Assessment of Genetic Diversity and Symbiotic Efficiency of Selected Rhizobia Strains Nodulating Lentil (Lens culinaris Medik.)
Abstract
:1. Introduction
2. Results
2.1. Isolation and Symbiotic Efficiency of the Isolates
2.2. Gene Amplification and Sequencing
2.3. Individual Phylogenetic Analysis of the 16S rRNA Gene
2.4. Individual Phylogenetic Analysis Based on House-Keeping and Symbiotic Genes
2.5. Multi-Locus Sequence Analysis (MLSA) of the Concatenated Genes (16S rRNA-rpoB-recA-gyrB)
2.6. Topological Congruence of the Phylogenetic Trees
2.7. Loci Priorities
3. Discussion
3.1. Characterization and Phylogenetic Relationships of the Isolated Rhizobial Strains Based on the 16S rRNA, House-Keeping and Symbiotic Genes
3.2. Assessment of Symbiotic Efficiency
4. Materials and Methods
4.1. Rhizobium Sampling Site and Plant Materials
4.2. Nodule Collection and Isolation of Bacteria
4.3. Plant Inoculation and Symbiotic Efficiency Assessment
4.4. Statistical Analysis
4.5. DNA Extraction, PCR Amplification, and Gel Electrophoresis
4.6. Sequencing, and Phylogenetic Analysis
4.7. Accession Numbers
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Genes | Genus/Species | 938N3 | 318N211 | 686N5 | 115N2 | 1574N4 | 318N2111 | 996N2 | 322N32 | 1159N24 | 1159N52 | 996N5 | 1145N1 | 1159N11 | 1159N41 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
16S rRNA | R. anhuiense CCBAU 23252T | - | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 99% | 100% | 100% | 97% | 98% | 97% |
R. laguerreae FB206T | - | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 99% | 100% | 100% | 97% | 98% | 97% | |
R. leguminosarum CCBAU 15396 | - | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 99% | 100% | 100% | 97% | 98% | 97% | |
R. acidisoli FH13T | - | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 99% | 100% | 100% | 97% | 98% | 97% | |
R. leucaenae CCGE523 | - | - | - | - | - | - | - | - | - | - | - | - | 97% | - | |
M. huakuii NBRC15243 | 100% | - | 94% | 94% | 94% | - | 94% | - | - | - | - | - | - | - | |
gyrB | M. huakuii NBRC15243 | 100% | - | - | - | - | - | - | - | - | - | - | - | - | - |
R. leguminosarum CCBAU15396 | - | 96% | 97% | 97% | 97% | NA | 96% | 96% | NA | 96% | 97% | NA | 95% | 94% | |
recA | R. laguerreae FB206T | - | 97% | 96% | 95% | 100% | 97% | 95% | 97% | - | 97% | 96% | 96% | 97% | 97% |
R. leguminosarum CCBAU15396 | - | 100% | 100% | 100% | 96% | 100% | 100% | 100% | - | 100% | 100% | 100% | 100% | 100% | |
M. Huakuii USDA4779 T | 100% | 99% | 97% | 97% | 97% | 99% | 97% | 99% | - | 99% | 97% | 97% | 99% | 99% | |
rpoB | R. laguerreae FB206T | NA | 97% | 100% | 97% | 100% | 97% | 98% | 97% | 97% | 97% | 98% | 98% | 96% | 97% |
R. pisi DSM30132T | NA | 95% | 95% | 95% | 95% | 95% | 95% | 95% | 95% | 95% | - | - | 94% | 95% | |
R. elti Mim1 | NA | - | - | - | - | - | - | - | - | - | - | - | - | - | |
R. leguminosarum CCBAU15396 | NA | 97% | 97% | 97% | 97% | 97% | 97% | 97% | 97% | 97% | 95% | 96% | 96% | 97% | |
nodD | R. leguminosarum bv. vicia Strain SS21 | 100% | 99% | 98% | 97% | 100% | 98% | 98% | 98% | 98% | 98% | 97% | 98% | NA | NA |
R. laguerreae FB206T | - | 100% | 100% | 99% | 97% | 100% | 99% | 100% | 100% | 100% | 99% | 99% | NA | NA | |
nodA | R. leguminosarum CTG-22Ps | - | 100% | 100% | 100% | 97% | 100% | 100% | 100% | - | 100% | 100% | 100% | 100% | 100% |
