Research on the Geographical Pattern, Evolution Model, and Driving Mechanism of Carbon Emission Density from Urban Industrial Land in the Yangtze River Economic Belt of China
Abstract
:1. Introduction
1.1. Research Background
1.2. Literature Review
1.2.1. Land Use and Carbon Emissions
1.2.2. Carbon Emissions from Industries
1.2.3. Urban and Territorial Spatial Density
1.3. Research Gap
1.4. Research Question
2. Materials and Methods
2.1. Study Area
2.2. Research Methods
2.2.1. Carbon Emission Density of Industrial Land (CEDIL)
2.2.2. Boston Consulting Group (BCG) Matrix
2.2.3. Global Moran’s Index and Cold–Hot Spot Analysis
2.2.4. Geodetector
2.3. Indicator Selection and Data Source
3. Results
3.1. Geographical Pattern Analysis
3.1.1. Industrial Carbon Emissions
3.1.2. Urban Industrial Land
3.1.3. Carbon Emission Density of Industrial Land
3.2. Spatiotemporal Evolution Model Analysis
3.3. Driving Mechanism Analysis
3.3.1. Spatial Effects Detection
3.3.2. Single Factor Driving Force
3.3.3. Multifactor Interaction Effect
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Normalized Data on Industrial Land, Carbon Emissions, and Its Density
Urban Industrial Land | Industrial Carbon Emissions | Carbon Emission Density | ||||
2010 | 2020 | 2010 | 2020 | 2010 | 2020 | |
Shanghai | 0.0703 | 0.0461 | 0.2126 | 0.1319 | 0.0012 | 0.0015 |
Nanjing | 0.0295 | 0.0314 | 0.0465 | 0.0310 | 0.0022 | 0.0042 |
Wuxi | 0.0298 | 0.0256 | 0.0163 | 0.0176 | 0.0064 | 0.0061 |
Xuzhou | 0.0290 | 0.0288 | 0.0101 | 0.0123 | 0.0101 | 0.0097 |
Changzhou | 0.0134 | 0.0162 | 0.0118 | 0.0221 | 0.0040 | 0.0030 |
Suzhou-JS | 0.0514 | 0.0491 | 0.0451 | 0.0305 | 0.0040 | 0.0067 |
Nantong | 0.0145 | 0.0124 | 0.0162 | 0.0179 | 0.0031 | 0.0029 |
Lianyungang | 0.0044 | 0.0109 | 0.0098 | 0.0128 | 0.0016 | 0.0036 |
Huai’an | 0.0073 | 0.0073 | 0.0133 | 0.0086 | 0.0019 | 0.0035 |
Yancheng | 0.0039 | 0.0096 | 0.0083 | 0.0093 | 0.0016 | 0.0043 |
Yangzhou | 0.0098 | 0.0124 | 0.0080 | 0.0097 | 0.0043 | 0.0053 |
Zhenjiang | 0.0125 | 0.0188 | 0.0103 | 0.0131 | 0.0043 | 0.0060 |
Taizhou-JS | 0.0080 | 0.0114 | 0.0082 | 0.0084 | 0.0034 | 0.0056 |
Suqian | 0.0023 | 0.0021 | 0.0047 | 0.0075 | 0.0017 | 0.0012 |
Hangzhou | 0.0152 | 0.0108 | 0.0183 | 0.0303 | 0.0029 | 0.0015 |
Ningbo | 0.0360 | 0.0265 | 0.0358 | 0.0326 | 0.0035 | 0.0034 |
Wenzhou | 0.0080 | 0.0086 | 0.0100 | 0.0019 | 0.0028 | 0.0191 |
Jiaxing | 0.0115 | 0.0127 | 0.0079 | 0.0085 | 0.0051 | 0.0062 |
Huzhou | 0.0091 | 0.0105 | 0.0101 | 0.0078 | 0.0032 | 0.0056 |
Shaoxing | 0.0075 | 0.0087 | 0.0080 | 0.0164 | 0.0033 | 0.0022 |
Jinhua | 0.0104 | 0.0074 | 0.0046 | 0.0062 | 0.0079 | 0.0050 |
Quzhou | 0.0099 | 0.0102 | 0.0053 | 0.0071 | 0.0065 | 0.0060 |
Zhoushan | 0.0015 | 0.0046 | 0.0021 | 0.0015 | 0.0024 | 0.0123 |
Taizhou-ZJ | 0.0094 | 0.0093 | 0.0133 | 0.0072 | 0.0025 | 0.0053 |
Lishui | 0.0012 | 0.0007 | 0.0010 | 0.0011 | 0.0043 | 0.0027 |
Hefei | 0.0055 | 0.0116 | 0.0189 | 0.0214 | 0.0010 | 0.0023 |
Wuhu | 0.0102 | 0.0196 | 0.0080 | 0.0056 | 0.0045 | 0.0146 |
Bengbu | 0.0033 | 0.0042 | 0.0061 | 0.0065 | 0.0019 | 0.0027 |
Huainan | 0.0168 | 0.0176 | 0.0045 | 0.0046 | 0.0132 | 0.0159 |
Maanshan | 0.0134 | 0.0204 | 0.0092 | 0.0088 | 0.0051 | 0.0096 |
Huaibei | 0.0179 | 0.0098 | 0.0055 | 0.0048 | 0.0115 | 0.0085 |
Tongling | 0.0086 | 0.0162 | 0.0027 | 0.0059 | 0.0113 | 0.0114 |
Anqing | 0.0077 | 0.0070 | 0.0069 | 0.0076 | 0.0039 | 0.0038 |
Huangshan | 0.0002 | 0.0001 | 0.0017 | 0.0026 | 0.0005 | 0.0001 |
Chuzhou | 0.0031 | 0.0070 | 0.0056 | 0.0074 | 0.0019 | 0.0039 |
