FDA- and EMA-Approved Tyrosine Kinase Inhibitors in Advanced EGFR-Mutated Non-Small Cell Lung Cancer: Safety, Tolerability, Plasma Concentration Monitoring, and Management
Abstract
:1. Introduction
2. Currently Approved EGFR-TKIs
2.1. Erlotinib
2.2. Gefitinib
2.3. Afatinib
2.4. Osimertinib
3. Tolerability Profile of TKIs: Safety and Side Effects
3.1. First- and Second-Generation Toxicity
3.2. Third-Generation Toxicity
4. Applications for Routine EGFR-TKI Dosage
5. Conclusions and Perspectives
Author Contributions
Funding
Conflicts of Interest
References
- Hanna, N.; Johnson, D.; Temin, S.; Baker, S., Jr.; Brahmer, J.; Ellis, P.M.; Giaccone, G.; Hesketh, P.J.; Jaiyesimi, I.; Leighl, N.B.; et al. Systemic Therapy for Stage IV Non-Small-Cell Lung Cancer: American Society of Clinical Oncology Clinical Practice Guideline Update. J. Clin. Oncol. 2017, 35, 3484–3515. [Google Scholar] [CrossRef] [PubMed]
- Woodcock, J. AstraZeneca Pharmaceuticals LP: Withdrawal of Approval of a New Drug Application for IRESSA. Fed. Regist. 2012, 77, 24723–24724. [Google Scholar]
- Astellas Pharma US, I.; Genen-Tech, Inc. Tarceva (erlotinib) Prescribing Information. Available online: www.accessdata. fda.gov/drugsatfda_docs/label/2010/021743s14s16lbl.pdf (accessed on 30 August 2015).
- Boehringer Ingelheim. Available online: www.accessdata.fda.gov/drugsatfda_docs/label/2013/201292s000lbl.pdf (accessed on 30 August 2015).
- Rosell, R.; Moran, T.; Carcereny, E.; Quiroga, V.; Molina, M.A.; Costa, C.; Benlloch, S.; Taron, M. Non-small-cell lung cancer harbouring mutations in the EGFR kinase domain. Clin. Transl. Oncol. 2010, 12, 75–80. [Google Scholar] [CrossRef] [PubMed]
- Westover, D.; Zugazagoitia, J.; Cho, B.C.; Lovly, C.M.; Paz-Ares, L. Mechanisms of acquired resistance to first- and second-generation EGFR tyrosine kinase inhibitors. Ann. Oncol 2018, 29, i10–i19. [Google Scholar] [CrossRef]
- Miller, V.A.; Hirsh, V.; Cadranel, J.; Chen, Y.M.; Park, K.; Kim, S.W.; Zhou, C.; Su, W.C.; Wang, M.; Sun, Y.; et al. Afatinib versus placebo for patients with advanced, metastatic non-small-cell lung cancer after failure of erlotinib, gefitinib, or both, and one or two lines of chemotherapy (LUX-Lung 1): A phase 2b/3 randomised trial. Lancet Oncol. 2012, 13, 528–538. [Google Scholar] [CrossRef]
- Katakami, N.; Atagi, S.; Goto, K.; Hida, T.; Horai, T.; Inoue, A.; Ichinose, Y.; Koboyashi, K.; Takeda, K.; Kiura, K.; et al. LUX-Lung 4: A phase II trial of afatinib in patients with advanced non-small-cell lung cancer who progressed during prior treatment with erlotinib, gefitinib, or both. J. Clin. Oncol. 2013, 31, 3335–3341. [Google Scholar] [CrossRef]
- AstraZeneca, A.B. Tagrisso-European Medicines Agency-Europa EU. Available online: https://www.ema.europa.eu/en/documents/product-information/tagrisso-epar-product-information_en.pdf (accessed on 1 February 2016).
- Mok, T.S.; Wu, Y.L.; Ahn, M.J.; Garassino, M.C.; Kim, H.R.; Ramalingam, S.S.; Shepherd, F.A.; He, Y.; Akamatsu, H.; Theelen, W.S.; et al. Osimertinib or Platinum-Pemetrexed in EGFR T790M-Positive Lung Cancer. N. Engl. J. Med. 2017, 376, 629–640. [Google Scholar] [CrossRef]
- Soria, J.C.; Ohe, Y.; Vansteenkiste, J.; Reungwetwattana, T.; Chewaskulyong, B.; Lee, K.H.; Dechaphunkul, A.; Imamura, F.; Nogami, N.; Kurata, T.; et al. Osimertinib in Untreated EGFR-Mutated Advanced Non-Small-Cell Lung Cancer. N. Engl. J. Med. 2018, 378, 113–125. [Google Scholar] [CrossRef]
- Wang, S.; Song, Y.; Yan, F.; Liu, D. Mechanisms of resistance to third-generation EGFR tyrosine kinase inhibitors. Front. Med. 2016, 10, 383–388. [Google Scholar] [CrossRef]
- Ding, P.N.; Lord, S.J.; Gebski, V.; Links, M.; Bray, V.; Gralla, R.J.; Yang, J.C.; Lee, C.K. Risk of Treatment-Related Toxicities from EGFR Tyrosine Kinase Inhibitors: A Meta-analysis of Clinical Trials of Gefitinib, Erlotinib, and Afatinib in Advanced EGFR-Mutated Non-Small Cell Lung Cancer. J. Thorac. Oncol. 2017, 12, 633–643. [Google Scholar] [CrossRef]
- Takeda, M.; Okamoto, I.; Tsurutani, J.; Oiso, N.; Kawada, A.; Nakagawa, K. Clinical impact of switching to a second EGFR-TKI after a severe AE related to a first EGFR-TKI in EGFR-mutated NSCLC. Jpn. J. Clin. Oncol. 2012, 42, 528–533. [Google Scholar] [CrossRef] [PubMed]
- Shah, R.R.; Shah, D.R. Safety and Tolerability of Epidermal Growth Factor Receptor (EGFR) Tyrosine Kinase Inhibitors in Oncology. Drug Saf. 2019, 42, 181–198. [Google Scholar] [CrossRef] [PubMed]
- Sakata, Y.; Kawamura, K.; Shingu, N.; Hiroshige, S.; Yasuda, Y.; Eguchi, Y.; Anan, K.; Hisanaga, J.; Nitawaki, T.; Nakano, A.; et al. The effects of switching EGFR-TKI treatments for non-small cell lung cancer because of adverse events. Asia Pac. J. Clin. Oncol. 2018. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Zhao, M.; He, P.; Hidalgo, M.; Baker, S.D. Differential metabolism of gefitinib and erlotinib by human cytochrome P450 enzymes. Clin. Cancer Res. 2007, 13, 3731–3737. [Google Scholar] [CrossRef]
- Rosell, R.; Carcereny, E.; Gervais, R.; Vergnenegre, A.; Massuti, B.; Felip, E.; Palmero, R.; Garcia-Gomez, R.; Pallares, C.; Sanchez, J.M.; et al. Erlotinib versus standard chemotherapy as first-line treatment for European patients with advanced EGFR mutation-positive non-small-cell lung cancer (EURTAC): A multicentre, open-label, randomised phase 3 trial. Lancet Oncol. 2012, 13, 239–246. [Google Scholar] [CrossRef]