R. laguerreae R106 | - | 98% | 100% | 100% | 96% | 98% | 100% | 98% | - | 98% | 100% | 98% | 98% | 100% | |
16S rRNA-rpoB-recA-gyrB | R. laguerreae FB206T | NA | 96% | 95% | 94% | 96% | NA | 94% | 94% | NA | 93% | NA | 94% | 94% | 93% |
R. leguminosarum CCBAU15396 | NA | 97% | 98% | 97% | 97% | NA | 97% | 97% | NA | 95% | NA | 97% | 97% | 96% | |
R. pisi DSM30132T | NA | 96% | 96% | 96% | 96% | NA | 96% | 96% | NA | 94% | NA | 95% | 96% | 94% | |
R. elti CNPSO670 | NA | 94% | 94% | 94% | 94% | NA | 94% | 94% | NA | 93% | NA | 94% | 94% | 92% |
References
- Erskine, W.; Sarker, A.; Kumar, S. Lentil: Breeding. In Encyclopedia of Food Grains, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2016; Volume 1, pp. 1–12. [Google Scholar] [CrossRef]
- Teng, Y.; Wang, X.; Li, L.; Li, Z.; Luo, Y. Rhizobia and their bio-partners as novel drivers for functional remediation in contaminated soils. Front. Plant Sci. 2015, 6, 32. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leghari, S.J.; Wahocho, N.A.; Laghari, G.M.; HafeezLaghari, A.; MustafaBhabhan, G.; HussainTalpur, K.; Bhutto, T.A.; Wahocho, S.A.; Lashari, A.A. Role of nitrogen for plant growth and development: A review. Adv. Environ. Biol. 2016, 10, 209–219. [Google Scholar]
- Tian, G.; Kang, B.T. Effects of soil fertility and fertilizer application on biomass and chemical compositions of leguminous cover crops. Nutr. Cycl. Agroecosystems 1998, 51, 231–238. [Google Scholar] [CrossRef]
- Savci, S. An agricultural pollutant: Chemical fertilizer. Int. J. Environ. Sci. Dev. 2012, 3, 73. [Google Scholar] [CrossRef] [Green Version]
- Addiscott, T.M.; Benjamin, N. Nitrate and human health. Soil Use Manag. 2004, 20, 98–104. [Google Scholar] [CrossRef]
- Sanginga, N. Role of biological nitrogen fixation in legume based cropping systems; a case study of West Africa farming systems. Plant Soil 2003, 252, 25–39. [Google Scholar] [CrossRef]
- Bernhard, A. The nitrogen cycle: Processes, Players, and Human Impact. Nat. Educ. Knowl. 2010, 2, 2–12. [Google Scholar]
- Postgate, J. Biological nitrogen fixation. In Modern Coordination Chemistry: The Legacy of Joseph Chatt; Royal Society of Chemistry: Cambridge, UK, 2007; p. 233. [Google Scholar] [CrossRef]
- Saikia, S.P.; Jain, V. Biological nitrogen fixation with non-legumes: An achievable target or a dogma? Curr. Sci. 2007, 92, 317–322. [Google Scholar]
- Brockwell, J.; Bottomley, P.J.; Thies, J.E. Manipulation of rhizobia microflora for improving legume productivity and soil fertility: A critical assessment. Plant Soil 1995, 174, 143–180. [Google Scholar] [CrossRef]
- Peoples, M.B.; Brockwell, J.; Herridge, D.F.; Rochester, I.J.; Alves, B.J.R.; Urquiaga, S.; Boddey, R.M.; Dakora, F.D.; Bhattarai, S.; Maskey, S.L.; et al. The contributions of nitrogen-fixing crop legumes to the productivity of agricultural systems. Symbiosis 2009, 48, 1–17. [Google Scholar] [CrossRef]
- Zahran, H.H. Rhizobium-legume symbiosis and nitrogen fixation under severe conditions and in an arid climate. Microbiol. Mol. Biol. Rev. 1999, 63, 968–989. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lu, J.; Kang, L.; He, X.; Xu, D. Multilocus sequence analysis of the Rhizobia from five woody legumes in southern China. Afr. J. Microbiol. Res. 2011, 5, 5343–5353. [Google Scholar] [CrossRef]
