Comparative and Phylogenetic Analysis of Complete Chloroplast Genomes in Eragrostideae (Chloridoideae, Poaceae)
Abstract
:1. Introduction
2. Results
2.1. Chloroplast Genome Characteristics of Eragrostideae
2.2. Repeat Sequences and SSRs Analysis
2.3. Codon Usage Analysis
2.4. Expansion and Contraction of the IR Region
2.5. Comparative Genome Analysis and Identification of Hypervariable Regions
2.6. Phylogenetic Analysis of Eragrostideae
3. Discussion
3.1. Basic Information on the Chloroplast Genomes of Eragrostideae
3.2. Phylogenetically Informative Markers
3.3. Phylogenetic Relationships of Eragrostideae
4. Materials and Methods
4.1. Plant Material, DNA Extraction, and Sequencing
4.2. Genome Assembly and Annotation
4.3. Genome Structure and Expansion and Contraction of IR Region
4.4. Repeat Sequences and SSR Analysis
4.5. Codon Usage
4.6. Comparative Genome Analysis and Divergent Hotspot Regions
4.7. Phylogenetic Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jansen, R.K.; Raubeson, L.A.; Boore, J.L.; dePamphilis, C.W.; Chumley, T.W.; Haberle, R.C.; Wyman, S.K.; Alverson, A.J.; Peery, R.; Herman, S.J.; et al. Methods for obtaining and analyzing whole chloroplast genome sequences. Methods Enzymol. 2005, 395, 348–384. [Google Scholar]
- Shaw, J.; Lickey, E.; Schilling, E.; Small, R. Comparison of whole chloroplast genome sequence to choose noncoding regions for phylogenetic studies in angiosperms. Am. J. Bot. 2007, 94, 275–288. [Google Scholar] [CrossRef] [Green Version]
- Somaratne, Y.; Guan, D.-L.; Abbood, N.N.; Zhao, L.; Xu, S.-Q. Comparison of the complete Eragrostis pilosa chloroplast genome with its relatives in Eragrostideae (Chloridoideae; Poaceae). Plants 2019, 8, 485. [Google Scholar] [CrossRef] [Green Version]
- Wang, R.; Wang, Q.-J.; Qu, X.-J.; Fan, S.-J. Characterization of the complete plastome of Alopecurus aequalis (Poaceae), a widespread weed. Mitochondrial DNA Part B 2019, 4, 4216–4217. [Google Scholar] [CrossRef] [Green Version]
- Guo, X.-X.; Dai, C.; Wang, R.; Qu, X.-J.; Zhang, X.-J. Characterization and phylogenetic analysis of the complete plastome of Alopecurus japonicus (Gramineae), an annual weed. Mitochondrial DNA Part B 2020, 5, 396–397. [Google Scholar] [CrossRef] [Green Version]
- Leseberg, C.H.; Duvall, M.R. The complete chloroplast genome of Coix lacryma-jobi and a comparative molecular evolutionary analysis of plastomes in cereals. J. Mol. Evol. 2009, 69, 311–318. [Google Scholar] [CrossRef]
- Tang, P.; Ruan, Q.; Peng, C. Phylogeny in structure alterations of Poaceae cpDNA. Chin. Agric. Ence Bull. 2011, 27, 171–176. [Google Scholar]
- Chakravarthi, B.K.; Naravaneni, R. SSR marker based DNA fingerprinting and diversity study in rice (Oryza sativa. L). Afr. J. Biotechnol. 2006, 5, 684–688. [Google Scholar]
- Cesare, M.D.; Hodkinson, T.; Barth, S. Chloroplast DNA markers (cpSSRs, SNPs) for Miscanthus, Saccharum and related grasses (Panicoideae, Poaceae). Mol. Breed. 2010, 26, 539–544. [Google Scholar] [CrossRef]
- Liu, Q.; Zhao, N. Change and development of the classification systems of the subfamily Chloridoideae (Gramineae). J. Trop. Subtrop. Bot. 2004, 12, 91–98. [Google Scholar]
- Liu, Q.; Zhao, N.; Hao, G. The phylogeny of the Chloridoideae (Gramineae): A cladistic analysis. J. Trop. Subtrop. Bot. 2005, 13, 432–442. [Google Scholar]
- Peterson, P.M.; Romaschenko, K.; Johnson, G. A classification of the Chloridoideae (Poaceae) based on multi-gene phylogenetic trees. Mol. Phylogenetics Evol. 2010, 55, 580–598. [Google Scholar] [CrossRef]