- Hidalgo, M.; Siu, L.L.; Nemunaitis, J.; Rizzo, J.; Hammond, L.A.; Takimoto, C.; Eckhardt, S.G.; Tolcher, A.; Britten, C.D.; Denis, L.; et al. Phase I and pharmacologic study of OSI-774, an epidermal growth factor receptor tyrosine kinase inhibitor, in patients with advanced solid malignancies. J. Clin. Oncol. 2001, 19, 3267–3279. [Google Scholar] [CrossRef]
- Yamamoto, N.; Horiike, A.; Fujisaka, Y.; Murakami, H.; Shimoyama, T.; Yamada, Y.; Tamura, T. Phase I dose-finding and pharmacokinetic study of the oral epidermal growth factor receptor tyrosine kinase inhibitor Ro50-8231 (erlotinib) in Japanese patients with solid tumors. Cancer Chemother. Pharmacol. 2008, 61, 489–496. [Google Scholar] [CrossRef]
- Lu, J.F.; Eppler, S.M.; Wolf, J.; Hamilton, M.; Rakhit, A.; Bruno, R.; Lum, B.L. Clinical pharmacokinetics of erlotinib in patients with solid tumors and exposure-safety relationship in patients with non-small cell lung cancer. Clin. Pharmacol. Ther. 2006, 80, 136–145. [Google Scholar] [CrossRef]
- Li, D.; Ambrogio, L.; Shimamura, T.; Kubo, S.; Takahashi, M.; Chirieac, L.R.; Padera, R.F.; Shapiro, G.I.; Baum, A.; Himmelsbach, F.; et al. BIBW2992, an irreversible EGFR/HER2 inhibitor highly effective in preclinical lung cancer models. Oncogene 2008, 27, 4702–4711. [Google Scholar] [CrossRef] [Green Version]
- Ling, J.; Johnson, K.A.; Miao, Z.; Rakhit, A.; Pantze, M.P.; Hamilton, M.; Lum, B.L.; Prakash, C. Metabolism and excretion of erlotinib, a small molecule inhibitor of epidermal growth factor receptor tyrosine kinase, in healthy male volunteers. Drug Metab. Dispos. 2006, 34, 420–426. [Google Scholar] [CrossRef]
- Kletzl, H.; Giraudon, M.; Ducray, P.S.; Abt, M.; Hamilton, M.; Lum, B.L. Effect of gastric pH on erlotinib pharmacokinetics in healthy individuals: Omeprazole and ranitidine. Anticancer Drugs 2015, 26, 565–572. [Google Scholar] [CrossRef]
- Deeken, J.F.; Beumer, J.H.; Anders, N.M.; Wanjiku, T.; Rusnak, M.; Rudek, M.A. Preclinical assessment of the interactions between the antiretroviral drugs, ritonavir and efavirenz, and the tyrosine kinase inhibitor erlotinib. Cancer Chemother. Pharmacol. 2015, 76, 813–819. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hamilton, M.; Wolf, J.L.; Drolet, D.W.; Fettner, S.H.; Rakhit, A.K.; Witt, K.; Lum, B.L. The effect of rifampicin, a prototypical CYP3A4 inducer, on erlotinib pharmacokinetics in healthy subjects. Cancer Chemother. Pharmacol. 2014, 73, 613–621. [Google Scholar] [CrossRef] [PubMed]
- Rakhit, A.; Pantze, M.P.; Fettner, S.; Jones, H.M.; Charoin, J.E.; Riek, M.; Lum, B.L.; Hamilton, M. The effects of CYP3A4 inhibition on erlotinib pharmacokinetics: Computer-based simulation (SimCYP) predicts in vivo metabolic inhibition. Eur J. Clin. Pharmacol. 2008, 64, 31–41. [Google Scholar] [CrossRef] [PubMed]
- Rossi, R.E.; Massironi, S.; Conte, D.; Peracchi, M. Therapy for metastatic pancreatic neuroendocrine tumors. Ann. Transl. Med. 2014, 2, 8. [Google Scholar] [CrossRef] [PubMed]
- Hamilton, M.; Wolf, J.L.; Rusk, J.; Beard, S.E.; Clark, G.M.; Witt, K.; Cagnoni, P.J. Effects of smoking on the pharmacokinetics of erlotinib. Clin. Cancer Res. 2006, 12, 2166–2171. [Google Scholar] [CrossRef]
- Hughes, A.N.; O’Brien, M.E.; Petty, W.J.; Chick, J.B.; Rankin, E.; Woll, P.J.; Dunlop, D.; Nicolson, M.; Boinpally, R.; Wolf, J.; et al. Overcoming CYP1A1/1A2 mediated induction of metabolism by escalating erlotinib dose in current smokers. J. Clin. Oncol. 2009, 27, 1220–1226. [Google Scholar] [CrossRef]
- Anderson, N.G.; Ahmad, T.; Chan, K.; Dobson, R.; Bundred, N.J. ZD1839 (Iressa), a novel epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor, potently inhibits the growth of EGFR-positive cancer cell lines with or without erbB2 overexpression. Int. J. Cancer 2001, 94, 774–782. [Google Scholar] [CrossRef]
- Ciardiello, F.; Caputo, R.; Bianco, R.; Damiano, V.; Fontanini, G.; Cuccato, S.; De Placido, S.; Bianco, A.R.; Tortora, G. Inhibition of growth factor production and angiogenesis in human cancer cells by ZD1839 (Iressa), a selective epidermal growth factor receptor tyrosine kinase inhibitor. Clin. Cancer Res. 2001, 7, 1459–1465. [Google Scholar]
- Maemondo, M.; Inoue, A.; Kobayashi, K.; Sugawara, S.; Oizumi, S.; Isobe, H.; Gemma, A.; Harada, M.; Yoshizawa, H.; Kinoshita, I.; et al. Gefitinib or chemotherapy for non-small-cell lung cancer with mutated EGFR. N. Engl. J. Med. 2010, 362, 2380–2388. [Google Scholar] [CrossRef]
- Douillard, J.Y.; Ostoros, G.; Cobo, M.; Ciuleanu, T.; McCormack, R.; Webster, A.; Milenkova, T. First-line gefitinib in Caucasian EGFR mutation-positive NSCLC patients: A phase-IV, open-label, single-arm study. Br. J. Cancer 2014, 110, 55–62. [Google Scholar] [CrossRef] [PubMed]
- Swaisland, H.C.; Smith, R.P.; Laight, A.; Kerr, D.J.; Ranson, M.; Wilder-Smith, C.H.; Duvauchelle, T. Single-dose clinical pharmacokinetic studies of gefitinib. Clin. Pharm. 2005, 44, 1165–1177. [Google Scholar] [CrossRef] [PubMed]
- Zhao, C.; Han, S.Y.; Li, P.P. Pharmacokinetics of Gefitinib: Roles of Drug Metabolizing Enzymes and Transporters. Curr. Drug Deliv. 2017, 14, 282–288. [Google Scholar] [CrossRef] [PubMed]