- Long, S.R. Rhizobium symbiosis: Nod factors in perspective. Plant Cell 1996, 8, 1885. [Google Scholar] [PubMed] [Green Version]
- Berrada, H.; Fikri-Benbrahim, K. Taxonomy of the rhizobia: Current perspectives. Microbiol. Res. J. Int. 2014, 616–639. [Google Scholar] [CrossRef] [Green Version]
- Yan, J.; Han, X.Z.; Ji, Z.J.; Li, Y.; Wang, E.T.; Xie, Z.H.; Chen, W.F. Abundance and diversity of soybean-nodulating rhizobia in black soil are impacted by land use and crop management. Appl. Environ. Microbiol. 2014, 80, 5394–5402. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- May, S.N.; Bohlool, B. Ben Competition among Rhizobium leguminosarum strains for nodulation of lentils (Lens esculenta). Appl. Environ. Microbiol. 1983, 45, 960–965. [Google Scholar] [CrossRef] [Green Version]
- Begum, A.A.; Leibovitch, S.; Migner, P.; Zhang, F. Specific flavonoids induced nod gene expression and pre-activated nod genes of Rhizobium leguminosarum increased pea (Pisum sativum L.) and lentil (Lens culinaris L.) nodulation in controlled growth chamber environments. J. Exp. Bot. 2001, 52, 1537–1543. [Google Scholar]
- Santillana, N.; Ramírez-Bahena, M.H.; García-Fraile, P.; Velázquez, E.; Zúñiga, D. Phylogenetic diversity based on rrs, atpD, recA genes and 16S–23S intergenic sequence analyses of rhizobial strains isolated from Vicia faba and Pisum sativum in Peru. Arch. Microbiol. 2008, 189, 239–247. [Google Scholar] [CrossRef]
- Rashid, M.H.; Schäfer, H.; Gonzalez, J.; Wink, M. Genetic diversity of rhizobia nodulating lentil (Lens culinaris) in Bangladesh. Syst. Appl. Microbiol. 2012, 35, 98–109. [Google Scholar] [CrossRef]
- Rashid, M.H.; Gonzalez, J.; Young, J.P.W.; Wink, M. Rhizobium leguminosarum is the symbiont of lentils in the Middle East and Europe but not in Bangladesh. FEMS Microbiol. Ecol. 2014, 87, 64–77. [Google Scholar] [CrossRef] [Green Version]
- Tena, W.; Wolde-Meskel, E.; Degefu, T.; Walley, F. Lentil (Lens culinaris Medik.) nodulates with genotypically and phenotypically diverse rhizobia in Ethiopian soils. Syst. Appl. Microbiol. 2017, 40, 22–33. [Google Scholar] [CrossRef] [PubMed]
- Lupwayi, N.Z.; Olsen, P.E.; Sande, E.S.; Keyser, H.H.; Collins, M.M.; Singleton, P.W.; Rice, W.A. Inoculant quality and its evaluation. Field Crop. Res. 2000, 65, 259–270. [Google Scholar] [CrossRef]
- Clarridge, J.E. Impact of 16S rRNA gene sequence analysis for identification of bacteria on clinical microbiology and infectious diseases. Clin. Microbiol. Rev. 2004, 17, 840–862. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Das, S.; Dash, H.R.; Mangwani, N.; Chakraborty, J.; Kumari, S. Understanding molecular identification and polyphasic taxonomic approaches for genetic relatedness and phylogenetic relationships of microorganisms. J. Microbiol. Methods 2014, 103, 80–100. [Google Scholar] [CrossRef] [PubMed]
- Saïdi, S.; Ramírez-Bahena, M.-H.; Santillana, N.; Zuniga, D.; Álvarez-Martínez, E.; Peix, A.; Mhamdi, R.; Velazquez, E. Rhizobium laguerreae sp. nov. nodulates Vicia faba on several continents. Int. J. Syst. Evol. Microbiol. 2014, 64, 242–247. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rashid, M.H.; Young, J.P.W.; Everall, I.; Clercx, P.; Willems, A.; Braun, M.S.; Wink, M. Average nucleotide identity of genome sequences supports the description of Rhizobium lentis sp. nov., Rhizobium bangladeshense sp. nov. and Rhizobium binae sp. nov. from lentil (Lens culinaris) nodules. Int. J. Syst. Evol. Microbiol. 2015, 65, 3037–3045. [Google Scholar] [CrossRef]
