmel, M.E.; Decker, S.R. The effect of lignin removal by alkaline peroxide pretreatment on the susceptibility of corn stover to purified cellulolytic and xylanolytic enzymes. Appl. Biochem. Biotechnol. 2009, 155, 94–103. [Google Scholar] [CrossRef] [PubMed]
# | Pretreatment | Chemical Agent | Temperature (°C) | Time (min) | pH |
---|---|---|---|---|---|
1 | Acid-organosolv (AA) | glacial acetic acid:acetone:water (10:50:40) | 100 | 30 | 2.7 |
2 | Alcohol-organosolv (ET) | 96% Ethanol | 100 | 30 | - |
3 | Sodium Hypochlorite (SH) | NaClO 5% | 25 | 30 | 11 |
4 | Hypochlorous acid (ECA) | HClO/ClO− | 25 | 10 | 6 |
5 | Hydrogen Peroxide (HP) | H2O2 2% | 25 | 90 | - |
6 | Hydrogen Peroxide Alkaline (HPA) | H2O2 2% + NaOH 5% | 25 | 90 | 14 |
7 | Hypochlorous acid + Acid-organosolv (ECA+AA) | Treat.#4 + Treat.#1 | |||
8 | Hypochlorous acid + Alcohol-organosolv (ECA+ET) | Treat.#4 + Treat.#2 |
Pretreatment | Glucose (% w/w) | Xylose (% w/w) | Arabinose (% w/w) |
---|---|---|---|
Rachis (NT) | 2.8 ± 0.2 | 9.0 ± 0.7 | 1.5 ± 0.0 |
Acid-organosolv (AA) | 16.6 ± 0.7 | 12.8 ± 1.0 | 2.1 ± 0.0 |
Alcohol-organosolv (ET) | 19.8 ± 0.6 | 10.8 ± 0.7 | 0.8 ± 0.0 |
Sodium Hypochlorite (SH) | 44.7 ± 1.1 | 5.0 ± 0.3 | 1.8 ± 0.0 |
Hypochlorous acid (ECA) | 51.4 ± 1.2 | 4.2 ± 0.2 | 2.3 ± 0.0 |
Hydrogen Peroxide (HP) | 35.1 ± 1.8 | 5.2 ± 0.3 | 1.5 ± 0.0 |
Hydrogen Peroxide Alkaline (HPA) | 36.5 ± 1.5 | 5.6 ± 0.3 | 1.6 ± 0.0 |
Hypochlorous acid + Acid-organosolv (ECA + AA) | 48.3 ± 1.4 | 7.5 ± 0.4 | 1.8 ± 0.0 |
Hypochlorous acid + Alcohol-organosolv (ECA + ET) | 48.7 ± 1.4 | 6.9 ± 0.3 | 1.9 ± 0.0 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Costa, S.; Rugiero, I.; Larenas Uria, C.; Pedrini, P.; Tamburini, E. Lignin Degradation Efficiency of Chemical Pre-Treatments on Banana Rachis Destined to Bioethanol Production. Biomolecules 2018, 8, 141. https://doi.org/10.3390/biom8040141
Costa S, Rugiero I, Larenas Uria C, Pedrini P, Tamburini E. Lignin Degradation Efficiency of Chemical Pre-Treatments on Banana Rachis Destined to Bioethanol Production. Biomolecules. 2018; 8(4):141. https://doi.org/10.3390/biom8040141
Chicago/Turabian StyleCosta, Stefania, Irene Rugiero, Christian Larenas Uria, Paola Pedrini, and Elena Tamburini. 2018. "Lignin Degradation Efficiency of Chemical Pre-Treatments on Banana Rachis Destined to Bioethanol Production" Biomolecules 8, no. 4: 141. https://doi.org/10.3390/biom8040141
APA StyleCosta, S., Rugiero, I., Larenas Uria, C., Pedrini, P., & Tamburini, E. (2018). Lignin Degradation Efficiency of Chemical Pre-Treatments on Banana Rachis Destined to Bioethanol Production. Biomolecules, 8(4), 141. https://doi.org/10.3390/biom8040141