- Herbst, R.S.; Maddox, A.M.; Rothenberg, M.L.; Small, E.J.; Rubin, E.H.; Baselga, J.; Rojo, F.; Hong, W.K.; Swaisland, H.; Averbuch, S.D.; et al. Selective oral epidermal growth factor receptor tyrosine kinase inhibitor ZD1839 is generally well-tolerated and has activity in non-small-cell lung cancer and other solid tumors: Results of a phase I trial. J. Clin. Oncol. 2002, 20, 3815–3825. [Google Scholar] [CrossRef] [PubMed]
- Smelick, G.S.; Heffron, T.P.; Chu, L.; Dean, B.; West, D.A.; Duvall, S.L.; Lum, B.L.; Budha, N.; Holden, S.N.; Benet, L.Z.; et al. Prevalence of acid-reducing agents (ARA) in cancer populations and ARA drug-drug interaction potential for molecular targeted agents in clinical development. Mol. Pharm. 2013, 10, 4055–4062. [Google Scholar] [CrossRef] [PubMed]
- Bergman, E.; Forsell, P.; Persson, E.M.; Knutson, L.; Dickinson, P.; Smith, R.; Swaisland, H.; Farmer, M.R.; Cantarini, M.V.; Lennernas, H. Pharmacokinetics of gefitinib in humans: The influence of gastrointestinal factors. Int. J. Pharm. 2007, 341, 134–142. [Google Scholar] [CrossRef] [PubMed]
- Yasumuro, O.; Uchida, S.; Kashiwagura, Y.; Suzuki, A.; Tanaka, S.; Inui, N.; Watanabe, H.; Namiki, N. Changes in gefitinib, erlotinib and osimertinib pharmacokinetics under various gastric pH levels following oral administration of omeprazole and vonoprazan in rats. Xenobiotica 2018, 48, 1106–1112. [Google Scholar] [CrossRef]
- Kumarakulasinghe, N.B.; Syn, N.; Soon, Y.Y.; Asmat, A.; Zheng, H.; Loy, E.Y.; Pang, B.; Soo, R.A. EGFR kinase inhibitors and gastric acid suppressants in EGFR-mutant NSCLC: A retrospective database analysis of potential drug interaction. Oncotarget 2016, 7, 85542–85550. [Google Scholar] [CrossRef]
- Zenke, Y.; Yoh, K.; Matsumoto, S.; Umemura, S.; Niho, S.; Ohmatsu, H.; Goto, K.; Ohe, Y. Clinical Impact of Gastric Acid-Suppressing Medication Use on the Efficacy of Erlotinib and Gefitinib in Patients With Advanced Non-Small-Cell Lung Cancer Harboring EGFR Mutations. Clin. Lung Cancer 2016, 17, 412–418. [Google Scholar] [CrossRef]
- Zhao, Y.Y.; Li, S.; Zhang, Y.; Zhao, H.Y.; Liao, H.; Guo, Y.; Shi, Y.X.; Jiang, W.; Xue, C.; Zhang, L. The relationship between drug exposure and clinical outcomes of non-small cell lung cancer patients treated with gefitinib. Med. Oncol. 2011, 28, 697–702. [Google Scholar] [CrossRef]
- Nakamura, Y.; Sano, K.; Soda, H.; Takatani, H.; Fukuda, M.; Nagashima, S.; Hayashi, T.; Oka, M.; Tsukamoto, K.; Kohno, S. Pharmacokinetics of gefitinib predicts antitumor activity for advanced non-small cell lung cancer. J. Thorac. Oncol. 2010, 5, 1404–1409. [Google Scholar] [CrossRef] [PubMed]
- McKillop, D.; Hutchison, M.; Partridge, E.A.; Bushby, N.; Cooper, C.M.; Clarkson-Jones, J.A.; Herron, W.; Swaisland, H.C. Metabolic disposition of gefitinib, an epidermal growth factor receptor tyrosine kinase inhibitor, in rat, dog and man. Xenobiotica 2004, 34, 917–934. [Google Scholar] [CrossRef] [PubMed]
- Keating, G.M. Afatinib: A review of its use in the treatment of advanced non-small cell lung cancer. Drugs 2014, 74, 207–221. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.C.; Wu, Y.L.; Schuler, M.; Sebastian, M.; Popat, S.; Yamamoto, N.; Zhou, C.; Hu, C.P.; O’Byrne, K.; Feng, J.; et al. Afatinib versus cisplatin-based chemotherapy for EGFR mutation-positive lung adenocarcinoma (LUX-Lung 3 and LUX-Lung 6): Analysis of overall survival data from two randomised, phase 3 trials. Lancet Oncol. 2015, 16, 141–151. [Google Scholar] [CrossRef]
- Paz-Ares, L.; Tan, E.H.; O’Byrne, K.; Zhang, L.; Hirsh, V.; Boyer, M.; Yang, J.C.; Mok, T.; Lee, K.H.; Lu, S.; et al. Afatinib versus gefitinib in patients with EGFR mutation-positive advanced non-small-cell lung cancer: Overall survival data from the phase IIb LUX-Lung 7 trial. Ann. Oncol. 2017, 28, 270–277. [Google Scholar] [CrossRef]
- Eskens, F.A.; Mom, C.H.; Planting, A.S.; Gietema, J.A.; Amelsberg, A.; Huisman, H.; van Doorn, L.; Burger, H.; Stopfer, P.; Verweij, J.; et al. A phase I dose escalation study of BIBW 2992, an irreversible dual inhibitor of epidermal growth factor receptor 1 (EGFR) and 2 (HER2) tyrosine kinase in a 2-week on, 2-week off schedule in patients with advanced solid tumours. Br. J. Cancer 2008, 98, 80–85. [Google Scholar] [CrossRef]
- Yap, T.A.; Vidal, L.; Adam, J.; Stephens, P.; Spicer, J.; Shaw, H.; Ang, J.; Temple, G.; Bell, S.; Shahidi, M.; et al. Phase I trial of the irreversible EGFR and HER2 kinase inhibitor BIBW 2992 in patients with advanced solid tumors. J. Clin. Oncol. 2010, 28, 3965–3972. [Google Scholar] [CrossRef]
- Gunzer, K.; Joly, F.; Ferrero, J.M.; Gligorov, J.; de Mont-Serrat, H.; Uttenreuther-Fischer, M.; Pelling, K.; Wind, S.; Bousquet, G.; Misset, J.L. A phase II study of afatinib, an irreversible ErbB family blocker, added to letrozole in patients with estrogen receptor-positive hormone-refractory metastatic breast cancer progressing on letrozole. Springerplus 2016, 5, 45. [Google Scholar] [CrossRef]
- Suder, A.; Ang, J.E.; Kyle, F.; Harris, D.; Rudman, S.; Kristeleit, R.; Solca, F.; Uttenreuther-Fischer, M.; Pemberton, K.; Pelling, K.; et al. A phase I study of daily afatinib, an irreversible ErbB family blocker, in combination with weekly paclitaxel in patients with advanced solid tumours. Eur. J. Cancer 2015, 51, 2275–2284. [Google Scholar] [CrossRef]