- Rong, X.; Huang, Y. Multi-locus sequence analysis: Taking prokaryotic systematics to the next level. In Methods in Microbiology; Elsevier: Amsterdam, The Netherlands, 2014; Volume 41, pp. 221–251. ISBN 0580-9517. [Google Scholar] [CrossRef]
- Islam, M.S.; Kawasaki, H.; Muramatsu, Y.; Nakagawa, Y.; Seki, T. Bradyrhizobium iriomotense sp. nov., isolated from a tumor-like root of the legume Entada koshunensis from Iriomote Island in Japan. Biosci. Biotechnol. Biochem. 2008, 72, 1416–1429. [Google Scholar] [CrossRef] [Green Version]
- Lin, J.-W.; Hsu, Y.-M.; Chomel, B.B.; Lin, L.-K.; Pei, J.-C.; Wu, S.-H.; Chang, C.-C. Identification of novel Bartonella spp. in bats and evidence of Asian gray shrew as a new potential reservoir of Bartonella. Vet. Microbiol. 2012, 156, 119–126. [Google Scholar] [CrossRef]
- Haukka, K.; Lindström, K.; Young, J.P.W. Three phylogenetic groups of nodA and nifHGenes in Sinorhizobium and Mesorhizobium isolates from leguminous trees growing in Africa and Latin America. Appl. Environ. Microbiol. 1998, 64, 419–426. [Google Scholar] [CrossRef] [Green Version]
- Zhu, J.G.; Han, Y.; Liu, G.; Zhang, Y.L.; Shao, X.H. Nitrogen in percolation water in paddy fields with a rice/wheat rotation. Nutr. Cycl. Agroecosystems 2000, 57, 75–82. [Google Scholar] [CrossRef]
- DeLong, E.F. Archaea in coastal marine environments. Proc. Natl. Acad. Sci. USA 1992, 89, 5685–5689. [Google Scholar] [CrossRef] [Green Version]
- De Vienne, D.M.; Giraud, T.; Martin, O.C. A congruence index for testing topological similarity between trees. Bioinformatics 2007, 23, 3119–3124. [Google Scholar] [CrossRef] [Green Version]
- Taha, K.; El Attar, I.; Dekkiche, S.; Aurag, J.; Béna, G. Rhizobium laguerreae is the main nitrogen-fixing symbiont of cultivated lentil (Lens culinaris) in Morocco. Syst. Appl. Microbiol. 2018, 41, 113–121. [Google Scholar] [CrossRef]
- Lindström, K.; Murwira, M.; Willems, A.; Altier, N. The biodiversity of beneficial microbe-host mutualism: The case of rhizobia. Res. Microbiol. 2010, 161, 453–463. [Google Scholar] [CrossRef] [Green Version]
- Ribeiro, R.A.; Barcellos, F.G.; Thompson, F.L.; Hungria, M. Multilocus sequence analysis of Brazilian Rhizobium microsymbionts of common bean (Phaseolus vulgaris L.) reveals unexpected taxonomic diversity. Res. Microbiol. 2009, 160, 297–306. [Google Scholar] [CrossRef]
- Stackebrandt, E.; Goebel, B.M. Taxonomic note: A place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int. J. Syst. Evol. Microbiol. 1994, 44, 846–849. [Google Scholar] [CrossRef] [Green Version]
- Tindall, B.J.; Rosselló-Móra, R.; Busse, H.-J.; Ludwig, W.; Kämpfer, P. Notes on the characterization of prokaryote strains for taxonomic purposes. Int. J. Syst. Evol. Microbiol. 2010, 60, 249–266. [Google Scholar] [CrossRef] [Green Version]
- Ludwig, W.; Klenk, H.-P. Overview: A phylogenetic backbone and taxonomic framework for procaryotic systematics. In Bergey’s Manual® of Systematic Bacteriology; Springer: Berlin/Heidelberg, Germany, 2005; pp. 49–66. [Google Scholar] [CrossRef]