- Soreng, R.J.; Peterson, P.M.; Romaschenko, K.; Davidse, G.; Zuloaga, F.O.; Judziewicz, E.J.; Filgueiras, T.S. A worldwide phylogenetic classification of the Poaceae (Gramineae). J. Syst. Evol. 2015, 53, 117–137. [Google Scholar] [CrossRef]
- Soreng, R.J.; Peterson, P.M.; Romaschenko, K.; Davidse, G.; Teisher, J.K.; Clark, L.G.; Barberá, P.; Gillespie, L.J.; Zuloaga, F.O. A worldwide phylogenetic classification of the Poaceae (Gramineae) II: An update and a comparison of two 2015 classifications. J. Syst. Evol. 2017, 55, 259–290. [Google Scholar] [CrossRef] [Green Version]
- Ellis, R.P. Eragrostis walteri—A first record of non-Kranz leaf anatomy in the sub-family Chloridoideae (Poaceae). S. Afr. J. Bot. 1984, 3, 380–386. [Google Scholar] [CrossRef] [Green Version]
- Ingram, A.L.; Christin, P.-A.; Osborne, C.P. Molecular phylogenies disprove a hypothesized C4 reversion in Eragrostis walteri (Poaceae). Ann. Bot. 2010, 107, 321–325. [Google Scholar] [CrossRef]
- Chen, S.; Li, D.; Zhu, G.; Wu, Z.; Lu, S.; Liu, L.; Wang, C.; Sun, B.; Chu, C.; Xia, N.; et al. POACEAE (GRAMINEAE). In Flora of China; Science Press: Beijing, China; Missouri Botanical Garden Press: St. Louis, MI, USA, 2006; pp. 1–653. [Google Scholar]
- Kellogg, E.A.X. Subfamily Chloridoideae Kunth ex Beilschm. (1833). In Flowering Plants Monocots; Springer International Publishing: Berlin, Germany, 2015; pp. 353–397. [Google Scholar]
- Sutherland, D.M. Genera Graminum. Grasses of the World. Brittonia 1986, 39, 508. [Google Scholar] [CrossRef]
- Peterson, P. Catalogue of new world grasses (Poaceae): II. subfamily Chloridoideae. Contrib. U. S. Natl. Herb. 2001, 41, 176–177. [Google Scholar]
- Ingram, A.L.; Doyle, J.J. Eragrostis (Poaceae): Monophyly and infrageneric classification. Aliso A J. Syst. Evol. Bot. 2007, 23, 595–604. [Google Scholar] [CrossRef] [Green Version]
- Ingram, A.L.; Doyle, J.J. The origin and evolution of Eragrostis tef (Poaceae) and related polyploids: Evidence from nuclear waxy and plastid rps16. Am. J. Bot. 2003, 90, 116–122. [Google Scholar] [CrossRef] [Green Version]
- Ingram, A.L.; Doyle, J.J. Is Eragrostis (Poaceae) monophyletic? Insights from nuclear and plastid sequence data. Syst. Bot. 2004, 29, 545–552. [Google Scholar] [CrossRef]
- Barrett, R.L.; Peterson, P.M.; Romaschenko, K. A molecular phylogeny of Eragrostis (Poaceae: Chloridoideae: Eragrostideae): Making lovegrass monophyletic in Australia. Aust. Syst. Bot. 2020, 33, 458–476. [Google Scholar] [CrossRef]
- Columbus, J.T.; Cerros-Tlatilpa, R.; Kinney, M.S.; Siqueiros-Delgado, M.E.; Bell, H.L.; Griffith, M.P.; Refulio-Rodriguez, N.F. Phylogenetics of Chloridoideae (Gramineae): A preliminary study based on nuclear ribosomal internal transcribed spacer and chloroplast trnL–F sequences. Aliso A J. Syst. Evol. Bot. 2007, 23, 565–579. [Google Scholar] [CrossRef] [Green Version]
- Cai, Z.; Penaflor, C.; Kuehl, J.V.; Leebens-Mack, J.; Carlson, J.E.; dePamphilis, C.W.; Boore, J.L.; Jansen, R.K. Complete plastid genome sequences of Drimys, Liriodendron, and Piper: Implications for the phylogenetic relationships of magnoliids. BMC Evol. Biol. 2006, 6, 77. [Google Scholar] [CrossRef] [Green Version]
- Kode, V.; Mudd, E.A.; Iamtham, S.; Day, A. The tobacco plastid accD gene is essential and is required for leaf development. Plant J. 2005, 44, 237–244. [Google Scholar] [CrossRef]