- Wind, S.; Giessmann, T.; Jungnik, A.; Brand, T.; Marzin, K.; Bertulis, J.; Hocke, J.; Gansser, D.; Stopfer, P. Pharmacokinetic drug interactions of afatinib with rifampicin and ritonavir. Clin. Drug Investig. 2014, 34, 173–182. [Google Scholar] [CrossRef]
- Cross, D.A.; Ashton, S.E.; Ghiorghiu, S.; Eberlein, C.; Nebhan, C.A.; Spitzler, P.J.; Orme, J.P.; Finlay, M.R.; Ward, R.A.; Mellor, M.J.; et al. AZD9291, an irreversible EGFR TKI, overcomes T790M-mediated resistance to EGFR inhibitors in lung cancer. Cancer Discov. 2014, 4, 1046–1061. [Google Scholar] [CrossRef] [PubMed]
- Soria, J.C.; Ramalingam, S.S. Osimertinib in EGFR Mutation-Positive Advanced NSCLC. N. Engl. J. Med. 2018, 378, 1262–1263. [Google Scholar] [CrossRef] [PubMed]
- Socinski, M.A.; Jotte, R.M.; Cappuzzo, F.; Orlandi, F.; Stroyakovskiy, D.; Nogami, N.; Rodriguez-Abreu, D.; Moro-Sibilot, D.; Thomas, C.A.; Barlesi, F.; et al. Atezolizumab for First-Line Treatment of Metastatic Nonsquamous NSCLC. N. Engl. J. Med. 2018, 378, 2288–2301. [Google Scholar] [CrossRef] [PubMed]
- Rossi, A.; Muscarella, L.A.; Di Micco, C.; Carbonelli, C.; D’Alessandro, V.; Notarangelo, S.; Palomba, G.; Sanpaolo, G.; Taurchini, M.; Graziano, P.; et al. Pharmacokinetic drug evaluation of osimertinib for the treatment of non-small cell lung cancer. Expert Opin. Drug Metab. Toxicol. 2017, 13, 1281–1288. [Google Scholar] [CrossRef]
- Planchard, D.; Brown, K.H.; Kim, D.W.; Kim, S.W.; Ohe, Y.; Felip, E.; Leese, P.; Cantarini, M.; Vishwanathan, K.; Janne, P.A.; et al. Osimertinib Western and Asian clinical pharmacokinetics in patients and healthy volunteers: Implications for formulation, dose, and dosing frequency in pivotal clinical studies. Cancer Chemother. Pharmacol. 2016, 77, 767–776. [Google Scholar] [CrossRef]
- Vishwanathan, K.; Dickinson, P.A.; Bui, K.; Cassier, P.A.; Greystoke, A.; Lisbon, E.; Moreno, V.; So, K.; Thomas, K.; Weilert, D.; et al. The Effect of Food or Omeprazole on the Pharmacokinetics of Osimertinib in Patients With Non-Small-Cell Lung Cancer and in Healthy Volunteers. J. Clin. Pharmacol. 2018, 58, 474–484. [Google Scholar] [CrossRef]
- Brown, K.; Comisar, C.; Witjes, H.; Maringwa, J.; de Greef, R.; Vishwanathan, K.; Cantarini, M.; Cox, E. Population pharmacokinetics and exposure-response of osimertinib in patients with non-small cell lung cancer. Br. J. Clin. Pharmacol. 2017, 83, 1216–1226. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H. Osimertinib making a breakthrough in lung cancer targeted therapy. Onco Targets Ther. 2016, 9, 5489–5493. [Google Scholar] [CrossRef]
- Grande, E.; Harvey, R.D.; You, B.; Batlle, J.F.; Galbraith, H.; Sarantopoulos, J.; Ramalingam, S.S.; Mann, H.; So, K.; Johnson, M.; et al. Pharmacokinetic Study of Osimertinib in Cancer Patients with Mild or Moderate Hepatic Impairment. J. Pharmacol. Exp. Ther. 2019, 369, 291–299. [Google Scholar] [CrossRef] [Green Version]
- Ricciuti, B.; Baglivo, S.; Paglialunga, L.; De Giglio, A.; Bellezza, G.; Chiari, R.; Crino, L.; Metro, G. Osimertinib in patients with advanced epidermal growth factor receptor T790M mutation-positive non-small cell lung cancer: Rationale, evidence and place in therapy. Ther. Adv. Med. Oncol. 2017, 9, 387–404. [Google Scholar] [CrossRef]
- Dickinson, P.A.; Cantarini, M.V.; Collier, J.; Frewer, P.; Martin, S.; Pickup, K.; Ballard, P. Metabolic Disposition of Osimertinib in Rats, Dogs, and Humans: Insights into a Drug Designed to Bind Covalently to a Cysteine Residue of Epidermal Growth Factor Receptor. Drug Metab. Dispos. 2016, 44, 1201–1212. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vishwanathan, K.; Dickinson, P.A.; So, K.; Thomas, K.; Chen, Y.M.; De Castro Carpeno, J.; Dingemans, A.C.; Kim, H.R.; Kim, J.H.; Krebs, M.G.; et al. The effect of itraconazole and rifampicin on the pharmacokinetics of osimertinib. Br. J. Clin. Pharmacol. 2018, 84, 1156–1169. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harvey, R.D.; Aransay, N.R.; Isambert, N.; Lee, J.S.; Arkenau, T.; Vansteenkiste, J.; Dickinson, P.A.; Bui, K.; Weilert, D.; So, K.; et al. Effect of multiple-dose osimertinib on the pharmacokinetics of simvastatin and rosuvastatin. Br. J. Clin. Pharmacol. 2018, 84, 2877–2888. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schoenfeld, A.J.; Arbour, K.C.; Rizvi, H.; Iqbal, A.N.; Gadgeel, S.M.; Girshman, J.; Kris, M.G.; Riely, G.J.; Yu, H.A.; Hellmann, M.D. Severe immune-related adverse events are common with sequential PD-(L)1 blockade and osimertinib. Ann. Oncol. 2019, 30, 839–844. [Google Scholar] [CrossRef]
- Lizotte, P.H.; Hong, R.L.; Luster, T.A.; Cavanaugh, M.E.; Taus, L.J.; Wang, S.; Dhaneshwar, A.; Mayman, N.; Yang, A.; Kulkarni, M.; et al. A High-Throughput Immune-Oncology Screen Identifies EGFR Inhibitors as Potent Enhancers of Antigen-Specific Cytotoxic T-lymphocyte Tumor Cell Killing. Cancer Immunol. Res. 2018, 6, 1511–1523. [Google Scholar] [CrossRef] [Green Version]
- Uribe, J.M.; Gelbmann, C.M.; Traynor-Kaplan, A.E.; Barrett, K.E. Epidermal growth factor inhibits Ca(2+)-dependent Cl- transport in T84 human colonic epithelial cells. Am. J. Physiol. 1996, 271, C914–C922. [Google Scholar] [CrossRef]