- Llorente, B.; De Souza, F.S.J.; Soto, G.; Meyer, C.; Alonso, G.D.; Flawiá, M.M.; Bravo-Almonacid, F.; Ayub, N.D.; Rodríguez-Concepción, M. Selective pressure against horizontally acquired prokaryotic genes as a driving force of plastid evolution. Sci. Rep. 2016, 6, 19036. [Google Scholar] [CrossRef] [Green Version]
- Žafran-Novak, J.; Redžepović, S.; Ćetković, H. Genetic analysis of a nodA-nodD region of autochthonous strains of Rhizobium leguminosarum biovar viciae that showed effective nodulation of host plants. Period. Biol. 2010, 112, 459–467. [Google Scholar]
- Gundi, V.A.K.B.; Dijkshoorn, L.; Burignat, S.; Raoult, D.; La Scola, B. Validation of partial rpoB gene sequence analysis for the identification of clinically important and emerging Acinetobacter species. Microbiology 2009, 155, 2333–2341. [Google Scholar] [CrossRef] [Green Version]
- Martens, M.; Dawyndt, P.; Coopman, R.; Gillis, M.; De Vos, P.; Willems, A. Advantages of multilocus sequence analysis for taxonomic studies: A case study using 10 housekeeping genes in the genus Ensifer (including former Sinorhizobium). Int. J. Syst. Evol. Microbiol. 2008, 58, 200–214. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zou, L.; Chen, Y.X.; Penttinen, P.; Lan, Q.; Wang, K.; Liu, M.; Peng, D.; Zhang, X.; Chen, Q.; Zhao, K. Genetic diversity and symbiotic efficiency of nodulating rhizobia isolated from root nodules of faba Bean in one field. PLoS ONE 2016, 11, e0167804. [Google Scholar] [CrossRef] [PubMed]
- Dhaoui, S.; Rejili, M.; Mergaert, P.; Mars, M. Rhizobium leguminosarum symbiovar trifolii, Ensifer numidicus and Mesorhizobium amorphae symbiovar ciceri (or Mesorhizobium loti) are new endosymbiotic bacteria of Lens culinaris Medik. FEMS Microbiol. Ecol. 2016, 92, fiw118. [Google Scholar] [CrossRef] [Green Version]
- Lemaire, B.; Dlodlo, O.; Chimphango, S.; Stirton, C.; Schrire, B.; Boatwright, S.; Honnay, O.; Smets, E.; Sprent, J.; James, E. Symbiotic diversity, specificity and distribution of rhizobia in native legumes of the Core Cape Subregion (South Africa). FEMS Microbiol. Ecol. 2015, 91, 2–17. [Google Scholar] [CrossRef] [Green Version]
- Nzoué, A.; Miché, L.; Klonowska, A.; Laguerre, G.; De Lajudie, P.; Moulin, L. Multilocus sequence analysis of bradyrhizobia isolated from Aeschynomene species in Senegal. Syst. Appl. Microbiol. 2009, 32, 400–412. [Google Scholar] [CrossRef]
- Degnan, J.H.; Rosenberg, N.A. Discordance of species trees with their most likely gene trees. PLoS Genet 2006, 2, e68. [Google Scholar] [CrossRef] [Green Version]
- Cao, Y.; Wang, E.-T.; Zhao, L.; Chen, W.-M.; Wei, G.-H. Diversity and distribution of rhizobia nodulated with Phaseolus vulgaris in two ecoregions of China. Soil Biol. Biochem. 2014, 78, 128–137. [Google Scholar] [CrossRef]
- Kumar, N.; Lad, G.; Giuntini, E.; Kaye, M.E.; Udomwong, P.; Shamsani, N.J.; Young, J.P.W.; Bailly, X. Bacterial genospecies that are not ecologically coherent: Population genomics of Rhizobium leguminosarum. Open Biol. 2015, 5, 140133. [Google Scholar] [CrossRef] [Green Version]
- Cavassim, M.I.A.; Moeskjær, S.; Moslemi, C.; Fields, B.; Bachmann, A.; Vilhjálmsson, B.; Schierup, M.H.; Young, J.P.W.; Andersen, S.U. The genomic architecture of introgression among sibling species of bacteria. bioRxiv 2019, 526707. [Google Scholar] [CrossRef] [Green Version]