Fuyang | 0.0036 | 0.0029 | 0.0026 | 0.0051 | 0.0049 | 0.0024 |
Suzhou-AH | 0.0030 | 0.0054 | 0.0038 | 0.0040 | 0.0028 | 0.0057 |
Lu’an | 0.0010 | 0.0015 | 0.0035 | 0.0033 | 0.0010 | 0.0019 |
Bozhou | 0.0010 | 0.0024 | 0.0023 | 0.0036 | 0.0015 | 0.0027 |
Chizhou | 0.0045 | 0.0073 | 0.0015 | 0.0015 | 0.0104 | 0.0198 |
Xuancheng | 0.0069 | 0.0074 | 0.0030 | 0.0044 | 0.0081 | 0.0070 |
Nanchang | 0.0038 | 0.0048 | 0.0108 | 0.0150 | 0.0012 | 0.0013 |
Jingdezhen | 0.0033 | 0.0051 | 0.0054 | 0.0063 | 0.0021 | 0.0034 |
Pingxiang | 0.0063 | 0.0066 | 0.0022 | 0.0021 | 0.0101 | 0.0128 |
Jiujiang | 0.0081 | 0.0152 | 0.0067 | 0.0076 | 0.0042 | 0.0083 |
Xinyu | 0.0096 | 0.0084 | 0.0032 | 0.0022 | 0.0106 | 0.0158 |
Yingtan | 0.0018 | 0.0026 | 0.0008 | 0.0024 | 0.0078 | 0.0046 |
Ganzhou | 0.0039 | 0.0076 | 0.0043 | 0.0084 | 0.0032 | 0.0038 |
Ji’an | 0.0038 | 0.0038 | 0.0021 | 0.0038 | 0.0062 | 0.0042 |
Yichun | 0.0080 | 0.0107 | 0.0020 | 0.0031 | 0.0138 | 0.0145 |
Fuzhou | 0.0006 | 0.0040 | 0.0019 | 0.0057 | 0.0010 | 0.0030 |
Shangrao | 0.0059 | 0.0073 | 0.0016 | 0.0015 | 0.0127 | 0.0199 |
Wuhan | 0.0295 | 0.0192 | 0.0445 | 0.0535 | 0.0023 | 0.0015 |
Huangshi | 0.0136 | 0.0121 | 0.0056 | 0.0060 | 0.0086 | 0.0084 |
Shiyan | 0.0028 | 0.0029 | 0.0052 | 0.0083 | 0.0019 | 0.0014 |
Yichang | 0.0092 | 0.0093 | 0.0091 | 0.0097 | 0.0035 | 0.0040 |
Xiangyang | 0.0071 | 0.0068 | 0.0077 | 0.0128 | 0.0032 | 0.0022 |
Ezhou | 0.0081 | 0.0073 | 0.0037 | 0.0009 | 0.0077 | 0.0320 |
Jingmen | 0.0076 | 0.0077 | 0.0036 | 0.0031 | 0.0076 | 0.0103 |
Xiaogan | 0.0056 | 0.0057 | 0.0018 | 0.0035 | 0.0112 | 0.0068 |
Jingzhou | 0.0029 | 0.0035 | 0.0047 | 0.0054 | 0.0022 | 0.0027 |
Huanggang | 0.0061 | 0.0039 | 0.0016 | 0.0015 | 0.0137 | 0.0105 |
Xianning | 0.0032 | 0.0065 | 0.0037 | 0.0036 | 0.0030 | 0.0076 |
Suizhou | 0.0004 | 0.0004 | 0.0026 | 0.0054 | 0.0005 | 0.0003 |
Changsha | 0.0072 | 0.0047 | 0.0087 | 0.0057 | 0.0029 | 0.0034 |
Zhuzhou | 0.0069 | 0.0050 | 0.0068 | 0.0088 | 0.0036 | 0.0024 |
Xiangtan | 0.0066 | 0.0126 | 0.0089 | 0.0078 | 0.0026 | 0.0067 |
Hengyang | 0.0122 | 0.0054 | 0.0062 | 0.0073 | 0.0069 | 0.0031 |
Shaoyang | 0.0041 | 0.0045 | 0.0010 | 0.0012 | 0.0148 | 0.0157 |
Yueyang | 0.0064 | 0.0081 | 0.0049 | 0.0049 | 0.0045 | 0.0068 |
Changde | 0.0052 | 0.0073 | 0.0054 | 0.0045 | 0.0034 | 0.0068 |
Zhangjiajie | 0.0003 | 0.0006 | 0.0003 | 0.0007 | 0.0040 | 0.0033 |
Yiyang | 0.0029 | 0.0041 | 0.0037 | 0.0023 | 0.0027 | 0.0073 |
Chenzhou | 0.0101 | 0.0055 | 0.0073 | 0.0017 | 0.0049 | 0.0134 |
Yongzhou | 0.0019 | 0.0040 | 0.0017 | 0.0020 | 0.0038 | 0.0084 |
Huaihua | 0.0030 | 0.0016 | 0.0014 | 0.0005 | 0.0073 | 0.0125 |
Loudi | 0.0133 | 0.0175 | 0.0029 | 0.0029 | 0.0164 | 0.0246 |
Chongqing | 0.0504 | 0.0462 | 0.0578 | 0.0734 | 0.0031 | 0.0026 |
Chengdu | 0.0088 | 0.0069 | 0.0259 | 0.0347 | 0.0012 | 0.0008 |
Zigong | 0.0032 | 0.0014 | 0.0059 | 0.0072 | 0.0019 | 0.0008 |
Panzhihua | 0.0095 | 0.0088 | 0.0070 | 0.0058 | 0.0048 | 0.0063 |
Luzhou | 0.0056 | 0.0034 | 0.0041 | 0.0068 | 0.0049 | 0.0021 |
Deyang | 0.0044 | 0.0024 | 0.0046 | 0.0061 | 0.0034 | 0.0016 |
Mianyang | 0.0058 | 0.0043 | 0.0078 | 0.0079 | 0.0026 | 0.0023 |
Guangyuan | 0.0020 | 0.0028 | 0.0017 | 0.0029 | 0.0041 | 0.0041 |
Suining | 0.0005 | 0.0006 | 0.0022 | 0.0033 | 0.0008 | 0.0007 |
Neijiang | 0.0076 | 0.0069 | 0.0020 | 0.0042 | 0.0134 | 0.0069 |
Leshan | 0.0095 | 0.0107 | 0.0031 | 0.0022 | 0.0109 | 0.0201 |
Nanchong | 0.0007 | 0.0006 | 0.0033 | 0.0058 | 0.0007 | 0.0005 |
Meishan | 0.0034 | 0.0023 | 0.0016 | 0.0018 | 0.0075 | 0.0053 |