- Melosky, B.; Hirsh, V. Management of Common Toxicities in Metastatic NSCLC Related to Anti-Lung Cancer Therapies with EGFR-TKIs. Front. Oncol. 2014, 4, 238. [Google Scholar] [CrossRef]
- Mok, T.S.; Wu, Y.L.; Thongprasert, S.; Yang, C.H.; Chu, D.T.; Saijo, N.; Sunpaweravong, P.; Han, B.; Margono, B.; Ichinose, Y.; et al. Gefitinib or carboplatin-paclitaxel in pulmonary adenocarcinoma. N. Engl. J. Med. 2009, 361, 947–957. [Google Scholar] [CrossRef]
- Yang, J.C.; Hirsh, V.; Schuler, M.; Yamamoto, N.; O’Byrne, K.J.; Mok, T.S.; Zazulina, V.; Shahidi, M.; Lungershausen, J.; Massey, D.; et al. Symptom control and quality of life in LUX-Lung 3: A phase III study of afatinib or cisplatin/pemetrexed in patients with advanced lung adenocarcinoma with EGFR mutations. J. Clin. Oncol. 2013, 31, 3342–3350. [Google Scholar] [CrossRef]
- Lacouture, M.E.; Anadkat, M.J.; Bensadoun, R.J.; Bryce, J.; Chan, A.; Epstein, J.B.; Eaby-Sandy, B.; Murphy, B.A.; Group, M.S.T.S. Clinical practice guidelines for the prevention and treatment of EGFR inhibitor-associated dermatologic toxicities. Support. Care Cancer 2011, 19, 1079–1095. [Google Scholar] [CrossRef] [Green Version]
- Lalla, R.V.; Bowen, J.; Barasch, A.; Elting, L.; Epstein, J.; Keefe, D.M.; McGuire, D.B.; Migliorati, C.; Nicolatou-Galitis, O.; Peterson, D.E.; et al. MASCC/ISOO clinical practice guidelines for the management of mucositis secondary to cancer therapy. Cancer 2014, 120, 1453–1461. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peterson, D.E.; Boers-Doets, C.B.; Bensadoun, R.J.; Herrstedt, J.; Committee, E.G. Management of oral and gastrointestinal mucosal injury: ESMO Clinical Practice Guidelines for diagnosis, treatment, and follow-up. Ann. Oncol. 2015, 26 (Suppl. 5), v139–v151. [Google Scholar] [CrossRef] [Green Version]
- Melosky, B.; Leighl, N.B.; Rothenstein, J.; Sangha, R.; Stewart, D.; Papp, K. Management of egfr tki-induced dermatologic adverse events. Curr. Oncol. 2015, 22, 123–132. [Google Scholar] [CrossRef] [PubMed]
- Kato, S.; Saito, A.; Matsuda, N.; Suzuki, H.; Ujiie, M.; Sato, S.; Miyazaki, K.; Kodama, T.; Satoh, H. Management of afatinib-induced stomatitis. Mol. Clin. Oncol. 2017, 6, 603–605. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hirsh, V. Managing treatment-related adverse events associated with egfr tyrosine kinase inhibitors in advanced non-small-cell lung cancer. Curr. Oncol. 2011, 18, 126–138. [Google Scholar] [CrossRef]
- Osio, A.; Mateus, C.; Soria, J.C.; Massard, C.; Malka, D.; Boige, V.; Besse, B.; Robert, C. Cutaneous side-effects in patients on long-term treatment with epidermal growth factor receptor inhibitors. Br. J. Dermatol. 2009, 161, 515–521. [Google Scholar] [CrossRef]
- Felip, E.; Hirsh, V.; Popat, S.; Cobo, M.; Fulop, A.; Dayen, C.; Trigo, J.M.; Gregg, R.; Waller, C.F.; Soria, J.C.; et al. Symptom and Quality of Life Improvement in LUX-Lung 8, an Open-Label Phase III Study of Second-Line Afatinib Versus Erlotinib in Patients With Advanced Squamous Cell Carcinoma of the Lung After First-Line Platinum-Based Chemotherapy. Clin. Lung Cancer 2018, 19, 74–83. [Google Scholar] [CrossRef]
- Janne, P.A.; Yang, J.C.; Kim, D.W.; Planchard, D.; Ohe, Y.; Ramalingam, S.S.; Ahn, M.J.; Kim, S.W.; Su, W.C.; Horn, L.; et al. AZD9291 in EGFR inhibitor-resistant non-small-cell lung cancer. N. Engl. J. Med. 2015, 372, 1689–1699. [Google Scholar] [CrossRef]
- Yang, J.C.; Ahn, M.J.; Kim, D.W.; Ramalingam, S.S.; Sequist, L.V.; Su, W.C.; Kim, S.W.; Kim, J.H.; Planchard, D.; Felip, E.; et al. Osimertinib in Pretreated T790M-Positive Advanced Non-Small-Cell Lung Cancer: AURA Study Phase II Extension Component. J. Clin. Oncol. 2017, 35, 1288–1296. [Google Scholar] [CrossRef]
- Goss, G.; Tsai, C.M.; Shepherd, F.A.; Bazhenova, L.; Lee, J.S.; Chang, G.C.; Crino, L.; Satouchi, M.; Chu, Q.; Hida, T.; et al. Osimertinib for pretreated EGFR Thr790Met-positive advanced non-small-cell lung cancer (AURA2): A multicentre, open-label, single-arm, phase 2 study. Lancet Oncol. 2016, 17, 1643–1652. [Google Scholar] [CrossRef]
- Cho, B.C.; Chewaskulyong, B.; Lee, K.H.; Dechaphunkul, A.; Sriuranpong, V.; Imamura, F.; Nogami, N.; Kurata, T.; Okamoto, I.; Zhou, C.; et al. Osimertinib versus Standard of Care EGFR TKI as First-Line Treatment in Patients with EGFRm Advanced NSCLC: FLAURA Asian Subset. J. Thorac. Oncol. 2019, 14, 99–106. [Google Scholar] [CrossRef] [PubMed]
- de Marinis, F.; Wu, Y.L.; de Castro, G., Jr.; Chang, G.C.; Chen, Y.M.; Cho, B.C.; Freitas, H.C.; Jiang, L.; Kim, S.W.; Martin, C.; et al. ASTRIS: A global real-world study of osimertinib in >3000 patients with EGFR T790M positive non-small-cell lung cancer. Future Oncol. 2019, 15, 3003–3014. [Google Scholar] [CrossRef] [PubMed]
- Lepper, E.R.; Swain, S.M.; Tan, A.R.; Figg, W.D.; Sparreboom, A. Liquid-chromatographic determination of erlotinib (OSI-774), an epidermal growth factor receptor tyrosine kinase inhibitor. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2003, 796, 181–188. [Google Scholar] [CrossRef]
- Masters, A.R.; Sweeney, C.J.; Jones, D.R. The quantification of erlotinib (OSI-774) and OSI-420 in human plasma by liquid chromatography-tandem mass spectrometry. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2007, 848, 379–383. [Google Scholar] [CrossRef] [PubMed]