- Sarker, A.; Kumar, S. Lentils in production and food systems in West Asia and Africa. Grain Legumes 2011, 57, 46–48. [Google Scholar]
- Kumar, S.K.; Barpete, S.; Kumar, J.; Gupta, P.; Sarker, A. Global lentil production: Constraints and strategies. SATSA Mukhapatra–Annu. Tech. Issue 2013, 17, 1–13. [Google Scholar]
- Idrissi, O.; Sakr, B.; Dahan, R.; Houasli, C.; Nsarellah, N.; Udupa, S.M.; Sarker, A. Registration of ‘Chakkouf’lentil in Morocco. J. Plant Regist. 2012, 6, 268–272. [Google Scholar] [CrossRef] [Green Version]
- Heath, K.D.; Tiffin, P. Context dependence in the coevolution of plant and rhizobial mutualists. Proc. R. Soc. B Biol. Sci. 2007, 274, 1905–1912. [Google Scholar] [CrossRef] [Green Version]
- Ferguson, B.J.; Mens, C.; Hastwell, A.H.; Zhang, M.; Su, H.; Jones, C.H.; Chu, X.; Gresshoff, P.M. Legume nodulation: The host controls the party. Plant Cell Environ. 2019, 42, 41–51. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Raymond, J.; Siefert, J.L.; Staples, C.R.; Blankenship, R.E. The natural history of nitrogen fixation. Mol. Biol. Evol. 2004, 21, 541–554. [Google Scholar] [CrossRef] [Green Version]
- Schlaman, H.R.; Okker, R.J.; Lugtenberg, B.J. Regulation of nodulation gene expression by NodD in rhizobia. J. Bacteriol. 1992, 174, 5177. [Google Scholar] [CrossRef] [Green Version]
- Prévost, D.; Antoun, H. Root nodule bacteria and symbiotic nitrogen fixation. Soil Sampl. Methods Anal. 2007, 379–398. [Google Scholar] [CrossRef]
- Vincent, J.M. A Manual for the Practical Study of the Root-Nodule Bacteria; Blackwell Scientific: Oxford, UK; Edinburgh, UK, 1970. [Google Scholar] [CrossRef]
- Somasegaran, P.; Hoben, H.J. Handbook for Rhizobia: Methods in Legume-Rhizobium Technology; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012; ISBN 1461383757. [Google Scholar] [CrossRef]
- Kaewnum, S.; Prathuangwong, S.; Burr, T.J. Aggressiveness of Xanthomonas axonopodis pv. glycines isolates to soybean and hypersensitivity responses by other plants. Plant Pathol. 2005, 54, 409–415. [Google Scholar] [CrossRef]
- Howieson, J.G.; Dilworth, M.J. Working with Rhizobia; Australian Centre for International Agricultural Research: Canberra, Australia, 2016. [Google Scholar]
- Broughton, W.J.; Dilworth, M.J. Control of leghaemoglobin synthesis in snake beans. Biochem. J. 1971, 125, 1075–1080. [Google Scholar] [CrossRef] [Green Version]
- Jackson, M.L. Soil Chemical Analysis Prentice; Hall of India Private Limited: New Delhi, India, 1967; p. 498. [Google Scholar] [CrossRef]
- Spss, I. IBM SPSS Statistics for Windows, Version 20.0.; IBM Corp.: New York, NY, USA, 2011; p. 440. [Google Scholar]
- Reasoner, D.J.; Geldreich, E.E. A new medium for the enumeration and subculture of bacteria from potable water. Appl. Environ. Microbiol. 1985, 49, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Kowalchuk, G.A.; De Bruijn, F.; Akkermans, A.D.; Head, I.M.; Van Elsas, J.D. Molecular Microbial Ecology Manual; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2004; Volume 1, ISBN 1402021763. [Google Scholar]
- Rodriguez, R.L.; Tait, R.C. Spectrophotometric assay of DNA concentration and purity. In Recombinant DNA Techniques: An Introduction; Wiley Online Library: Hoboken, NJ, USA, 1983; pp. 42–44. [Google Scholar]
