VGI and Satellite Imagery Integration for Crisis Mapping of Flood Events
Abstract
:1. Introduction
1.1. Background
1.2. Problem Definition
2. Case Studies: Production of Delineation Maps for Two Flood Events
2.1. Study Areas Definition
2.2. Dataset Description
2.2.1. Social Media Posts
2.2.2. Satellite Imagery
2.2.3. Reference Flood Maps
2.3. Data Processing
2.3.1. Reconstruction of the Training Samples
2.3.2. Satellite Images Processing and Classification
2.3.3. Classification Post-Processing
2.3.4. Classification Quality Assessment
2.4. Results
3. Proposal of a Collaborative Collection of Training Samples with QField
- It allows offline data collection. Users may work in variable conditions and their contribution can be exploited even with poor Internet connection, which is often the case during emergency situations. In fact, it supports server data storage either through an open hosted service or installation on a cloud service (QField Cloud). In addition, the dedicated QFieldSync Plugin is designed to work on the same project on desktop (QGIS desktop) and on the field (QField application), allowing for an easy synchronization, access, and analysis of the collected data.
- It is a Free and Open Source Software (FOSS), which enables users to carry out custom developments, if necessary. The community of developers provides an extensive documentation with clear, simple and free guidelines for users with different levels of GIS knowledge.
- It can be executed on different mobile platforms. It currently works on Android, but the iOS version is being tested. Collaborators are not required to master all the tool capabilities; they simply need to install the application, register on the web platform, and access it to fill out a short web form.
- It enables spatial data visualization. Users should be able to check via a map if the location service is working properly, and they can exploit the services to acquire the metadata needed for the satellite image processing.
- It allows users to capture geographic features (points, lines, and polygons) associated with photographs. QField relies on the Open Camera app for this purpose, since this application enables the registration of all the available geographic metadata in the EXIF metadata of the photographs, including the address of the camera when taking the photograph, which is essential for the proposed methodology.
- Finally, it allows users to work in a multi-user environment.
- fid (integer type), which is a unique value identifying a single user contribution;
- date and time of acquisition (datetime type), which is a crucial piece of information whenever data are collected by several volunteers in different days and time hours;
- photograph relative path (string type), which is automatically identified by the app as soon as the photograph is taken with OpenCamera;
- maximum distance of the flooded area (real type), which must be entered by the user.
4. Discussion and Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- CRED. 2021 Disasters in Numbers. Available online: https://cred.be/sites/default/files/2021_EMDAT_report.pdf (accessed on 19 September 2022).
- Ajmar, A.; Boccardo, P.; Disabato, F.; Tonolo, F.G. Rapid Mapping: Geomatics role and research opportunities. Rend. Fis. Acc. Lincei 2015, 26 (Suppl. S1), 63–73. [Google Scholar] [CrossRef] [Green Version]
- International Working Group on Satellite-Based Emergency Mapping. Emergency Mapping Guidelines—December 2015 Version. Available online: https://www.un-spider.org/sites/default/files/IWG_SEM_EmergencyMappingGuidelines_v1_Final.pdf (accessed on 26 September 2022).
- Copernicus Emergency Management Service. Available online: https://emergency.copernicus.eu/ (accessed on 26 September 2022).
- Copernicus Rapid Mapping Products Portfolio. Available online: https://emergency.copernicus.eu/mapping/ems/rapid-mapping-portfolio (accessed on 26 September 2022).