- Zhao, M.; He, P.; Rudek, M.A.; Hidalgo, M.; Baker, S.D. Specific method for determination of OSI-774 and its metabolite OSI-420 in human plasma by using liquid chromatography-tandem mass spectrometry. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2003, 793, 413–420. [Google Scholar] [CrossRef]
- Lankheet, N.A.; Schaake, E.E.; Rosing, H.; Burgers, J.A.; Schellens, J.H.; Beijnen, J.H.; Huitema, A.D. Quantitative determination of erlotinib and O-desmethyl erlotinib in human EDTA plasma and lung tumor tissue. Bioanalysis 2012, 4, 2563–2577. [Google Scholar] [CrossRef]
- Svedberg, A.; Vikingsson, S.; Vikstrom, A.; Hornstra, N.; Kentson, M.; Branden, E.; Koyi, H.; Bergman, B.; Green, H. Erlotinib treatment induces cytochrome P450 3A activity in non-small cell lung cancer patients. Br. J. Clin. Pharmacol. 2019, 85, 1704–1709. [Google Scholar] [CrossRef]
- Andriamanana, I.; Gana, I.; Duretz, B.; Hulin, A. Simultaneous analysis of anticancer agents bortezomib, imatinib, nilotinib, dasatinib, erlotinib, lapatinib, sorafenib, sunitinib and vandetanib in human plasma using LC/MS/MS. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2013, 926, 83–91. [Google Scholar] [CrossRef]
- Sparidans, R.W.; van Hoppe, S.; Rood, J.J.; Schinkel, A.H.; Schellens, J.H.; Beijnen, J.H. Liquid chromatography-tandem mass spectrometric assay for the tyrosine kinase inhibitor afatinib in mouse plasma using salting-out liquid-liquid extraction. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2016, 1012, 118–123. [Google Scholar] [CrossRef]
- Reis, R.; Labat, L.; Allard, M.; Boudou-Rouquette, P.; Chapron, J.; Bellesoeur, A.; Thomas-Schoemann, A.; Arrondeau, J.; Giraud, F.; Alexandre, J.; et al. Liquid chromatography-tandem mass spectrometric assay for therapeutic drug monitoring of the EGFR inhibitors afatinib, erlotinib and osimertinib, the ALK inhibitor crizotinib and the VEGFR inhibitor nintedanib in human plasma from non-small cell lung cancer patients. J. Pharm. Biomed. Anal. 2018, 158, 174–183. [Google Scholar] [CrossRef]
- Svedberg, A.; Green, H.; Vikstrom, A.; Lundeberg, J.; Vikingsson, S. A validated liquid chromatography tandem mass spectrometry method for quantification of erlotinib, OSI-420 and didesmethyl erlotinib and semi-quantification of erlotinib metabolites in human plasma. J. Pharm. Biomed. Anal. 2015, 107, 186–195. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Merienne, C.; Rousset, M.; Ducint, D.; Castaing, N.; Titier, K.; Molimard, M.; Bouchet, S. High throughput routine determination of 17 tyrosine kinase inhibitors by LC-MS/MS. J. Pharm. Biomed. Anal. 2018, 150, 112–120. [Google Scholar] [CrossRef] [PubMed]
- Hayashi, H.; Kita, Y.; Iihara, H.; Yanase, K.; Ohno, Y.; Hirose, C.; Yamada, M.; Todoroki, K.; Kitaichi, K.; Minatoguchi, S.; et al. Simultaneous and rapid determination of gefitinib, erlotinib and afatinib plasma levels using liquid chromatography/tandem mass spectrometry in patients with non-small-cell lung cancer. Biomed. Chromatogr. 2016, 30, 1150–1154. [Google Scholar] [CrossRef] [PubMed]
- Guan, S.; Chen, X.; Wang, F.; Xin, S.; Feng, W.; Zhu, X.; Liu, S.; Zhuang, W.; Zhou, S.; Huang, M.; et al. Development and validation of a sensitive LC-MS/MS method for determination of gefitinib and its major metabolites in human plasma and its application in non-small cell lung cancer patients. J. Pharm. Biomed. Anal. 2019, 172, 364–371. [Google Scholar] [CrossRef]
- Wang, L.Z.; Lim, M.Y.; Chin, T.M.; Thuya, W.L.; Nye, P.L.; Wong, A.; Chan, S.Y.; Goh, B.C.; Ho, P.C. Rapid determination of gefitinib and its main metabolite, O-desmethyl gefitinib in human plasma using liquid chromatography-tandem mass spectrometry. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2011, 879, 2155–2161. [Google Scholar] [CrossRef]
- Kadi, A.A.; Abdelhameed, A.S.; Darwish, H.W.; Attwa, M.W.; Al-Shakliah, N.S. A highly efficient and sensitive LC-MS/MS method for the determination of afatinib in human plasma: Application to a metabolic stability study. Biomed. Chromatogr. 2016, 30, 1248–1255. [Google Scholar] [CrossRef]
- Abdelhameed, A.S.; Attwa, M.W.; Kadi, A.A. An LC-MS/MS method for rapid and sensitive high-throughput simultaneous determination of various protein kinase inhibitors in human plasma. Biomed. Chromatogr. 2017, 31, e3793. [Google Scholar] [CrossRef]
- Veerman, G.D.M.; Lam, M.H.; Mathijssen, R.H.J.; Koolen, S.L.W.; de Bruijn, P. Quantification of afatinib, alectinib, crizotinib and osimertinib in human plasma by liquid chromatography/triple-quadrupole mass spectrometry; focusing on the stability of osimertinib. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2019, 1113, 37–44. [Google Scholar] [CrossRef]
- Herbrink, M.; de Vries, N.; Rosing, H.; Huitema, A.D.R.; Nuijen, B.; Schellens, J.H.M.; Beijnen, J.H. Development and validation of a liquid chromatography-tandem mass spectrometry analytical method for the therapeutic drug monitoring of eight novel anticancer drugs. Biomed. Chromatogr. 2018, 32. [Google Scholar] [CrossRef]