- Gil-Serrano, A.; Del Junco, A.S.; Tejero-Mateo, P.; Megias, M.; Caviedes, M.A. Structure of the extracellular polysaccharide secreted by Rhizobium leguminosarum var. phaseoli CIAT 899. Carbohydr. Res. 1990, 204, 103–107. [Google Scholar] [CrossRef]
- Gaunt, M.W.; Turner, S.L.; Rigottier-Gois, L.; Lloyd-Macgilp, S.A.; Young, J.P. Phylogenies of atpD and recA support the small subunit rRNA-based classification of rhizobia. Int. J. Syst. Evol. Microbiol. 2001, 51, 2037–2048. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martens, M.; Delaere, M.; Coopman, R.; De Vos, P.; Gillis, M.; Willems, A. Multilocus sequence analysis of Ensifer and related taxa. Int. J. Syst. Evol. Microbiol. 2007, 57, 489–503. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Altschul, S.F.; Madden, T.L.; Schäffer, A.A.; Zhang, J.; Zhang, Z.; Miller, W.; Lipman, D.J. Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic Acids Res. 1997, 25, 3389–3402. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumar, S.; Stecher, G.; Li, M.; Knyaz, C.; Tamura, K. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 2018, 35, 1547–1549. [Google Scholar] [CrossRef]
- Felsenstein, J. Evolutionary trees from DNA sequences: A maximum likelihood approach. J. Mol. Evol. 1981, 17, 368–376. [Google Scholar] [CrossRef]
- Eddy, S.R. Where did the BLOSUM62 alignment score matrix come from? Nat. Biotechnol. 2004, 22, 1035–1036. [Google Scholar] [CrossRef]
Lentil Accession | Origin | Number of Isolates | Isolates Number (#) |
---|---|---|---|
IG 69452 | NA 1 | 26 | 1159N11; 1159N112; 1159N12; 1159N12; 1159N13; 1159N14; 1159N15; 1159N21; 1159N22; 1159N23; 1159N24; 1159N25; 1159N31; 1159N32; 1159N33; 1159N34; 1159N35; 1159N43; 1159N44; 1159N45; 1159N51; 1159N52; 1159N53; 1159N54; 1159N541; 1159N55 |
IG 73856 | NA | 5 | 1574N13; 1574N2; 1574N3; 1574N4; 1574N52 |
IG 789 | Egypt | 6 | 318N1; 318N21; 318N211; 318N2111; 318N42; 318N42 |
IG 1737 | Ethiopia | 4 | 996N2; 512N13; 512N3; 512N4 |
IG 315 | Ethiopia | 5 | 115N1; 115N2; 115N3; 115N4; 115N5 |
IG 69452 | NA | 5 | 1145N1; 1145N2; 1145N3; 1145N4; 1145N5 |
IG 795 | Egypt | 5 | 322N1; 322N2; 322N32; 322N5; 322N51 |
IG 4351 | Iran | 5 | 938N1; 938N2; 938N3; 938N4; 938N13 |
IG 2292 | Iran | 4 | 686N3; 686N4; 686N1; 686N5 |
IG 4774 | Romania | 3 | 512N1; 996N4; 996N5 |
Genes | nodD | 16S rRNA-rpoB-recA-gyrB | 16S rRNA | gyrB | rpoB | |||||
---|---|---|---|---|---|---|---|---|---|---|
Icong | p-Value | Icong | p-Value | Icong | p-Value | Icong | p-Value | Icong | p-Value | |
nodA | 1.11 | 0.38 | - | - | - | - | - | - | ||
16S rRNA | - | - | 0.88 | 7.45 | - | - | - | - | - | - |
gyrB | - | - | 1.53 | 0.001 | 1.04 | 0.91 | - | - | - | - |
rpoB | - | - | 1.09 | 0.48 | 1.15 | 0.22 | 0.88 | 7.45 | - | - |
recA | - | - | 1.09 | 0.48 | 0.92 | 4.48 | 1.25 | 0.06 | 0.77 | 34.41 |
Locus | AL (bp) | NVS | VS (%) | G + C (%) | DR | PDM | R |
---|---|---|---|---|---|---|---|
16S rRNA | 807 | 89 | 11.03 | 52.30 | 0–0.096 | 0.04 | 0.50 |
rpoB | 477 | 332 | 69.60 | 59.11 | 0–2.040 | 0.32 | 2.75 |
recA | 413 | 75 | 18.16 | 62.62 | 0–0.184 | 0.04 | 1.75 |
gyrB | 571 | 152 | 26.62 | 59.77 | 0–0.310 | 0.07 | 0.99 |
nodA | 600 | 24 | 4.00 | 57.99 | 0–0.034 | 0.01 | 0.91 |