- Boccardo, P.; Giulio Tonolo, F. Remote Sensing Role in Emergency Mapping for Disaster Response. In Engineering Geology for Society and Territory; Lollino, G., Manconi, A., Guzzetti, F., Culshaw, M., Bobrowsky, P., Luino, F., Eds.; Springer: Cham, Switzerland, 2015; Volume 5, pp. 17–24. [Google Scholar] [CrossRef]
- Ajmar, A.; Boccardo, P.; Broglia, M.; Kucera, J.; Tonolo, F.G.; Wania, A. Response to Flood Events: The Role of Satellite-based Emergency Mapping and the Experience of the Copernicus Emergency Management Service. In Flood Damage Survey and Assessment: New Insights from Research and Practice; Molinari, D., Menoni, S., Ballio, F., Eds.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2017; pp. 211–228. [Google Scholar]
- Schumann, G.J.; Moller, D.K. Microwave remote sensing of flood inundation. Phys. Chem. Earth 2015, 83–84, 84–95. [Google Scholar] [CrossRef]
- Hervé, Y.; Nadine, T.; Jean-François, C.; Stephen, C. Benefit of Multisource Remote Sensing for Flood Monitoring: Actual Status and Perspectives. In Proceedings of the 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS, Brussels, Belgium, 11 July 2021. [Google Scholar] [CrossRef]
- Chaouch, N.; Temimi, M.; Hagen, S.; Weishampel, J.; Medeiros, S.; Khanbilvardi, R. A synergetic use of satellite imagery from SAR and optical sensors to improve coastal flood mapping in the Gulf of Mexico. Hydrol. Process. 2012, 26, 1617–1628. [Google Scholar] [CrossRef] [Green Version]
- Chowdary, V.M.; Vinu Chandran, R.; Neeti, N.; Bothale, R.V.; Srivastava, Y.K.; Ingle, P.; Ramakrishnan, D.; Dutta, D.; Jeyaram, A.; Sharma, J.R.; et al. Assessment of surface and sub-surface waterlogged areas in irrigation command areas of Bihar state using remote sensing and GIS. Agric. Water Manag. 2008, 95, 754–766. [Google Scholar] [CrossRef]
- Memon, A.A.; Muhammad, S.; Rahman, S.; Haq, M. Flood monitoring and damage assessment using water indices: A case study of Pakistan flood-2012. Egypt. J. Remote Sens. Space Sci. 2015, 18, 99–106. [Google Scholar] [CrossRef] [Green Version]
- Haworth, B.; Bruce, E. A Review of Volunteered Geographic Information for Disaster Management: A Review of VGI for Disaster Management. Geogr. Compass 2015, 9, 237–250. [Google Scholar] [CrossRef]
- Poser, K.; Dransch, D. Volunteered Geographic Information for Disaster Management with Application to Rapid Flood Damage Estimation. Geomatica 2010, 64, 89–98. [Google Scholar] [CrossRef]
- Schnebele, E.; Cervone, G. Improving remote sensing flood assessment using volunteered geographical data. Nat. Hazards Earth Syst. Sci. 2013, 13, 669–677. [Google Scholar] [CrossRef]
- McDougall, K.; Temple-Watts, P. The use of LiDAR and Volunteered Geographic Information to map flood extents and inundation. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2012, I-4, 251–256. [Google Scholar] [CrossRef] [Green Version]
- Fohringer, J.; Dransch, D.; Kreibich, H.; Schröter, K. Social media as an information source for rapid flood inundation mapping. Nat. Hazards Earth Syst. Sci. 2015, 15, 2725–2738. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Wang, C.; Emrich, C.T.; Guo, D. A novel approach to leveraging social media for rapid flood mapping: A case study of the 2015 South Carolina floods. Cartogr. Geogr. Inf. Sci. 2018, 45, 97–110. [Google Scholar] [CrossRef]
- Rosser, J.F.; Leibovici, D.G.; Jackson, M.J. Rapid flood inundation mapping using social media, remote sensing and topographic data. Nat. Hazards 2017, 87, 103–120. [Google Scholar] [CrossRef] [Green Version]