- Rood, J.J.M.; van Bussel, M.T.J.; Schellens, J.H.M.; Beijnen, J.H.; Sparidans, R.W. Liquid chromatography-tandem mass spectrometric assay for the T790M mutant EGFR inhibitor osimertinib (AZD9291) in human plasma. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2016, 1031, 80–85. [Google Scholar] [CrossRef]
- Zheng, X.; Wang, W.; Zhang, Y.; Ma, Y.; Zhao, H.; Hu, P.; Jiang, J. Development and validation of a UPLC-MS/MS method for quantification of osimertinib (AZD9291) and its metabolite AZ5104 in human plasma. Biomed. Chromatogr. 2018, 32, e4365. [Google Scholar] [CrossRef] [PubMed]
- Bouchet, S.; Chauzit, E.; Ducint, D.; Castaing, N.; Canal-Raffin, M.; Moore, N.; Titier, K.; Molimard, M. Simultaneous determination of nine tyrosine kinase inhibitors by 96-well solid-phase extraction and ultra performance LC/MS-MS. Clin. Chim. Acta 2011, 412, 1060–1067. [Google Scholar] [CrossRef] [PubMed]
- Chahbouni, A.; den Burger, J.C.; Vos, R.M.; Sinjewel, A.; Wilhelm, A.J. Simultaneous quantification of erlotinib, gefitinib, and imatinib in human plasma by liquid chromatography tandem mass spectrometry. Ther. Drug Monit. 2009, 31, 683–687. [Google Scholar] [CrossRef] [PubMed]
- Guetens, G.; Prenen, H.; De Boeck, G.; Van Dongen, W.; Esmans, E.; Lemiere, F.; van Oosterom, A.T.; Schoffski, P.; de Bruijn, E.A. Sensitive and specific quantification of the anticancer agent ZD1839 (Gefitinib) in plasma by on-column focusing capillary liquid chromatography-tandem mass spectrometry. J. Chromatogr. A 2005, 1082, 2–5. [Google Scholar] [CrossRef]
- Jones, H.K.; Stafford, L.E.; Swaisland, H.C.; Payne, R. A sensitive assay for ZD1839 (Iressa) in human plasma by liquid-liquid extraction and high performance liquid chromatography with mass spectrometric detection: Validation and use in Phase I clinical trials. J. Pharm. Biomed. Anal. 2002, 29, 221–228. [Google Scholar] [CrossRef]
- Zheng, N.; Zhao, C.; He, X.R.; Jiang, S.T.; Han, S.Y.; Xu, G.B.; Li, P.P. Simultaneous determination of gefitinib and its major metabolites in mouse plasma by HPLC-MS/MS and its application to a pharmacokinetics study. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2016, 1011, 215–222. [Google Scholar] [CrossRef]
- Sparidans, R.W.; Rosing, H.; Rood, J.J.M.; Schellens, J.H.M.; Beijnen, J.H. Liquid chromatography-tandem mass spectrometric assay for therapeutic drug monitoring of the B-Raf inhibitor encorafenib, the EGFR inhibitors afatinib, erlotinib and gefitinib and the O-desmethyl metabolites of erlotinib and gefitinib in human plasma. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2016, 1033, 390–398. [Google Scholar] [CrossRef]
- Cakir, O.; Arslan, A.; Inan, N.; Anik, Y.; Sarisoy, T.; Gumustas, S.; Akansel, G. Comparison of the diagnostic performances of diffusion parameters in diffusion weighted imaging and diffusion tensor imaging of breast lesions. Eur. J. Radiol. 2013, 82, e801–e806. [Google Scholar] [CrossRef]
- van Erp, N.P.; de Wit, D.; Guchelaar, H.J.; Gelderblom, H.; Hessing, T.J.; Hartigh, J. A validated assay for the simultaneous quantification of six tyrosine kinase inhibitors and two active metabolites in human serum using liquid chromatography coupled with tandem mass spectrometry. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2013, 937, 33–43. [Google Scholar] [CrossRef]
- Huynh, H.H.; Pressiat, C.; Sauvageon, H.; Madelaine, I.; Maslanka, P.; Lebbe, C.; Thieblemont, C.; Goldwirt, L.; Mourah, S. Development and Validation of a Simultaneous Quantification Method of 14 Tyrosine Kinase Inhibitors in Human Plasma Using LC-MS/MS. Ther. Drug Monit. 2017, 39, 43–54. [Google Scholar] [CrossRef]
- He, Y.; Zhou, L.; Gao, S.; Yin, T.; Tu, Y.; Rayford, R.; Wang, X.; Hu, M. Development and validation of a sensitive LC-MS/MS method for simultaneous determination of eight tyrosine kinase inhibitors and its application in mice pharmacokinetic studies. J. Pharm. Biomed. Anal. 2018, 148, 65–72. [Google Scholar] [CrossRef] [PubMed]
- Faivre, L.; Gomo, C.; Mir, O.; Taieb, F.; Schoemann-Thomas, A.; Ropert, S.; Vidal, M.; Dusser, D.; Dauphin, A.; Goldwasser, F.; et al. A simple HPLC-UV method for the simultaneous quantification of gefitinib and erlotinib in human plasma. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2011, 879, 2345–2350. [Google Scholar] [CrossRef] [PubMed]
- Ni, M.W.; Zhou, J.; Li, H.; Chen, W.; Mou, H.Z.; Zheng, Z.G. Simultaneous determination of six tyrosine kinase inhibitors in human plasma using HPLC-Q-Orbitrap mass spectrometry. Bioanalysis 2017, 9, 925–935. [Google Scholar] [CrossRef] [PubMed]
- Xiong, S.; Deng, Z.; Sun, P.; Mu, Y.; Xue, M. Development and Validation of a Rapid and Sensitive LC-MS/MS Method for the Pharmacokinetic Study of Osimertinib in Rats. J. AOAC Int. 2017, 100, 1771–1775. [Google Scholar] [CrossRef] [PubMed]
- Dong, S.T.; Li, Y.; Yang, H.T.; Wu, Y.; Li, Y.J.; Ding, C.Y.; Meng, L.; Dong, Z.J.; Zhang, Y. An Accurate and Effective Method for Measuring Osimertinib by UPLC-TOF-MS and Its Pharmacokinetic Study in Rats. Molecules 2018, 23, 2894. [Google Scholar] [CrossRef]
- Jin, J.; Sklar, G.E.; Min Sen Oh, V.; Chuen Li, S. Factors affecting therapeutic compliance: A review from the patient’s perspective. Ther. Clin. Risk Manag. 2008, 4, 269–286. [Google Scholar] [CrossRef]
