Generation of Spatiotemporally Resolved Power Production Data of PV Systems in Germany
Abstract
1. Introduction
2. Data
2.1. Plant Data
2.2. Input Parameters
2.3. Weather Data
2.4. Validation Data
3. Model
- Simulation of the output power from a PV system using PVGIS.
- Calculation of the generated electricity from this PV system.
- Aggregation of the simulation results and data storage.
4. Results
4.1. Simulation of a Single PV System
4.2. Simulation of the Plant Ensemble
- The uncertainties of the weather data and the fact of hourly averaged values.
- The use of typical values due to the lack of specific data for each PV system.
- Decrease of output power due to snow on the surface of the solar panels.
- Feed-in interruptions due to energy surpluses or module maintenance.
5. Discussion
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- BMWi Zeitreihen zur Entwicklung der erneuerbaren Energien in Deutschland unter Verwendung von Daten der Arbeitsgruppe Erneuerbare Energien-Statistik (AGEE-Stat). Available online: https://www.erneuerbare-energien.de (accessed on 30 July 2020).
- IRENA. Renewable Capacity Statistics 2019; International Renewable Energy Agency (IRENA): Abu Dhabi, UAE, 2019. [Google Scholar]
- IRENA. Renewable Power Generation Costs in 2019; International Renewable Energy Agency (IRENA): Abu Dhabi, UAE, 2020. [Google Scholar]
- Rauner, S.; Eichhorn, M.; Thrän, D. The spatial dimension of the power system: Investigating hot spots of Smart Renewable Power Provision. Appl. Energy 2016, 184, 1038–1050. [Google Scholar] [CrossRef]
- Mainzer, K.; Fath, K.; McKenna, R.; Stengel, J.; Fichtner, W.; Schultmann, F. A high-resolution determination of the technical potential for residential-roof-mounted photovoltaic systems in Germany. Sol. Energy 2014, 105, 715–731. [Google Scholar] [CrossRef]
- Ottenburger, S.S.; Çakmak, H.K.; Jakob, W.; Blattmann, A.; Trybushnyi, D.; Raskob, W.; Kühnapfel, U.; Hagenmeyer, V. A novel optimization method for urban resilient and fair power distribution preventing critical network states. Int. J. Crit. Infrastruct. Prot. 2020, 29, 100354. [Google Scholar] [CrossRef]
- Korcaj, L.; Hahnel, U.J.J.; Spada, H. Intentions to adopt photovoltaic systems depend on homeowners’ expected personal gains and behavior of peers. Renew. Energy 2015, 75, 407–415. [Google Scholar] [CrossRef]
- EEG-Anlagestammdaten. Available online: https://www.netztransparenz.de/ (accessed on 30 July 2020).
- Eichhorn, M.; Scheftelowitz, M.; Reichmuth, M.; Lorenz, C.; Louca, K.; Schiffler, A.; Keuneke, R.; Bauschmann, M.; Ponitka, J.; Manske, D.; et al. Spatial Distribution of Wind Turbines, Photovoltaic Field Systems, Bioenergy, and River Hydro Power Plants in Germany. Data 2019, 4, 29. [Google Scholar] [CrossRef]
- EU Science Hub—Photovoltaic Geographical Information System (PVGIS). Available online: https://ec.europa.eu/jrc/en/pvgis (accessed on 25 June 2020).
- DAA Deutsche Auftragsagentur GmbH Photovoltaik-Web.de—Infoseite für Photovoltaik. Available online: https://www.photovoltaik-web.de/ (accessed on 30 September 2020).
- Hosenuzzaman, M.; Rahim, N.A.; Selvaraj, J.; Hasanuzzaman, M.; Malek, A.B.M.A.; Nahar, A. Global prospects, progress, policies, and environmental impact of solar photovoltaic power generation. Renew. Sustain. Energy Rev. 2015, 41, 284–297. [Google Scholar] [CrossRef]
- Bollmeyer, C.; Keller, J.D.; Ohlwein, C.; Wahl, S.; Crewell, S.; Friederichs, P.; Hense, A.; Keune, J.; Kneifel, S.; Pscheidt, I.; et al. Towards a high-resolution regional reanalysis for the European CORDEX domain. Q. J. R. Meteorol. Soc. 2015, 141, 1–15. [Google Scholar] [CrossRef]
- Satellite Application Facility on Climate Monitoring (CM SAF). Available online: https://www.cmsaf.eu/EN/Home/home_node.html (accessed on 18 March 2020).