- Kikuchi, S.; Bédard, J.; Hirano, M.; Hirabayashi, Y.; Oishi, M.; Imai, M.; Takase, M.; Ide, T.; Nakai, M. Uncovering the protein translocon at the chloroplast inner envelope membrane. Science 2013, 339, 571–574. [Google Scholar] [CrossRef]
- Drescher, A.; Ruf, S.; Calsa, T.; Carrer, H.; Bock, R. The two largest chloroplast genome-encoded open reading frames of higher plants are essential genes. Plant J. Cell Mol. Biol. 2000, 22, 97–104. [Google Scholar] [CrossRef]
- Asaf, S.; Waqas, M.; Khan, A.L.; Khan, M.A.; Kang, S.-M.; Imran, Q.M.; Shahzad, R.; Bilal, S.; Yun, B.-W.; Lee, I.-J. The complete chloroplast genome of wild rice (Oryza minuta) and its comparison to related species. Front. Plant Sci. 2017, 8, 304. [Google Scholar] [CrossRef] [Green Version]
- Cavalier-Smith, T. Chloroplast evolution: Secondary symbiogenesis and multiple losses. Curr. Biol. 2002, 12, 62–64. [Google Scholar] [CrossRef] [Green Version]
- Nie, X.; Lv, S.; Zhang, Y.; Du, X.; Wang, L.; Biradar, S.S.; Tan, X.; Wan, F.; Weining, S. Complete chloroplast genome sequence of a major invasive species, crofton weed (Ageratina adenophora). PLoS ONE 2012, 7, e36869. [Google Scholar] [CrossRef] [Green Version]
- Vu, H.T.; Tran, N.; Nguyen, T.D.; Vu, Q.L.; Bui, M.H.; Le, M.T.; Le, L. Complete chloroplast genome of Paphiopedilum delenatii and phylogenetic relationships among Orchidaceae. Plants 2020, 9, 61. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Provan, J.; Soranzo, N.; Wilson, N.; Goldstein, D.; Powell, W. A low mutation rate for chloroplast microsatellites. Genetics 1999, 153, 943–947. [Google Scholar]
- Provan, J.; Powell, W.; Hollingsworth, P. Chloroplast microsatellites: New tools for studies in plant ecology and evolution. Trends Ecol. Evol. 2001, 16, 142–147. [Google Scholar] [CrossRef]
- Morton, B. The role of context-dependent mutations in generating compositional and codon usage bias in grass chloroplast DNA. J. Mol. Evol. 2003, 56, 616–629. [Google Scholar] [CrossRef]
- Netherlands, S. Codon usage. In Encyclopedia of Genetics, Genomics, Proteomics and Informatics; Springer: Dordrecht, The Netherlands, 2008; pp. 383–384. [Google Scholar]
- Shang, M.Z.; Liu, F.; Hua, J.P.; Wang, K.B. Analysis on codon usage of chloroplast genome of Gossypium hirsutum. Sci. Agric. Sin. 2011, 44, 245–253. [Google Scholar]
- Sajjad, A.; Khan, A.L.; Khan, A.R.; Muhammad, W.; Kang, S.M.; Khan, M.A.; Seok-Min, L.; In-Jung, L. Complete chloroplast genome of Nicotiana otophora and its comparison with related species. Front. Plant Sci. 2016, 7, 843. [Google Scholar]
- Yin, D.; Wang, Y.; Zhang, X.; Ma, X.; He, X.; Zhang, J. Development of chloroplast genome resources for peanut (Arachis hypogaea L.) and other species of Arachis. Sci. Rep. 2017, 7, 11649. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Katayama, H.; Ogihara, Y. Structural alterations of the chloroplast genome found in grasses are not common in monocots. Curr. Genet. 1993, 23, 160–165. [Google Scholar] [CrossRef] [PubMed]
- Katayama, H.; Ogihara, Y. Phylogenetic affinities of the grasses to other monocots as revealed by molecular analysis of chloroplast DNA. Curr. Genet. 1996, 29, 572–581. [Google Scholar] [CrossRef]
- Davis, J.; Soreng, R. Migration of endpoints of two genes relative to boundaries between regions of the plastid genome in the grass family (Poaceae). Am. J. Bot. 2010, 97, 874–892. [Google Scholar] [CrossRef] [Green Version]