- Feng, Y.; Brenner, C.; Sester, M. Flood severity mapping from Volunteered Geographic Information by interpreting water level from images containing people: A case study of Hurricane Harvey. ISPRS J. Photogramm. Remote Sens. 2020, 169, 301–319. [Google Scholar] [CrossRef]
- Bruneau, P.; Brangbour, E.; Marchand-Maillet, S.; Hostache, R.; Chini, M.; Pelich, R.-M.; Matgen, P.; Tamisier, T. Measuring the Impact of Natural Hazards with Citizen Science: The Case of Flooded Area Estimation Using Twitter. Remote Sens. 2021, 13, 1153. [Google Scholar] [CrossRef]
- Kharazi, B.A.; Behzadan, A.H. Flood depth mapping in street photos with image processing and deep neural networks. Comput. Environ. Urban Syst. 2021, 88, 101628. [Google Scholar] [CrossRef]
- Sadiq, R.; Akhtar, Z.; Imran, M.; Ofli, F. Integrating remote sensing and social sensing for flood mapping. Remote Sens. Appl. Soc. Environ. 2022, 25, 100697. [Google Scholar] [CrossRef]
- Thorne, C. Geographies of UK flooding in 2013/4. Geogr. J. 2014, 180, 297–309. [Google Scholar] [CrossRef]
- Saffir, H.S. Hurricane Wind and Storm Surge. Mil. Eng. 1973, 423, 4–5. [Google Scholar]
- Simpson, R.H. The Hurricane Disaster Potential Scale. Weatherwise 1974, 27, 169–186. [Google Scholar]
- Hurricane Florence (AL062018) 31 August–17 September 2018. National Hurricane Center, Tropical Cyclone Report. Available online: https://www.nhc.noaa.gov/data/tcr/AL062018_Florence.pdf (accessed on 3 September 2022).
- Havas, C.; Resch, B.; Francalanci, C.; Pernici, B.; Scalia, G.; Fernandez-Marquez, J.L.; Van Achte, T.; Zeug, G.; Mondardini, M.R.; Grandoni, D.; et al. E2mC: Improving Emergency Management Service Practice through Social Media and Crowdsourcing Analysis in Near Real Time. Sensors 2017, 17, 2766. [Google Scholar] [CrossRef]
- Pernici, B.; Francalanci, C.; Scalia, G.; Corsi, M.; Grandoni, D.; Biscardi, M.A. Geolocating social media posts for emergency mapping. In Proceedings of the Social Web in Emergency and Disaster Management, Los Angeles, CA, USA, 9 February 2018. [Google Scholar]
- Barozzi, S.; Fernandez Marquez, J.L.; Shankar, A.R.; Pernici, B. Filtering images extracted from social media in the response phase of emergency events. In Proceedings of the 16th ISCRAM Conference, Valencia, Spain, 19–22 May 2019. [Google Scholar]
- European Commission-Joint Research Centre-Institute for the Protection and the Security of the Citizen. Validation Protocol for Emergency Response Geo-Information Products. Available online: https://data.europa.eu/doi/10.2788/63690 (accessed on 27 September 2022).
- UK Environment Agency. Historic Flood Map. Available online: https://www.data.gov.uk/dataset/76292bec-7d8b-43e8-9c98-02734fd89c81/historic-flood-map (accessed on 7 September 2022).
- European Space Agency. HASARD Service Specification. Available online: https://docs.charter.uat.esaportal.eu/services/hasard/service-specs/ (accessed on 7 September 2022).
- Congedo, L. Semi-Automatic Classification Plugin Documentation. Available online: https://semiautomaticclassificationmanual.readthedocs.io/en/latest/ (accessed on 5 September 2022).
- United States Geological Survey. Landsat Missions. Available online: https://www.usgs.gov/landsat-missions/landsat-7 (accessed on 6 September 2022).
- QGIS Documentation. GDAL Fill Nodata. Available online: https://docs.qgis.org/3.16/en/docs/user_manual/processing_algs/gdal/rasteranalysis.html#gdalfillnodata (accessed on 6 September 2022).