Yibin | 0.0060 | 0.0060 | 0.0010 | 0.0080 | 0.0215 | 0.0031 |
Guang’an | 0.0061 | 0.0060 | 0.0016 | 0.0030 | 0.0130 | 0.0084 |
Dazhou | 0.0098 | 0.0071 | 0.0033 | 0.0014 | 0.0105 | 0.0206 |
Ya’an | 0.0009 | 0.0014 | 0.0008 | 0.0023 | 0.0039 | 0.0026 |
Bazhong | 0.0004 | 0.0012 | 0.0002 | 0.0004 | 0.0072 | 0.0113 |
Ziyang | 0.0008 | 0.0005 | 0.0027 | 0.0008 | 0.0011 | 0.0026 |
Guiyang | 0.0073 | 0.0066 | 0.0093 | 0.0147 | 0.0028 | 0.0018 |
Liupanshui | 0.0216 | 0.0210 | 0.0043 | 0.0010 | 0.0176 | 0.0911 |
Zunyi | 0.0074 | 0.0092 | 0.0023 | 0.0061 | 0.0113 | 0.0063 |
Anshun | 0.0033 | 0.0040 | 0.0014 | 0.0028 | 0.0079 | 0.0059 |
Bijie | 0.0250 | 0.0169 | 0.0020 | 0.0030 | 0.0450 | 0.0237 |
Tongren | 0.0031 | 0.0039 | 0.0000 | 0.0019 | 0.2692 | 0.0087 |
Kunming | 0.0156 | 0.0060 | 0.0211 | 0.0140 | 0.0026 | 0.0018 |
Qujing | 0.0272 | 0.0169 | 0.0026 | 0.0024 | 0.0362 | 0.0295 |
Yuxi | 0.0049 | 0.0090 | 0.0006 | 0.0011 | 0.0301 | 0.0332 |
Baoshan | 0.0007 | 0.0022 | 0.0004 | 0.0005 | 0.0073 | 0.0199 |
Zhaotong | 0.0013 | 0.0046 | 0.0006 | 0.0013 | 0.0084 | 0.0153 |
Lijiang | 0.0018 | 0.0011 | 0.0003 | 0.0005 | 0.0226 | 0.0088 |
Pu’er | 0.0011 | 0.0028 | 0.0007 | 0.0001 | 0.0059 | 0.0958 |
Lincang | 0.0007 | 0.0018 | 0.0001 | 0.0004 | 0.0225 | 0.0171 |
References
- Zhou, S.Y.; Li, W.; Lu, Z.G.; Lu, Z.Y. A technical framework for integrating carbon emission peaking factors into the industrial green transformation planning of a city cluster in China. J. Clean. Prod. 2022, 344, 131091. [Google Scholar] [CrossRef]
- Coluzzi, R.; Bianchini, L.; Egidi, G.; Cudlin, P.; Imbrenda, V.; Salvati, L.; Lanfredi, M. Density matters? Settlement expansion and land degradation in Peri-urban and rural districts of Italy. Environ. Impact Assess. Rev. 2022, 92, 106703. [Google Scholar] [CrossRef]
- Grosvenor, M.; O’Neill, P. The Density Debate in Urban Research: An Alternative Approach to Representing Urban Structure and Form. Geogr. Res. 2014, 52, 442–458. [Google Scholar] [CrossRef]
- Claassens, J.; Koomen, E.; Rouwendal, J. Urban density and spatial planning: The unforeseen impacts of Dutch devolution. PLoS ONE 2020, 15, e0240738. [Google Scholar] [CrossRef] [PubMed]
- Yeh, A.G.O.; Li, X. A cellular automata model to simulate development density for urban planning. Environ. Plan. B-Plan. Des. 2002, 29, 431–450. [Google Scholar] [CrossRef]
- Shen, X.Z.; Huang, L.; Zhu, J.; Gao, J.J. Relationship between land use carbon emission and economic growth based on GIS. Arab. J. Geosci. 2021, 14, 457. [Google Scholar] [CrossRef]
- Robinson, D.T.; Zhang, J.X.; MacDonald, D.; Samson, C. Estimating Settlement carbon stock and density using an inventory approach and quantifying their variation by land use and parcel size. Urban For. Urban Green. 2023, 82, 127878. [Google Scholar] [CrossRef]
- Grassi, G.; Conchedda, G.; Federici, S.; Vinas, R.A.; Korosuo, A.; Melo, J.; Rossi, S.; Sandker, M.; Somogyi, Z.; Vizzarri, M.; et al. Carbon fluxes from land 2000–2020: Bringing clarity to countries’ reporting. Earth Syst. Sci. Data 2022, 14, 4643–4666. [Google Scholar] [CrossRef]
- Rehman, E.; Rehman, S. Modeling the nexus between carbon emissions, urbanization, population growth, energy consumption, and economic development in Asia: Evidence from grey relational analysis. Energy Rep. 2022, 8, 5430–5442. [Google Scholar] [CrossRef]
- Huang, W.; Li, J.X. The Coupling Relationship Between Urbanization and Carbon Emissions from Land Use in Ningxia. Front. Environ. Sci. 2022, 10, 927798. [Google Scholar] [CrossRef]