- Basch, E.; Deal, A.M.; Kris, M.G.; Scher, H.I.; Hudis, C.A.; Sabbatini, P.; Rogak, L.; Bennett, A.V.; Dueck, A.C.; Atkinson, T.M.; et al. Symptom Monitoring With Patient-Reported Outcomes During Routine Cancer Treatment: A Randomized Controlled Trial. J. Clin. Oncol. 2016, 34, 557–565. [Google Scholar] [CrossRef]
Parameter and unit | Erlotinib | Gefetinib | Afatinib | Osimertinib |
---|---|---|---|---|
Usual starting dose (mg) | 150 | 250 | 40 | 80 |
AUCτ,ss | 27 (ng h/mL) | 258 (ng h/mL) | 631 (ng h/mL) | 9570 (nmol h/L) |
Cmax,ss | 1521 (ng/mL) | 101(ng/mL) | 38.0 (ng/mL) | 550.4 (nmol/L) |
tmax,ss (h) | 4 | 4 | 3 | 4 |
t1/2,ss (h) | 36 | 52 | 37 | 48.6 |
CL/Fss (L/h) | 4.5 | 46 | 1070 | 17.7 |
Vz/Fss (L) | 232 | 1700 | 2870 | 1216 |
Protein binding (%) | 95 | 90 | 95 | NA |
TKIs | Recommended Dosage/Day | Indication | Common AEs | Drug-Drug Interactions |
---|---|---|---|---|
Erlotinib | 150 mg 1 h before or 2 h after food | first-line for advanced NSCLC | rash, diarrhea, edema, cough, conjunctivitis | inducer of CYP1A2 inhibitor of CYP3A4, CYP1A1 and CYP2C8, medication that alter gastric pH |
Gefitinib | 250 mg +/− food | first-line for advanced NSCLC | skin reaction, rash, anorexia, stomatitis diarrhea, paronychia | inducers of CYP3A4, and CYP2D6, P-gp, inhibitors of CYP2C19 and CYP2D6, UGT1A1, medication that alter gastric pH |
Afatinib | 40 mg 1 h before or 2 h after food | second-line for advanced NSCLC | eruption rash dry ski, diarrhea, loss of appetite, stomatitis | negligible metabolism via CYP pathways; substrate and potential inhibitor of P-gp |
Osimertinib | 80 mg +/− food | third-line for advanced NSCLC | diarrhea, rash, dry skin, nail toxicity, ILD, QTc prolongation, ocular desorder cardiomyopathy | inducers of CYP3A |
Generation Molecule | Analyte | IS | Parent Ion (m/z) | Product Ion (m/z) | Column | Calibration Range (ng/mL) or (nM) | LOQ (ng/mL) or (nM) | Extraction | Reference |
---|---|---|---|---|---|---|---|---|---|
1st | Erlotinib | D8-imatinib | 394.2 | 277.9 | C18 (100 × 2.1mm, 3µm) | 50–3500 | 50 | LLE | [91] |
Elotinib-13C6 | 394.1 | 278.1 | C18 (30 × 2.1mm, 1.7µm) | 5–4000 | 5 | PP | [92] | ||
Erlotinib- 2H6 | 394.2 | 278.0 | C18 (50 × 2.1mm, 2.6µm) | 20–4000 | 20 | LLE | [93] | ||
Erlotinib-d6 | 395.2 | 279.2 | C18 (100 × 2.1 mm, 1.7µm) | 25–5000 | 25 | PP | [94] | ||
Erlotinib-13C6 | 394.1 | 278.1 | C18 (50 × 2.1mm, 1.6µm) | 25–5000 | 25 | SPE | [95] | ||
Omatinib mesylate | 394.0 | 278.3 | C18 (50 × 2.1mm, 3.5µm) | 0.01–250 nM | 0.01 nM | LLE | [96] | ||
Midazolan | 394.2 | 278.0 | C18 (150 × 4.6mm, 5µm) | 10–5000 | 10 | LLE | [87] | ||
1st | Gefitinib | Vatalanib | 447.6 | 128.2 | C18 (50 × 2.1mm, 3.5µm) | 0.5–1000 | 0.5 | LLE | [97] |
Gefitinib-2H8 | 447.0 | 128.1 | C18 (50 × 2.1mm, 1.6µm) | 4–800 | 4 | SPE | [95] | ||
Imatinib mesylate | 447.0 | 128.3 | C18 (50 × 2.1mm, 3.5µm) | 0.01–100 nM | 0.01 nM | LLE | [96] | ||
O-methyl gefitinib-d3 | 447.1 | 128.2 | C18 (150 × 2.1mm, 5µm) | 5–1000 | 5 | PP | [98] | ||
Gefitinib-d8 | 447.1 | 128.05 | C18 (30 × 2.1mm, 1.7µm) | 2–1600 | 5 | PP | [92] | ||
2 nd | Afatinib | Cyclobenzaprine | 486.1 | 276.0 | C18 (50 × 2.0mm, 3µm) | 0.5–500 | 0.5 | LLE | [99] |
Afatinib-13C6 | 486.2 | 370.9 | C18 (50 × 2.1mm, 2.6µm) | 5–250 | 5 | LLE | [93] | ||
Cyclobenzaprine | 486.1 | 371.0 | C18 (50 × 2.0mm, 3µm) | 5–500 | 4.3 | LLE | [100] | ||
Afatinib-d6 | 486.0 | 112.0 | C18 (50 × 2.1mm, 1.7µm) | 1–100 | 1 | LLE | [101] | ||
Afatinib-13C6 | 486.1 | 371.0 | C18 (50 × 2.0 mm, 5µm) | 2–200 | 2 | LLE | [102] | ||
Imatinib mesylate | 486.0 | 371.3 | C18 (50 × 2.1mm, 3.5µm) | 0.05–100 nM | 0.005 nM | LLE | [96] | ||
Afatinib-13C6 | 486.0 | 305.1 | C18 (50 × 2.1mm, 1.6µm) | 4–800 | 4 | SPE | [95] | ||
3 rd | Osimertinib | Ppazopanib | 500.2 | 72.1 | C18 (50 × 2.1 mm, 1.7 µm) | 1–1000 | 1 | LLE | [103] |
[13C,2H3]-osimertinib | 500.1 | 72.1 | C18 (50 × 2.1mm, 2.6µm) | 5–1000 | 5 | LLE | [93] | ||
Erlotinib-d6 | 500.5 | 72.5 | C18 (50 × 2.1mm, 1.7µm) | 10–1000 | 10 | LLE | [101] | ||
IS-0741 | 500.4 | 385.3 | C18 (50 × 2.1 mm, 1.7μm) | 0.5–100 | 0.5 | PP | [104,105,106] |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Solassol, I.; Pinguet, F.; Quantin, X. FDA- and EMA-Approved Tyrosine Kinase Inhibitors in Advanced EGFR-Mutated Non-Small Cell Lung Cancer: Safety, Tolerability, Plasma Concentration Monitoring, and Management. Biomolecules 2019, 9, 668. https://doi.org/10.3390/biom9110668
Solassol I, Pinguet F, Quantin X. FDA- and EMA-Approved Tyrosine Kinase Inhibitors in Advanced EGFR-Mutated Non-Small Cell Lung Cancer: Safety, Tolerability, Plasma Concentration Monitoring, and Management. Biomolecules. 2019; 9(11):668. https://doi.org/10.3390/biom9110668
Chicago/Turabian StyleSolassol, Isabelle, Frédéric Pinguet, and Xavier Quantin. 2019. "FDA- and EMA-Approved Tyrosine Kinase Inhibitors in Advanced EGFR-Mutated Non-Small Cell Lung Cancer: Safety, Tolerability, Plasma Concentration Monitoring, and Management" Biomolecules 9, no. 11: 668. https://doi.org/10.3390/biom9110668
APA StyleSolassol, I., Pinguet, F., & Quantin, X. (2019). FDA- and EMA-Approved Tyrosine Kinase Inhibitors in Advanced EGFR-Mutated Non-Small Cell Lung Cancer: Safety, Tolerability, Plasma Concentration Monitoring, and Management. Biomolecules, 9(11), 668. https://doi.org/10.3390/biom9110668