- McFeeters, S.K. The use of the normalized difference water index (NDWI) in the delineation of open water features. Int. J. Remote Sens. 1996, 17, 1425–1432. [Google Scholar] [CrossRef]
- Singh, S.; Dhasmana, M.K.; Shrivastava, V.; Sharma, V.; Pokhriyal, N.; Thakur, P.K.; Aggarwal, S.P.; Nikam, B.R.; Garg, V.; Chouksey, A.; et al. Estimation of revised capacity in Gobind Sagar reservoir using Google earth engine and GIS. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2018, 42, 20–23. [Google Scholar] [CrossRef] [Green Version]
- Bijeesh, T.V.; Narasimhamurthy, K.N. Surface water detection and delineation using remote sensing images: A review of methods and algorithms. Sustain. Water Resour. Manag. 2020, 6, 68. [Google Scholar] [CrossRef]
- Tromble, R. Where Have All the Data Gone? A Critical Reflection on Academic Digital Research in the Post-API Age. Soc. Media Soc. 2021, 7, 2056305121988929. [Google Scholar] [CrossRef]
- Fábrega-Álvarez, P.; Lynch, J. Archaeological Survey Supported by Mobile GIS: Low-Budget Strategies at the Hualfín Valley (Catamarca, Argentina). Adv. Archaeol. Pract. 2022, 10, 215–226. [Google Scholar] [CrossRef]
- Montagnetti, R.; Guarino, G. From Qgis to Qfield and Vice Versa: How the New Android Application Is Facilitating the Work of the Archaeologist in the Field. Environ. Sci. Proc. 2021, 10, 6. [Google Scholar] [CrossRef]
- Bruno, S.; Vita, L.; Loprencipe, G. Development of a GIS-Based Methodology for the Management of Stone Pavements Using Low-Cost Sensors. Sensors 2022, 22, 6560. [Google Scholar] [CrossRef]
- Spataru, M.; Vlasenco, A.; Nistor-Lopatenco, L.; Grama, V. Updating the statistical register of housing in the Republic of Moldova using Open-Source GIS technologies. J. Eng. Sci. 2022, 29, 123–132. [Google Scholar] [CrossRef]
- Tikhonova, O.; Romão, X.; Salazar, G. The use of GIS tools for data collection and processing in the context of fire risk assessment in urban cultural heritage. In Proceedings of the International Conference of Young Professionals <<GeoTerrace-2021>>, Lviv, Ukraine, 4–6 October 2021. [Google Scholar] [CrossRef]
- Duncan, J.; Davies, K.P.; Saipai, A.; Vainikolo, L.; Wales, N.; Varea, R.; Bruce, E.; Boruff, B. An Open-Source Mobile Geospatial Platform for Agricultural Landscape Mapping: A Case Study of Wall-To Farm Systems Mapping in Tonga. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2022, XLVIII-4/W1-2022, 119–126. [Google Scholar] [CrossRef]
- Nowak, M.M.; Dziób, K.; Ludwisiak, Ł.; Chmiel, J. Mobile GIS applications for environmental field surveys: A state of the art. Glob. Ecol. Conserv. 2020, 23, e01089. [Google Scholar] [CrossRef]
- Schattschneider, J.L.; Daudt, N.W.; Mattos, M.P.S.; Bonetti, J.; Rangel-Buitrago, N. An open-source geospatial framework for beach litter monitoring. Environ. Monit. Assess 2020, 192, 648. [Google Scholar] [CrossRef] [PubMed]
- Chudý, F.; Slámová, M.; Tomaštík, J.; Tunák, D.; Kardoš, M.; Saloň, Š. The application of civic technologies in a field survey of landslides. Land Degrad. Dev. 2018, 29, 1858–1870. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Zhang, M. An IoT-Based Intelligent Geological Disaster Application Using Open-Source Software Framework. Sci. Program 2022, 2022, e9285258. [Google Scholar] [CrossRef]