- Li, M.C.; Liu, H.M.; Yu, S.K.; Wang, J.S.; Miao, Y.; Wang, C.X. Estimating the Decoupling between Net Carbon Emissions and Construction Land and Its Driving Factors: Evidence from Shandong Province, China. Int. J. Environ. Res. Public Health 2022, 19, 8910. [Google Scholar] [CrossRef]
- Sidorczuk-Pietraszko, E. Spatial Differences in Carbon Intensity in Polish Households. Energies 2020, 13, 3108. [Google Scholar] [CrossRef]
- Rong, T.Q.; Zhang, P.Y.; Zhu, H.R.; Jiang, L.; Li, Y.Y.; Liu, Z.Y. Spatial correlation evolution and prediction scenario of land use carbon emissions in China. Ecol. Inform. 2022, 71, 101802. [Google Scholar] [CrossRef]
- Sun, Y.P.; Kamran, H.W.; Razzaq, A.; Qadri, F.S.; Suksatan, W. Dynamic and causality linkages from transportation services and tourism development to economic growth and carbon emissions: New insights from Quantile ARDL approach. Integr. Environ. Assess. Manag. 2022, 18, 1272–1287. [Google Scholar] [CrossRef]
- Russo, F.; Rindone, C.; Panuccio, P. External interactions for a third-generation port: From urban sustainable planning to research developments. Int. J. Transp. Dev. Integr. 2022, 3, 253–270. Available online: https://www.iieta.org/journals/ijtdi/paper/10.2495/EI-V6-N3-253-270 (accessed on 15 May 2024).
- Xiong, G.B.; Deng, J.H.; Ding, B.G. Characteristics, decoupling effect, and driving factors of regional tourism’s carbon emissions in China. Environ. Sci. Pollut. Res. 2022, 29, 47082–47093. [Google Scholar] [CrossRef]
- Tang, Y.; Chen, M.H. Impact Mechanism and Effect of Agricultural Land Transfer on Agricultural Carbon Emissions in China: Evidence from Mediating Effect Test and Panel Threshold Regression Model. Sustainability 2022, 14, 13014. [Google Scholar] [CrossRef]
- Wang, X.X.; He, A.Z.; Zhao, J. Regional disparity and dynamic evolution of carbon emission reduction maturity in China’s service industry. J. Clean. Prod. 2020, 244, 118926. [Google Scholar] [CrossRef]
- Zhang, P.; Hu, J.; Zhao, K.; Chen, H.; Zhao, S.; Li, W. Dynamics and Decoupling Analysis of Carbon Emissions from Construction Industry in China. Buildings 2022, 12, 257. [Google Scholar] [CrossRef]
- Kara, F.; Bas, T.; Talu, N.H.T.; Alola, A.A. Investigating the carbon emission aspects of agricultural land utilization in Turkey. Integr. Environ. Assess. Manag. 2021, 18, 988–996. [Google Scholar] [CrossRef] [PubMed]
- Rasheed, R.; Tahir, F.; Afzaal, M.; Ahmad, S.R. Decomposition analytics of carbon emissions by cement manufacturing—A way forward towards carbon neutrality in a developing country. Environ. Sci. Pollut. Res. 2022, 29, 49429–49438. [Google Scholar] [CrossRef]
- Li, M.; Li, Q.; Wang, Y.A.; Chen, W. Spatial path and determinants of carbon transfer in the process of inter industrial transfer in China. Environ. Impact Assess. Rev. 2022, 95, 106810. [Google Scholar] [CrossRef]
- Malik, A.; Lan, J. The role of outsourcing in driving global carbon emissions. Econ. Syst. Res. 2016, 28, 168–182. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, Y.C.; Wang, Q.W. Drivers of global carbon emission changes: A heterogeneity perspective of decomposition and attribution analysis. Front. Environ. Sci. 2023, 10, 1062500. [Google Scholar] [CrossRef]
- Xu, D.X.; Zhang, Y.; Li, Y.G.; Wang, X.J.; Yang, Z.F. Path analysis for carbon transfers embodied in China’s international trade and policy implications for mitigation targets. J. Clean. Prod. 2022, 334, 130207. [Google Scholar] [CrossRef]
- Tikoudis, I.; Farrow, K.; Mebiame, R.M.; Oueslati, W. Beyond average population density: Measuring sprawl with density-allocation indicators. Land Use Policy 2022, 112, 105832. [Google Scholar] [CrossRef]