- Li, R.; Ma, P.-F.; Wen, J.; Yi, T.-S. Complete sequencing of five Araliaceae chloroplast genomes and the phylogenetic implications. PLoS ONE 2013, 8, e78568. [Google Scholar] [CrossRef]
- Zheng, X.M.; Wang, J.; Li, F.; Sha, L.; Pang, H.; Lan, Q.; Jing, L.; Yan, S.; Qiao, W.; Zhang, L. Inferring the evolutionary mechanism of the chloroplast genome size by comparing whole-chloroplast genome sequences in seed plants. Sci. Rep. 2017, 7, 1555. [Google Scholar]
- Rajicic, T.; Lübberstedt, T.; Jensen, L.; Scholz, U.; Weber, W.; Graner, A.; Dehmer, K. Single nucleotide polymorphism (SNP) markers for allele quantification in Lolium (Poaceae): Development and first applications. In Molecular Breeding of Forage and Turf; Springer: Berlin, Germany, 2015; pp. 143–163. [Google Scholar]
- Fisher, A.E.; Hasenstab, K.M.; Bell, H.L.; Blaine, E.; Ingram, A.L.; Columbus, J.T. Evolutionary history of chloridoid grasses estimated from 122 nuclear loci. Mol. Phylogenet. Evol. 2016, 105, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Wang, R. Systematic Studies on Eragrostis; Shandong Normal University: Jinan, China, 2017. [Google Scholar]
- Doyle, J.; Doyle, J. A rapid DNA isolation procedure from small quantities of fresh leaf tissues. Polym. Bull. 1987, 19, 11–15. [Google Scholar]
- Qu, X.-J. Organelle Genome Assembler. Available online: https://github.com/quxiaojian/OGA (accessed on 24 May 2020).
- Qu, X.-J.; Fan, S.-J.; Wicke, S.; Yi, T.-S. Plastome reduction in the only parasitic gymnosperm Parasitaxus is due to losses of photosynthesis but not housekeeping genes and apparently involves the secondary gain of a large inverted repeat. Genome Biol. Evol. 2019, 11, 2789–2796. [Google Scholar] [CrossRef]
- Qu, X.-J.; Moore, M.; Li, D.-Z.; Yi, T. PGA: A software package for rapid, accurate, and flexible batch annotation of plastomes. Plant Methods 2019, 15, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Kearse, M.; Moir, R.; Wilson, A.; Stones-Havas, S.; Cheung, M.; Sturrock, S.; Buxton, S.; Cooper, A.; Markowitz, S.; Duran, C.; et al. Geneious basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 2012, 28, 1647–1649. [Google Scholar] [CrossRef]
- Greiner, S.; Lehwark, P.; Bock, R. OrganellarGenomeDRAW (OGDRAW) version 1.3.1: Expanded toolkit for the graphical visualization of organellar genomes. Nucleic Acids Res. 2019, 47, W59–W64. [Google Scholar] [CrossRef] [Green Version]
- Amiryousefi, A.; Hyvönen, J.; Poczai, P. IRscope: an online program to visualize the junction sites of chloroplast genomes. Bioinformatics 2018, 34, 3030–3031. [Google Scholar] [CrossRef]
- Kurtz, S.; Choudhuri, J.V.; Ohlebusch, E.; Schleiermacher, C.; Stoye, J.; Giegerich, R. REPuter: The manifold applications of repeat analysis on a genomic scale. Nucleic Acids Res. 2001, 29, 4633–4642. [Google Scholar] [CrossRef] [Green Version]
- Beier, S.; Thiel, T.; Münch, T.; Scholz, U.; Mascher, M. MISA-web: A web server for microsatellite prediction. Bioinformatics 2017, 33, 2583–2585. [Google Scholar] [CrossRef] [Green Version]
- Frank, W. The ‘effective number of codons’ used in a gene. Gene 1990, 87, 23–29. [Google Scholar]
- Rosenberg, M.; Subramanian, S.; Kumar, S. Patterns of transitional biases within and among mammalian genomes. Mol. Biol. Evol. 2003, 20, 988–993. [Google Scholar] [CrossRef]
- Peden, J. CodonW. Available online: http://codonw.sourceforge.net/index.html (accessed on 27 May 2020).
