Rapid urbanization across Southern Asia’s coastal regions has significantly increased electricity demand, driving India’s solar sector expansion under the National Solar Mission and positioning the country as the world’s fourth-largest solar market. Nonetheless, methodological limitations remain in applying GIS-based multi-criteria decision analysis (MCDA)
[...] Read more.
Rapid urbanization across Southern Asia’s coastal regions has significantly increased electricity demand, driving India’s solar sector expansion under the National Solar Mission and positioning the country as the world’s fourth-largest solar market. Nonetheless, methodological limitations remain in applying GIS-based multi-criteria decision analysis (MCDA) frameworks to coastal urban microclimates, which involve intricate land-use dynamics and resilience constraints. To address this gap, this study proposes a multi-criteria GIS- based Analytical Hierarchy Process (AHP) framework, incorporating remote sensing and geospatial data, to assess Solar Farm Sites (SFSs) suitability, supplemented by sensitivity analysis in Thoothukudi coastal city, India. Ten parameters—covering photovoltaic, climatic, topographic, environmental, and accessibility factors—were used, with Global Horizontal Irradiance (18%), temperature (11%), and slope (11%) identified as key drivers. Results show that 9.99% (13.61 km
2) of the area has excellent suitability, mainly in the southwest, while 28.15% (38.33 km
2) exhibits very high potential along the southeast coast. Additional classifications include good (22.29%), moderate (32.41%), and low (7.16%) suitability zones. Sensitivity analysis confirmed photovoltaic variables as dominant, with GHI (0.25) and diffuse radiation (0.23) showing the highest impact. The largest excellent zone could support approximately 390 MW, with excellent and very high zones combined offering up to 2080 MW capacity. The findings also underscore opportunities for dual-use solar deployment, particularly on salt pans (17.1%), as well as elevated solar installations in flood-prone areas. Overall, the proposed framework provides robust, spatially explicit insights to support sustainable energy planning and climate-resilient infrastructure development in coastal urban settings.
Full article