Previous Issue
Volume 13, June
 
 

Robotics, Volume 13, Issue 7 (July 2024) – 2 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
21 pages, 2971 KiB  
Article
A Digital Twin Infrastructure for NGC of ROV during Inspection
by David Scaradozzi, Flavia Gioiello, Nicolò Ciuccoli and Pierre Drap
Robotics 2024, 13(7), 96; https://doi.org/10.3390/robotics13070096 (registering DOI) - 26 Jun 2024
Viewed by 143
Abstract
Remotely operated vehicles (ROVs) provide practical solutions for a wide range of activities in a particularly challenging domain, despite their dependence on support ships and operators. Recent advancements in AI, machine learning, predictive analytics, control theories, and sensor technologies offer opportunities to make [...] Read more.
Remotely operated vehicles (ROVs) provide practical solutions for a wide range of activities in a particularly challenging domain, despite their dependence on support ships and operators. Recent advancements in AI, machine learning, predictive analytics, control theories, and sensor technologies offer opportunities to make ROVs (semi) autonomous in their operations and to remotely test and monitor their dynamics. This study moves towards that goal by formulating a complete navigation, guidance, and control (NGC) system for a six DoF BlueROV2, offering a solution to the current challenges in the field of marine robotics, particularly in the areas of power supply, communication, stability, operational autonomy, localization, and trajectory planning. The vehicle can operate (semi) autonomously, relying on a sensor acoustic USBL localization system, tethered communication with the surface vessel for power, and a line of sight (LOS) guidance system. This strategy transforms the path control problem into a heading control problem, aligning the vehicle’s movement with a dynamically calculated reference point along the desired path. The control system uses PID controllers implemented in the navigator flight controller board. Additionally, an infrastructure has been developed that synchronizes and communicates between the real ROV and its digital twin within the Unity environment. The digital twin acts as a visual representation of the ROV’s movements and considers hydrodynamic behaviors. This approach combines the physical properties of the ROV with the advanced simulation and analysis capabilities of its digital counterpart. All findings were validated at the Point Rouge port located in Marseille and at the port of Ancona. The NGC implemented has proven positive vehicle stability and trajectory tracking in time despite external interferences. Additionally, the digital part has proven to be a reliable infrastructure for a future bidirectional communication system. Full article
(This article belongs to the Special Issue Digital Twin-Based Human–Robot Collaborative Systems)
34 pages, 4132 KiB  
Article
Temporal Progression of Four Older Adults through Technology Acceptance Phases for a Mobile Telepresence Robot in Domestic Environments
by Rune Baggett, Martin Simecek, Katherine M. Tsui and Marlena R. Fraune
Robotics 2024, 13(7), 95; https://doi.org/10.3390/robotics13070095 - 22 Jun 2024
Viewed by 257
Abstract
Loneliness is increasingly common, especially among older adults. Technology like mobile telepresence robots can help people feel less lonely. However, such technology has challenges, and even if people use it in the short term, they may not accept it in the long term. [...] Read more.
Loneliness is increasingly common, especially among older adults. Technology like mobile telepresence robots can help people feel less lonely. However, such technology has challenges, and even if people use it in the short term, they may not accept it in the long term. Prior work shows that it can take up to six months for people to fully accept technology. This study focuses on exploring the nuances and fluidity of acceptance phases. This paper reports a case study of four older adult participants living with a mobile telepresence robot for seven months. In monthly interviews, we explore their progress through the acceptance phases. Results reveal the complexity and fluidity of the acceptance phases. We discuss what this means for technology acceptance. In this paper, we also make coding guidelines for interviews on acceptance phases more concrete. We take early steps in moving toward a more standard interview and coding method to improve our understanding of acceptance phases and how to help potential users progress through them. Full article
(This article belongs to the Special Issue Social Robots for the Human Well-Being)
Previous Issue
Back to TopTop