- Hilu, K.W.; Alice, L.A.; Liang, H. Phylogeny of Poaceae inferred from matK sequences. Ann. Mo. Bot. Gard. 1999, 86, 835–851. [Google Scholar] [CrossRef]
- Frazer, K.A.; Pachter, L.; Poliakov, A.; Rubin, E.M.; Dubchak, I. VISTA: Computational tools for comparative genomics. Nucleic Acids Res. 2004, 32, W273–W279. [Google Scholar] [CrossRef]
- Qu, X.-J. Get mVISTA Format from GenBank Annotation. Available online: https://github.com/quxiaojian/Bioinformatic_Scripts/tree/master/get_mVISTA_format_from_GenBank_annotation (accessed on 10 June 2020).
- Bingjuan, L.; Guohui, X.; Zaien, X.; Xiaoqin, G. Universal genetic markers for the Poaceae family. J. Zhejiang A&F Univ. 2014, 31, 508–514. [Google Scholar]
- Chen, C.; Zheng, Y.; Liu, S.; Zhong, Y.; Wu, Y.; Li, J.; Xu, L.-A.; Xu, M. The complete chloroplast genome of Cinnamomum camphora and its comparison with related Lauraceae species. PeerJ 2017, 5, e3820. [Google Scholar] [CrossRef] [Green Version]
- Katoh, K.; Standley, D.M. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol. Biol. Evol. 2013, 30, 772–780. [Google Scholar] [CrossRef] [Green Version]
- Stamatakis, A. RAxML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 2014, 30, 1312–1313. [Google Scholar] [CrossRef]
Species | Collecting Locations | GPS | Voucher Specimen Number | GenBank Accession Number |
---|---|---|---|---|
Eragrostis atrovirens | Guangdong, China | 113°46″ E, 23°29′ N | SDNU101 | MW255512 |
E. autumnalis | Gansu, China | 105°53′ E, 34°34′ N | SDNU012 | MW255513 |
E. brownii | Guangdong, China | 111°57′ E, 22°42′ N | SDNU022 | MW255514 |
E. cilianensis | Shandong, China | 118°36′ E, 36°12′ N | SDNU235 | MW255515 |
E. ferruginea | Shandong, China | 117°20′ E, 36°29′ N | SDNU002 | MW255517 |
E. fractus | Yunnan, China | 100°11′ E, 25°38′ N | SDNU184 | MW255518 |
E. japonica | Guangdong, China | 111°57′ E, 22°42′ N | SDNU013 | MW255519 |
E. nigra | Yunnan, China | 100°11′ E, 25°38′ N | SDNU183 | MW255521 |
E. pilosa | Guangdong, China | 113°46″ E, 23°29′ N | SDNU087 | MW255523 |
E. tenella | Guangdong, China | 111°57′ E, 22°42′ N | SDNU011 | MW255525 |
E. unioloides | Guangdong, China | 113°46′ E, 23°29′ N | SDNU003 | MW255526 |
Harpachne harpachnoides | Yunnan, China | 100°11′ E, 25°38′ N | SDNU088 | MW255527 |
Enneapogon desvauxii | Inner Mongolia, China | 111°35′ E, 40°51′ N | SDNU046 | MW255511 |
Species | Genome Size | LSC Region | IR Region | SSC Region | GC Content (%) | Number of Genes | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
(bp) | (bp) | (bp) | (bp) | Overall | IR | LSC | SSC | Total | PCGs | rRNAs | tRNAs | |
Eragrostis atrovirens | 134,857 | 80,113 | 21,038 | 12,668 | 38.2 | 44.0 | 36.1 | 32.0 | 133 | 87 | 8 | 38 |