- Cetin, M.; Adiguzel, F.; Gungor, S.; Kaya, E.; Sancar, M.C. Evaluation of thermal climatic region areas in terms of building density in urban management and planning for Burdur, Turkey. Air Qual. Atmos. Health 2019, 12, 1103–1112. [Google Scholar] [CrossRef]
- Henderson, J.V.; Nigmatulina, D.; Kriticos, S. Measuring urban economic density. J. Urban Econ. 2021, 125, 103188. [Google Scholar] [CrossRef]
- Perumal, A.; Timmons, D. Contextual Density and US Automotive CO2 Emissions across the Rural-Urban Continuum. Int. Reg. Sci. Rev. 2017, 40, 590–615. [Google Scholar] [CrossRef]
- Moghadam, A.S.; Soltani, A.; Parolin, B.; Alidadi, M. Analysing the space-time dynamics of urban structure change using employment density and distribution data. Cities 2018, 81, 203–213. [Google Scholar] [CrossRef]
- Keeratikasikorn, C. A comparative study on four major cities in Northeastern Thailand using urban land density function. Geo-Spat. Inf. Sci. 2018, 21, 93–101. [Google Scholar] [CrossRef]
- Cowie, C.T.; Ding, D.; Rolfe, M.I.; Mayne, D.J.; Jalaludin, B.; Bauman, A.; Morgan, G.G. Neighbourhood walkability, road density and socio-economic status in Sydney, Australia. Environ. Health 2016, 15, 58. [Google Scholar] [CrossRef]
- Zhang, P.; Kohli, D.; Sun, Q.Q.; Zhang, Y.X.; Liu, S.X.; Sun, D.F. Remote sensing modeling of urban density dynamics across 36 major cities in China: Fresh insights from hierarchical urbanized space. Landsc. Urban Plan. 2020, 203, 103896. [Google Scholar] [CrossRef]
- Li, J.G.; Li, J.W.; Yuan, Y.Z.; Li, G.F. Spatiotemporal distribution characteristics and mechanism analysis of urban population density: A case of Xi’an, Shaanxi, China. Cities 2019, 86, 62–70. [Google Scholar] [CrossRef]
- Hong, S.F.; Hui, E.C.M.; Lin, Y.Y. Relationships between carbon emissions and urban population size and density, based on geo-urban scaling analysis: A multi-carbon source empirical study. Urban Clim. 2022, 46, 101337. [Google Scholar] [CrossRef]
- Lee, S.; Lee, B. The influence of urban form on GHG emissions in the US household sector. Energy Policy 2014, 68, 534–549. [Google Scholar] [CrossRef]
- Li, C.S.; Song, Y.; Kaza, N. Urban form and household electricity consumption: A multilevel study. Energy Build. 2018, 158, 181–193. [Google Scholar] [CrossRef]
- Zhang, Z.; Xiao, Y.X.; Luo, X.; Zhou, M. Urban human activity density spatiotemporal variations and the relationship with geographical factors: An exploratory Baidu heatmaps-based analysis of Wuhan, China. Growth Chang. 2020, 51, 505–529. [Google Scholar] [CrossRef]
- Russo, F.; Rindone, C. Smart City for Sustainable Development: Applied Processes from SUMP to MaaS at European Level. Appl. Sci. 2023, 13, 1773. [Google Scholar] [CrossRef]
- Wu, H.Y.; Yan, W.Q.; Zheng, X.J.; Zhou, L.; Ma, J.S.; Liu, L.; Meng, Y. Carbon-Emission Density of Crop Production in China: Spatiotemporal Characteristics, Regional Disparities, and Convergence. Agriculture 2023, 13, 951. [Google Scholar] [CrossRef]
- Dong, F.; Li, J.Y.; Zhang, Y.J.; Wang, Y. Drivers Analysis of CO2 Emissions from the Perspective of Carbon Density: The Case of Shandong Province, China. Int. J. Environ. Res. Public Health 2018, 15, 1762. [Google Scholar] [CrossRef]
- Kaya, M.C.; Persson, L. A Theory of Gazelle Growth: Competition, Venture Capital Finance and Policy. N. Am. J. Econ. Financ. 2020, 50, 101019. [Google Scholar] [CrossRef]