- Piccinini, F.; Gorreja, A.; Di Stefano, F.; Pierdicca, R.; Sanchez Aparicio, L.J.; Malinverni, E.S. Preservation of Villages in Central Italy: Geomatic Techniques’ Integration and GIS Strategies for the Post-Earthquake Assessment. ISPRS Int. J. Geo-Inf. 2022, 11, 291. [Google Scholar] [CrossRef]
- Mandarino, A.; Luino, F.; Faccini, F. Flood-induced ground effects and flood-water dynamics for hydro-geomorphic hazard as-sessment: The 21–22 October 2019 extreme flood along the lower Orba River (Alessandria, NW Italy). J. Maps 2021, 17, 136–151. [Google Scholar] [CrossRef]
- Paulik, R.; Crowley, K.; Williams, S. Post-event Flood Damage Surveys: A New Zealand Experience and Implications for Flood Risk Analysis. In Proceedings of the FLOODrisk 2020-4th European Conference on Flood Risk Management, online, Budapest, Hungary, 22–24 June 2021. [Google Scholar]
- QField. OPENGIS.ch. Available online: https://qfield.org (accessed on 9 September 2022).
Study Area | Social Media Posts | Satellite Images | ||
---|---|---|---|---|
Number of Posts | Dates | Satellite | Acquisition Date | |
Bridgwater/ Worcester (UK) 1 | 13 (Flickr) | 10–11 February 2014 | Landsat-7 | 16 February 2014 |
Wilmington (US) | 11 (Twitter) | 14–17 September 2018 | Sentinel-2 | 18 September 2018 |
Lumberton (US) | 6 (YouTube) | 18–20 September 2018 | Sentinel-2 | 18 September 2018 |
Study Area | Provider | Source | Date |
---|---|---|---|
Bridgwater (UK) | UK Environment Agency | Radar image | 16 February 2014 |
Worcester (UK) | UK Environment Agency | Radar image | 11 February 2014 |
Wilmington (US) 1 | - | - | - |
Lumberton (US) | HASARD | Sentinel-1 images | Pre-event: 7 September 2018 Post-event: 19 September 2018 |
Study Area | OA [%] | UA [%] | PA [%] | ||
---|---|---|---|---|---|
Flooded | Non-Flooded | Flooded | Non-Flooded | ||
Bridgwater (UK) | 93.6 | 83.1 | 97.6 | 93.0 | 93.7 |
Worcester (UK) | 86.8 | 71.1 | 98.5 | 97.2 | 82.0 |
Wilmington (US) 1 | - | - | - | - | - |
Lumberton (US) | 93.1 | 69.3 | 95.9 | 66.9 | 96.3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vavassori, A.; Carrion, D.; Zaragozi, B.; Migliaccio, F. VGI and Satellite Imagery Integration for Crisis Mapping of Flood Events. ISPRS Int. J. Geo-Inf. 2022, 11, 611. https://doi.org/10.3390/ijgi11120611
Vavassori A, Carrion D, Zaragozi B, Migliaccio F. VGI and Satellite Imagery Integration for Crisis Mapping of Flood Events. ISPRS International Journal of Geo-Information. 2022; 11(12):611. https://doi.org/10.3390/ijgi11120611
Chicago/Turabian StyleVavassori, Alberto, Daniela Carrion, Benito Zaragozi, and Federica Migliaccio. 2022. "VGI and Satellite Imagery Integration for Crisis Mapping of Flood Events" ISPRS International Journal of Geo-Information 11, no. 12: 611. https://doi.org/10.3390/ijgi11120611
APA StyleVavassori, A., Carrion, D., Zaragozi, B., & Migliaccio, F. (2022). VGI and Satellite Imagery Integration for Crisis Mapping of Flood Events. ISPRS International Journal of Geo-Information, 11(12), 611. https://doi.org/10.3390/ijgi11120611