nodD | 754 | 20 | 2.65 | 55.12 | 0–0.035 | 0.01 | 1.34 |
16S rRNA-rpoB-recA-gyrB | 2194 | 648 | 16.55 | 58.53 | 0–0.168 | 0.06 | 1.13 |
R. acidisoli FH23T | R. laguerreae FB206T | R. elti CNPSO679 | R. anhuiense CCBAU23252T | R. leucaenae USDA9039 | R. leguminosarum CCBAU15396 | R. gallicum R602 | R. multihospitium CCBAU83401T | R. pisi DSM 30132T | |
---|---|---|---|---|---|---|---|---|---|
R. acidisoli FH23T | - | ||||||||
R. laguerreae FB206T | 79% | - | |||||||
R. elti CNPSO679 | 78% | 88% | - | ||||||
R.anhuiense CCBAU23252T | 80% | 93% | 89% | - | |||||
R. leucaenae USDA9039 | 79% | 89% | 88% | 88% | - | ||||
R. leguminosarum CCBAU 15396 | 80% | 96% | 90% | 94% | 88% | - | |||
R. gallicum R602 | 79% | 88% | 88% | 89% | 92% | 88% | - | ||
R. multihospitium CCBAU83401T | 80% | 89% | 89% | 89% | 93% | 89% | 90% | - | |
R. pisi DSM30132T | 79% | 96% | 90% | 94% | 90% | 98% | 90% | 89% | - |
Targeted Genes | Primers | Sequences | PCR Conditions | Reference |
---|---|---|---|---|
16S rRNA | 16S 27F 16S 1492R | 5′-AGAGTTTGATCCTGGCTCAG-3′ 5′-ACGGTTACCTTGTTACGACTT-3′ | 5 min 95 °C, 30 × (45 s 95 °C, 45 s 50 °C, 2 min 72 °C), 10 min 72 °C | [73] |
recA | recAF recAR | 5′-ATCGAGCGGTCGTTCGGCAAGGG-3′ 5′-TTGCGCAGCGCCTGGCTCAT-3′ | 5 min 95 °C, 35 × (45 s 95 °C, 60 s 53 °C, 40 s 72 °C), 7 min 72 °C | [73] |
gyrB | gyrB343F gyrB1043 | 5′-TTCGACCAGAAYTCCTAYAAGG-3′ 5′-AGCTTGTCCTTSGTCTGCG-3′ | 5 min 95 °C, 35 × (45 s 95 °C, 60 s 53 °C, 40 s 72 °C), 7 min 72 °C | [74] |
rpoB | rpoB83F rpoB1061R | 5′-CCTSATCGAGGTTCACAGAAGGC-3′ 5′-AGCGTGTTGCGGATATAGGCG-3′ | 5 min 95 °C, 30 × (45 s 95 °C, 45 s 46 °C, 2 min 72 °C), 10 min 72 °C | [74] |
nodA | nodAF nodCAR | 5′-TGCRGTGGAARNTRNNCTGGGAAA-3′ 5′-GNCCGTCRTCRAAWGTCARGTA-3′ | 5 min 95 °C, 30 × (45 s 94 °C, 1 min 50 °C, 2 min 72 °C), 7 min 72 °C | [74] |
nodD | Y5 Y6 | 5′-ATGCGKTTYARRGGMCTN GAT CT-3′ 5′-CGCAWCCANATRTTYCCNGGRTC-3′ | 5 min 95 °C, 30 × (45 s 94 °C, 1 min 58 °C, 2 min 72 °C), 7 min 72 °C | [73] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sijilmassi, B.; Filali-Maltouf, A.; Boulahyaoui, H.; Kricha, A.; Boubekri, K.; Udupa, S.; Kumar, S.; Amri, A. Assessment of Genetic Diversity and Symbiotic Efficiency of Selected Rhizobia Strains Nodulating Lentil (Lens culinaris Medik.). Plants 2021, 10, 15. https://doi.org/10.3390/plants10010015
Sijilmassi B, Filali-Maltouf A, Boulahyaoui H, Kricha A, Boubekri K, Udupa S, Kumar S, Amri A. Assessment of Genetic Diversity and Symbiotic Efficiency of Selected Rhizobia Strains Nodulating Lentil (Lens culinaris Medik.). Plants. 2021; 10(1):15. https://doi.org/10.3390/plants10010015
Chicago/Turabian StyleSijilmassi, Badreddine, Abdelkarim Filali-Maltouf, Hassan Boulahyaoui, Aymane Kricha, Kenza Boubekri, Sripada Udupa, Shiv Kumar, and Ahmed Amri. 2021. "Assessment of Genetic Diversity and Symbiotic Efficiency of Selected Rhizobia Strains Nodulating Lentil (Lens culinaris Medik.)" Plants 10, no. 1: 15. https://doi.org/10.3390/plants10010015
APA StyleSijilmassi, B., Filali-Maltouf, A., Boulahyaoui, H., Kricha, A., Boubekri, K., Udupa, S., Kumar, S., & Amri, A. (2021). Assessment of Genetic Diversity and Symbiotic Efficiency of Selected Rhizobia Strains Nodulating Lentil (Lens culinaris Medik.). Plants, 10(1), 15. https://doi.org/10.3390/plants10010015