- Zhang, P.; Chen, H.; Zhao, K.; Zhao, S.; Li, W. Dynamics, Risk and Management Performance of Urban Real Estate Inventory in Yangtze River Delta. Buildings 2022, 12, 2140. [Google Scholar] [CrossRef]
- Zhao, S.; Zhao, K.; Yan, Y.; Zhu, K.; Guan, C. Spatio-Temporal Evolution Characteristics and Influencing Factors of Urban Service-Industry Land in China. Land 2022, 11, 13. [Google Scholar] [CrossRef]
- Li, W.; Zhang, P.; Zhao, K.; Chen, H.; Zhao, S. The Evolution Model of and Factors Influencing Digital Villages: Evidence from Guangxi, China. Agriculture 2023, 13, 659. [Google Scholar] [CrossRef]
- Ren, J.M.; Zheng, C.R.Y.; Guo, F.Y.; Zhao, H.B.; Ma, S.; Cheng, Y. Spatial Differentiation of Digital Rural Development and Influencing Factors in the Yellow River Basin, China. Int. J. Environ. Res. Public Health 2022, 19, 16111. [Google Scholar] [CrossRef]
- Ma, Y.; Zhang, P.; Zhao, K.; Zhou, Y.; Zhao, S. A Dynamic Performance and Differentiation Management Policy for Urban Construction Land Use Change in Gansu, China. Land 2022, 11, 942. [Google Scholar] [CrossRef]
- Zhao, S.; Zhang, C.; Qi, J. The Key Factors Driving the Development of New Towns by Mother Cities and Regions: Evidence from China. ISPRS Int. J. Geo-Inf. 2021, 10, 223. [Google Scholar] [CrossRef]
- Zhao, S.; Li, W.; Zhao, K.; Zhang, P. Change Characteristics and Multilevel Influencing Factors of Real Estate Inventory—Case Studies from 35 Key Cities in China. Land 2021, 10, 928. [Google Scholar] [CrossRef]
- Wang, J.F.; Hu, Y. Environmental health risk detection with GeogDetector. Environ. Model. Softw. 2012, 33, 114–115. [Google Scholar] [CrossRef]
- Li, L.; Zhao, K.; Wang, X.; Zhao, S.; Liu, X.; Li, W. Spatio-Temporal Evolution and Driving Mechanism of Urbanization in Small Cities: Case Study from Guangxi. Land 2022, 11, 415. [Google Scholar] [CrossRef]
- Zhao, S.; Yan, Y.; Han, J. Industrial Land Change in Chinese Silk Road Cities and Its Influence on Environments. Land 2021, 10, 806. [Google Scholar] [CrossRef]
- Chen, H.; Zhao, S.; Zhang, P.; Zhou, Y.; Li, K. Dynamics and Driving Mechanism of Real Estate in China’s Small Cities: A Case Study of Gansu Province. Buildings 2022, 12, 1512. [Google Scholar] [CrossRef]
- Yang, X.; Li, W.; Zhang, P.; Chen, H.; Lai, M.; Zhao, S. The Dynamics and Driving Mechanisms of Rural Revitalization in Western China. Agriculture 2023, 13, 1448. [Google Scholar] [CrossRef]
- Dehdar, F.; Silva, N.; Fuinhas, J.A.; Koengkan, M.; Nazeer, N. The Impact of Technology and Government Policies on OECD Carbon Dioxide Emissions. Energies 2022, 15, 8486. [Google Scholar] [CrossRef]
- Li, W.; Wang, M.; Zhao, S. The Spatio-Temporal Dynamics, Driving Mechanism, and Management Strategies for International Students in China under the Background of the Belt and Road Initiatives. ISPRS Int. J. Geo-Inf. 2023, 12, 405. [Google Scholar] [CrossRef]
- Liang, S.; Zhao, J.F.; He, S.M.; Xu, Q.Q.; Ma, X. Spatial econometric analysis of carbon emission intensity in Chinese provinces from the perspective of innovation-driven. Environ. Sci. Pollut. Res. 2019, 26, 13878–13895. [Google Scholar] [CrossRef]
- Li, C.S.; Song, Y.; Kaza, N.; Burghardt, R. Explaining Spatial Variations in Residential Energy Usage Intensity in Chicago: The Role of Urban Form and Geomorphometry. J. Plan. Educ. Res. 2019, 43, 317–331. [Google Scholar] [CrossRef]
- Zhang, P.; Li, W.; Zhao, K.; Zhao, S. Spatial Pattern and Driving Mechanism of Urban–Rural Income Gap in Gansu Province of China. Land 2021, 10, 1002. Available online: https://www.mdpi.com/2073-445X/10/10/1002 (accessed on 15 May 2024).