- Mueller, R.W.; Matsoukas, C.; Gratzki, A.; Behr, H.D.; Hollmann, R. The CM-SAF operational scheme for the satellite based retrieval of solar surface irradiance—A LUT based eigenvector hybrid approach. Remote Sens. Environ. 2009, 113, 1012–1024. [Google Scholar] [CrossRef]
- Urraca, R.; Gracia-Amillo, A.M.; Koubli, E.; Huld, T.; Trentmann, J.; Riihelä, A.; Lindfors, A.V.; Palmer, D.; Gottschalg, R.; Antonanzas-Torres, F. Extensive validation of CM SAF surface radiation products over Europe. Remote Sens. Environ. 2017, 199, 171–186. [Google Scholar] [CrossRef] [PubMed]
- Suri, M.; Huld, T.; Dunlop, E.; Ossenbrink, H. Potential of Solar Electricity Generation in the European Union Member States and Candidate Countries. Sol. Energy 2007, 81, 1295–1305. [Google Scholar] [CrossRef]
- Psomopoulos, C.S.; Ioannidis, G.C.; Kaminaris, S.D.; Mardikis, K.D.; Katsikas, N.G. A Comparative Evaluation of Photovoltaic Electricity Production Assessment Software (PVGIS, PVWatts and RETScreen). Environ. Process. 2015, 2, 175–189. [Google Scholar] [CrossRef]
- Eberhard, W. 100% Erneuerbare Energien. Available online: http://www.100pro-erneuerbare.com/ (accessed on 1 September 2020).
- SMARD—Strommarktdaten, Stromhandel und Stromerzeugung in Deutschland. Available online: https://www.smard.de/home/ (accessed on 18 March 2020).
- Brecl, K.; Topič, M. Photovoltaics (PV) System Energy Forecast on the Basis of the Local Weather Forecast: Problems, Uncertainties and Solutions. Energies 2018, 11, 1143. [Google Scholar] [CrossRef]
- Lu, L.; Yang, H.X. A Study on Simulations of the Power Output and Practical Models for Building Integrated Photovoltaic Systems. J. Sol. Energy Eng. 2004, 126, 929–935. [Google Scholar] [CrossRef]
- Benth, F.E.; Ibrahim, N.A. Stochastic modeling of photovoltaic power generation and electricity prices. J. Energy Mark. 2017, 10, 1–33. [Google Scholar] [CrossRef]
- Krömke, F. Ertragsgutachten—PV Freiflächenanlage BEMA Halde Korbwerder, Sachsen-Anhalt, Deutschland. Available online: https://www.helionat.de/ (accessed on 31 August 2020).
- Pfenninger, S.; Staffell, I. Renewables.ninja. Available online: https://www.renewables.ninja/ (accessed on 29 September 2020).
- Pfenninger, S.; Staffell, I. Long-term patterns of European PV output using 30 years of validated hourly reanalysis and satellite data. Energy 2016, 114, 1251–1265. [Google Scholar] [CrossRef]
- Gelaro, R.; McCarty, W.; Suárez, M.J.; Todling, R.; Molod, A.; Takacs, L.; Randles, C.A.; Darmenov, A.; Bosilovich, M.G.; Reichle, R.; et al. The Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2). J. Clim. 2017, 30, 5419–5454. [Google Scholar] [CrossRef] [PubMed]
- Choi, Y.; Suh, J.; Kim, S.-M. GIS-Based Solar Radiation Mapping, Site Evaluation, and Potential Assessment: A Review. Appl. Sci. 2019, 9, 1960. [Google Scholar] [CrossRef]
- Guaita-Pradas, I.; Marques-Perez, I.; Gallego, A.; Segura, B. Analyzing territory for the sustainable development of solar photovoltaic power using GIS databases. Environ. Monit. Assess. 2019, 191, 764. [Google Scholar] [CrossRef] [PubMed]
Data | Usage |
---|---|
LAU-Id 1 | required |
Latitude | optional |
Longitude | optional |
Installed capacity | required |
Commission date | required |
Decommission date | optional |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lehneis, R.; Manske, D.; Thrän, D. Generation of Spatiotemporally Resolved Power Production Data of PV Systems in Germany. ISPRS Int. J. Geo-Inf. 2020, 9, 621. https://doi.org/10.3390/ijgi9110621
Lehneis R, Manske D, Thrän D. Generation of Spatiotemporally Resolved Power Production Data of PV Systems in Germany. ISPRS International Journal of Geo-Information. 2020; 9(11):621. https://doi.org/10.3390/ijgi9110621
Chicago/Turabian StyleLehneis, Reinhold, David Manske, and Daniela Thrän. 2020. "Generation of Spatiotemporally Resolved Power Production Data of PV Systems in Germany" ISPRS International Journal of Geo-Information 9, no. 11: 621. https://doi.org/10.3390/ijgi9110621
APA StyleLehneis, R., Manske, D., & Thrän, D. (2020). Generation of Spatiotemporally Resolved Power Production Data of PV Systems in Germany. ISPRS International Journal of Geo-Information, 9(11), 621. https://doi.org/10.3390/ijgi9110621