E. autumnalis | 134,556 | 79,861 | 21,025 | 12,645 | 38.3 | 44.0 | 36.2 | 32.1 | 131 | 85 | 8 | 38 |
E. brownii | 134,728 | 80,098 | 21,016 | 12,598 | 38.2 | 44.0 | 36.1 | 32.1 | 131 | 85 | 8 | 38 |
E. cilianensis | 134,654 | 80,005 | 21,026 | 12,597 | 38.2 | 44.0 | 36.2 | 32.1 | 131 | 85 | 8 | 38 |
E. ferruginea | 134,380 | 79,732 | 21,028 | 12,592 | 38.2 | 44.0 | 36.1 | 32.2 | 131 | 85 | 8 | 38 |
E. fractus | 134,578 | 79,894 | 21,058 | 12,568 | 38.2 | 43.9 | 36.1 | 32.0 | 133 | 87 | 8 | 38 |
E. japonica | 134,126 | 79,323 | 21,074 | 12,655 | 38.2 | 43.9 | 36.2 | 32.1 | 133 | 87 | 8 | 38 |
E. minor | 135,023 | 80,316 | 21,065 | 12,577 | 38.2 | 44.0 | 36.2 | 32.2 | 131 | 85 | 8 | 38 |
E. nigra | 134,861 | 80,154 | 21,028 | 12,651 | 38.2 | 44.0 | 36.2 | 32.1 | 131 | 85 | 8 | 38 |
E. pilosa | 134,737 | 80,098 | 21,026 | 12,587 | 38.2 | 44.0 | 36.2 | 32.0 | 131 | 85 | 8 | 38 |
E. setifolia | 134,928 | 80,416 | 21,009 | 12,494 | 38.3 | 44.0 | 36.2 | 32.4 | 131 | 85 | 8 | 38 |
E. tef | 134,435 | 79,802 | 21,026 | 12,581 | 38.3 | 44.0 | 36.3 | 32.1 | 131 | 85 | 8 | 38 |
E. tenella | 134,550 | 79,876 | 21,027 | 12,620 | 38.2 | 43.9 | 36.2 | 32.2 | 133 | 87 | 8 | 38 |
E. tenellula | 130,773 | 79,387 | 19,394 | 12,598 | 38.4 | 44.9 | 36.2 | 32.2 | 129 | 83 | 8 | 38 |
E. unioloides | 134,711 | 80,088 | 21,016 | 12,591 | 38.2 | 44.0 | 36.1 | 32.2 | 131 | 85 | 8 | 38 |
Harpachne harpachnoides | 133,830 | 79,083 | 21,069 | 12,609 | 38.2 | 43.9 | 36.2 | 32.3 | 133 | 87 | 8 | 38 |
Enneapogoncaerulescens | 133,231 | 78,883 | 20,969 | 12,410 | 38.3 | 44.0 | 36.3 | 32.3 | 133 | 87 | 8 | 38 |
E. desvauxii | 131,516 | 77,993 | 20,506 | 12,511 | 38.3 | 44.1 | 36.3 | 32.3 | 133 | 87 | 8 | 38 |
E. oblongus | 133,433 | 78,839 | 21,024 | 12,546 | 38.3 | 44.0 | 36.3 | 32.3 | 133 | 87 | 8 | 38 |
Uniola paniculata | 135,322 | 80,643 | 21,042 | 12,595 | 38.3 | 44.0 | 36.3 | 32.4 | 131 | 85 | 8 | 38 |
Species | Total SSRs | Compound SSRs | A/T | C/G | AT/TA | LSC | SSC | IRa | IRb | |||
---|---|---|---|---|---|---|---|---|---|---|---|---|
A | T | C | G | AT | TA | |||||||
Eragrostis atrovirens | 40 | 4 | 18 | 21 | - | - | - | 1 | 33 | 3 | 2 | 2 |
E. autumnalis | 44 | 5 | 17 | 25 | 1 | 1 | - | - | 38 | 2 | 2 | 2 |
E. brownii | 52 | 7 | 19 | 28 | 1 | 1 | 1 | 2 | 44 | 6 | 1 | 1 |
E. cilianensis | 46 | 4 | 17 | 25 | 1 | 1 | - | 2 | 39 | 3 | 2 | 2 |
E. ferruginea | 46 | 4 | 20 | 23 | 1 | 1 | - | 1 | 37 | 3 | 3 | 3 |
E. fractus | 48 | 7 | 20 | 26 | - | 1 | - | 1 | 45 | 1 | 1 | 1 |
E. japonica | 51 | 2 | 20 | 27 | 1 | 2 | - | 1 | 42 | 3 | 3 | 3 |
E. minor | 41 | 5 | 15 | 23 | 1 | 1 | - | 1 | 36 | 1 | 2 | 2 |
E. nigra | 53 | 5 | 20 | 29 | 2 | 2 | - | - | 43 | 4 | 3 | 3 |