- Whittemore, A.H.; BenDor, T.K. Rhetorical Framing in Planning: An Empirical Investigation of How Planners Discuss Density. J. Plan. Educ. Res. 2021, 41, 48–61. [Google Scholar] [CrossRef]
- Hooper, M. Flatulence, Filth, and Urban Form: Do Primes for Hygiene Influence Perceptions of Urban Density? J. Plan. Educ. Res. 2022, 42, 185–198. [Google Scholar] [CrossRef]
- Herdt, T.; Jonkman, A.R. The acceptance of density: Conflicts of public and private interests in public debate on urban densification. Cities 2023, 140, 104451. [Google Scholar] [CrossRef]
- Moos, M. The Velocity of Density: Can We Build More Sustainable Cities Fast Enough? Sustainability 2017, 9, 2326. [Google Scholar] [CrossRef]
- Schorcht, M.; Jehling, M.; Kruger, T. Where are cities under pressure?—An indicator for measuring the impact of building changes on urban density. Ecol. Indic. 2023, 149, 110142. [Google Scholar] [CrossRef]
- Tabasi, S.F.; Rafizadeh, H.R.; Garmaroudi, A.A.; Banihashemi, S. Optimizing urban layouts through computational generative design: Density distribution and shape optimization. Archit. Eng. Des. Manag. 2023. [Google Scholar] [CrossRef]
- Fan, F.; Dai, S.Z.; Yang, B.; Ke, H.Q. Urban density, directed technological change, and carbon intensity: An empirical study based on Chinese cities. Technol. Soc. 2023, 72, 102151. [Google Scholar] [CrossRef]
- Hong, A.Y.; Chakrabarti, S. Compact living or policy inaction? Effects of urban density and lockdown on the Covid-19 outbreak in the US. Urban Stud. 2022, 60, 1588–1609. [Google Scholar] [CrossRef]
- Baics, G.; Meisterlin, L. Zoning Before Zoning: Land Use and Density in Mid-Nineteenth-Century New York City. Ann. Am. Assoc. Geogr. 2016, 106, 1152–1175. [Google Scholar] [CrossRef]
- Cirianni, F.; Panuccio, P.; Rindone, C. A Comparison of Urban Planning Systems Between the UK And Italy: Commercial Development and City Logistic Plan. Urban Transp. XIX 2013, 130, 785–797. [Google Scholar] [CrossRef]
- Ma, M.Y.; Rozema, J.; Gianoli, A.; Zhang, W.S. The Impacts of City Size and Density on CO2 Emissions: Evidence from the Yangtze River Delta Urban Agglomeration. Appl. Spat. Anal. Policy 2022, 15, 529–555. [Google Scholar] [CrossRef]
- Yi, Y.C.; Wang, Y.J.; Li, Y.Q.; Qi, J. Impact of urban density on carbon emissions in China. Appl. Econ. 2021, 53, 6153–6165. [Google Scholar] [CrossRef]
- Norman, J.; MacLean, H.L.; Kennedy, C.A. Comparing high and low residential density: Life-cycle analysis of energy use and greenhouse gas emissions. J. Urban Plan. Dev. 2006, 132, 10–21. [Google Scholar] [CrossRef]
- Ishii, S.; Tabushi, S.; Aramaki, T.; Hanaki, K. Impact of future urban form on the potential to reduce greenhouse gas emissions from residential, commercial and public buildings in Utsunomiya, Japan. Energy Policy 2010, 38, 4888–4896. [Google Scholar] [CrossRef]
- Derudder, B.; Feng, X.; Shen, W.; Shao, R.; Taylor, P.J. Connections between Asian and European World Cities: Measurement, Analysis, and Evaluation. Land 2022, 11, 1574. [Google Scholar] [CrossRef]
- Wang, Q.Z.; Zhang, Q. Foreign Direct Investment and Carbon Emission Efficiency: The Role of Direct and Indirect Channels. Sustainability 2022, 14, 13484. [Google Scholar] [CrossRef]
- Wang, M.Q.; Zhang, L.Y.; Su, X.; Lei, Y.; Shen, Q.; Wei, W.; Wang, M.H. Assessing the technology impact for industry carbon density reduction in China based on C (3) IAM-Tice. Nat. Hazards 2019, 99, 1455–1468. [Google Scholar] [CrossRef]
- Ghadami, M.; Dittmann, A.; Safarrad, T. Lack of Spatial Approach in Urban Density Policies: The Case of the Master Plan of Tehran. Sustainability 2020, 12, 7285. [Google Scholar] [CrossRef]
- Chokhachian, A.; Perini, K.; Giulini, S.; Auer, T. Urban performance and density: Generative study on interdependencies of urban form and environmental measures. Sustain. Cities Soc. 2020, 53, 101952. [Google Scholar] [CrossRef]
Parameter | Industrial Carbon Emissions | Urban Industrial Land | Carbon Emission Density of Industrial Land | |||
---|---|---|---|---|---|---|
2010 | 2020 | 2010 | 2020 | 2010 | 2020 | |
MAX | 19,077 | 14,367 | 739 | 538 | 5971 | 1655 |
MIN | 62 | 26 | 0.14 | 0.49 | 10.44 | 2.47 |
AVG | 2466.36 | 2659.23 | 31.61 | 37.06 | 201.65 | 157.06 |
Median | 1722.50 | 2031.50 | 15.26 | 22.50 | 91.87 | 97.08 |