E. pilosa | 50 | 4 | 18 | 26 | 2 | 3 | - | 1 | 43 | 1 | 3 | 3 |
E. setifolia | 40 | 3 | 15 | 23 | 1 | 1 | - | - | 33 | 2 | 2 | 2 |
E. tef | 50 | 7 | 22 | 25 | 1 | 1 | - | 1 | 47 | 1 | 1 | 1 |
E. tenella | 56 | 5 | 21 | 30 | 1 | 1 | 1 | 2 | 48 | 2 | 3 | 3 |
E. tenellula | 49 | 2 | 18 | 27 | 1 | 2 | - | 1 | 42 | 3 | 2 | 2 |
E. unioloides | 52 | 7 | 19 | 29 | - | 2 | - | 2 | 45 | 5 | 1 | 1 |
Harpachne harpachnoides | 43 | 5 | 15 | 24 | 1 | 1 | - | 2 | 36 | 1 | 3 | 3 |
Enneapogon caerulescens | 44 | 2 | 21 | 20 | - | - | - | 3 | 39 | 1 | 2 | 2 |
E. desvauxii | 43 | 2 | 17 | 22 | 1 | 1 | - | 2 | 37 | - | 3 | 3 |
E. oblongus | 45 | 2 | 21 | 21 | - | - | - | 3 | 40 | 1 | 2 | 2 |
Uniola paniculata | 50 | 8 | 20 | 29 | - | - | - | 1 | 50 | - | - | - |
Species | GC 1 | CC 2 | ENC 3 |
---|---|---|---|
Eragrostis atrovirens | 0.390 | 17,169 | 49.61 |
E. autumnalis | 0.389 | 17,201 | 49.52 |
E. brownii | 0.390 | 17,171 | 49.66 |
E. cilianensis | 0.389 | 17,208 | 49.51 |
E. ferruginea | 0.389 | 17,129 | 49.56 |
E. fractus | 0.389 | 17,159 | 49.52 |
E. japonica | 0.389 | 16,999 | 49.48 |
E. minor | 0.390 | 17,160 | 49.61 |
E. nigra | 0.389 | 17,208 | 49.59 |
E. pilosa | 0.389 | 17,210 | 49.52 |
E. setifolia | 0.391 | 17,149 | 49.73 |
E. tef | 0.390 | 17,146 | 49.60 |
E. tenella | 0.390 | 17,169 | 49.59 |
E. tenellula | 0.390 | 17,123 | 49.52 |
E. unioloides | 0.390 | 17,171 | 49.66 |
Harpachne harpachnoides | 0.389 | 17,173 | 49.55 |
Enneapogoncaerulescens | 0.390 | 17,158 | 49.40 |
E. desvauxii | 0.390 | 17,145 | 49.42 |
E. oblongus | 0.390 | 17,068 | 49.40 |
Uniolapaniculata | 0.391 | 17,097 | 49.80 |
Average | 0.3897 | 17,151 | 49.56 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, K.; Wang, R.; Guo, X.-X.; Zhang, X.-J.; Qu, X.-J.; Fan, S.-J. Comparative and Phylogenetic Analysis of Complete Chloroplast Genomes in Eragrostideae (Chloridoideae, Poaceae). Plants 2021, 10, 109. https://doi.org/10.3390/plants10010109
Liu K, Wang R, Guo X-X, Zhang X-J, Qu X-J, Fan S-J. Comparative and Phylogenetic Analysis of Complete Chloroplast Genomes in Eragrostideae (Chloridoideae, Poaceae). Plants. 2021; 10(1):109. https://doi.org/10.3390/plants10010109
Chicago/Turabian StyleLiu, Kuan, Rong Wang, Xiu-Xiu Guo, Xue-Jie Zhang, Xiao-Jian Qu, and Shou-Jin Fan. 2021. "Comparative and Phylogenetic Analysis of Complete Chloroplast Genomes in Eragrostideae (Chloridoideae, Poaceae)" Plants 10, no. 1: 109. https://doi.org/10.3390/plants10010109
APA StyleLiu, K., Wang, R., Guo, X.-X., Zhang, X.-J., Qu, X.-J., & Fan, S.-J. (2021). Comparative and Phylogenetic Analysis of Complete Chloroplast Genomes in Eragrostideae (Chloridoideae, Poaceae). Plants, 10(1), 109. https://doi.org/10.3390/plants10010109