CV | 1.20 | 0.99 | 2.41 | 1.74 | 2.86 | 1.48 |
Dimension | Indicator | Moran’s I | P | Z |
---|---|---|---|---|
Geographical patterns | Industrial carbon emissions in 2010 | 0.15 | 0.003 | 3.91 |
Industrial carbon emissions in 2020 | 0.21 | 0.001 | 5.17 | |
Urban industrial land in 2010 | 0.08 | 0.006 | 3.44 | |
Urban industrial land in 2020 | 0.07 | 0.036 | 2.29 | |
Carbon emission density of industrial land in 2010 | 0.02 | 0.07 | 1.56 | |
Carbon emission density of industrial land in 2020 | 0.17 | 0.001 | 4.96 | |
Spatiotemporal evolution models | Industrial carbon emissions in 2010–2020 | 0.26 | 0.001 | 6.56 |
Urban industrial land in 2010–2020 | 0.09 | 0.026 | 2.16 | |
Carbon emission density of industrial land in 2010–2020 | 0.06 | 0.069 | 1.52 |
Indicator | Geographical Patterns | Spatio-Temporal Evolution Models | ||
---|---|---|---|---|
GDP | 0.10 | 0.02 | 0.10 | 0.07 |
PTI | 0.03 | 0.33 | 0.08 | 0.04 |
PCGDP | 0.13 | 0.04 | 0.11 | 0.10 |
FE | 0.21 | 0.02 | 0.16 | 0.04 |
ITGE | 0.16 | 0.00 | 0.12 | 0.03 |
FDI | 0.24 | 0.01 | 0.10 | 0.28 |
NPA | 0.16 | 0.04 | 0.15 | 0.01 |
Indicator | GDP | PTI | PCGDP | FE | ITGE | FDI | NPA |
---|---|---|---|---|---|---|---|
GDP | 0.10 | ||||||
PTI | 0.15 | 0.03 | |||||
PCGDP | 0.31 | 0.25 | 0.13 | ||||
FE | 0.81 | 0.39 | 0.59 | 0.21 | |||
ITGE | 0.19 | 0.22 | 0.29 | 0.86 | 0.16 | ||
FDI | 0.30 | 0.37 | 0.44 | 0.91 | 0.33 | 0.24 | |
NPA | 0.20 | 0.30 | 0.40 | 0.62 | 0.27 | 0.38 | 0.16 |
Indicator | GDP | PTI | PCGDP | FE | ITGE | FDI | NPA |
---|---|---|---|---|---|---|---|
GDP | 0.10 | ||||||
PTI | 0.29 | 0.08 | |||||
PCGDP | 0.42 | 0.33 | 0.11 | ||||
FE | 0.33 | 0.47 | 0.49 | 0.16 | |||
ITGE | 0.30 | 0.28 | 0.32 | 0.38 | 0.12 | ||
FDI | 0.38 | 0.36 | 0.51 | 0.58 | 0.30 | 0.10 | |
NPA | 0.26 | 0.30 | 0.44 | 0.43 | 0.28 | 0.40 | 0.15 |
Zoning | Cities |
---|---|
High Density | Pu’er, Liupanshui, Yuxi, Ezhou, Qujing, Loudi, Bijie, Dazhou, Leshan, Baoshan, Shangrao, Chizhou, Wenzhou, Lincang, Huainan, Xinyu, Shaoyang, Zhaotong, Wuhu, Yichun, Chenzhou, Pingxiang, Huaihua, Zhoushan, Tongling, Bazhong, Huanggang, Jingmen, Xuzhou, Maanshan, Lijiang, Tongren |
Medium Density | Huaibei, Huangshi, Yongzhou, Guang’an, Jiujiang, Xianning, Yiyang, Xuancheng, Neijiang, Xiaogan, Yueyang, Changde, Xiangtan, Suzhou-JS, Panzhihua, Zunyi, Jiaxing, Wuxi, Quzhou, Zhenjiang, Anshun, Suzhou-AH, Taizhou-JS, Huzhou, Taizhou-ZJ, Meishan, Yangzhou, Jinhua, Yingtan, Yancheng, Nanjing, Ji’an, Guangyuan, Yichang, Chuzhou, Anqing, Ganzhou, Lianyungang, Huai’an, Changsha, Ningbo, Jingdezhen, Zhangjiajie, Yibin, Hengyang, Changzhou, Fuzhou |
Low Density | Nantong, Bozhou, Lishui, Bengbu, Jingzhou, Chongqing, Ya’an, Ziyang, Fuyang, Zhuzhou, Mianyang, Hefei, Shaoxing, Xiangyang, Luzhou, Lu’an, Guiyang, Kunming, Deyang, Wuhan, Hangzhou, Shanghai, Shiyan, Nanchang, Suqian, Chengdu, Zigong, Suining, Nanchong, Suizhou, Huangshan |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xie, F.; Zhang, S.; Zhang, Q.; Zhao, S.; Lai, M. Research on the Geographical Pattern, Evolution Model, and Driving Mechanism of Carbon Emission Density from Urban Industrial Land in the Yangtze River Economic Belt of China. ISPRS Int. J. Geo-Inf. 2024, 13, 192. https://doi.org/10.3390/ijgi13060192
Xie F, Zhang S, Zhang Q, Zhao S, Lai M. Research on the Geographical Pattern, Evolution Model, and Driving Mechanism of Carbon Emission Density from Urban Industrial Land in the Yangtze River Economic Belt of China. ISPRS International Journal of Geo-Information. 2024; 13(6):192. https://doi.org/10.3390/ijgi13060192
Chicago/Turabian StyleXie, Fei, Shuaibing Zhang, Qipeng Zhang, Sidong Zhao, and Min Lai. 2024. "Research on the Geographical Pattern, Evolution Model, and Driving Mechanism of Carbon Emission Density from Urban Industrial Land in the Yangtze River Economic Belt of China" ISPRS International Journal of Geo-Information 13, no. 6: 192. https://doi.org/10.3390/ijgi13060192
APA StyleXie, F., Zhang, S., Zhang, Q., Zhao, S., & Lai, M. (2024). Research on the Geographical Pattern, Evolution Model, and Driving Mechanism of Carbon Emission Density from Urban Industrial Land in the Yangtze River Economic Belt of China. ISPRS International Journal of Geo-Information, 13(6), 192. https://doi.org/10.3390/ijgi13060192