Climate Variables Outstrip Deadwood Amount: Desiccation as the Main Trigger for Buxbaumia viridis Occurrence
Abstract
:1. Introduction
2. Results
3. Discussion
3.1. Habitat Preferences
3.2. Predictors of the Occurrence of Buxbaumia viridis
3.3. Implications for Conservation
4. Materials and Methods
4.1. Study Area and Field Methods
4.2. Climate Data
4.3. Deadwood Data
4.4. Statistics
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wolf, T. Untersuchungen zu den Entwicklungsstadien von Buxbaumia viridis (Lam. & DC.) Moug. & Nestl. (Grünes Koboldmoos). Carolinea 2015, 73, 5–15. [Google Scholar]
- Callaghan, D.; Taylor, S. Classification of Sporophyte Stages in Buxbaumia viridis. Field Bryol. 2017, 117, 5–7. [Google Scholar]
- Holá, E.; Vrba, J.; Linhartová, R.; Novozámská, E.; Zmrhalová, M.; Plášek, V.; Kučera, J. Thirteen Years on the Hunt for Buxbaumia viridis in the Czech Republic: Still on the Tip of the Iceberg? Acta Soc. Bot. Pol. 2014, 83, 137–145. [Google Scholar] [CrossRef] [Green Version]
- Spitale, D.; Mair, P. Predicting the Distribution of a Rare Species of Moss: The Case of Buxbaumia viridis (Bryopsida, Buxbaumiaceae). Plant Biosyst. 2017, 151, 9–19. [Google Scholar] [CrossRef]
- Wiklund, K. Phosphorus Concentration and ph in Decaying Wood Affect Establishment of the Red-Listed Moss Buxbaumia viridis. Can. J. Bot. 2003, 81, 541–549. [Google Scholar] [CrossRef]
- Wiklund, K. Substratum Preference, Spore Output and Temporal Variation in Sporophyte Production of the Epixylic Moss Buxbaumia viridis. J. Bryol. 2002, 24, 187–195. [Google Scholar] [CrossRef]
- Ruete, A.; Wiklund, K.; Snäll, T. Hierarchical Bayesian Estimation of the Population Viability of an Epixylic Moss. J. Ecol. 2012, 100, 499–507. [Google Scholar] [CrossRef]
- Kropik, M.; Zechmeister, H.G.; Fuxjäger, C. The fate of bryophyte sporophytes—Phenology and vectors of Buxbaumia viridis in the Kalkalpen National Park, Austria. Plants 2020, 9, 1320. [Google Scholar] [CrossRef]
- European Environment Agency. Conservation Status and Trends of Habitats and Species. Available online: https://www.eea.europa.eu/themes/biodiversity/state-of-nature-in-the-eu/article-17-national-summary-dashboards/conservation-status-and-trends (accessed on 8 May 2020).
- Gignac, L.D. Invited essay—New frontiers in bryology and lichenology—Bryophytes as indicators of climate change. Bryologist 2001, 104, 410–420. [Google Scholar] [CrossRef]
- Pócs, T. Signs of Climate Change in the Bryoflora of Hungary. In Bryophyte Ecology and Climate Change; Tuba, Z., Slack, N.G., Stark, L.R., Eds.; Cambridge University Press: Cambridge, UK, 2011; pp. 359–370. [Google Scholar]
- Slack, N.G. The Ecological Value of Bryophytes as Indicators of Climate Change. In Bryophyte Ecology and Climate Change; Tuba, Z., Slack, N.G., Stark, L.R., Eds.; Cambridge University Press: Cambridge, UK, 2011; pp. 3–12. [Google Scholar]
- Scarpitta, A.B.; Bardat, J.; Lalanne, A.; Vellend, M. Long-term community change: Bryophytes are more responsive than vascular plants to nitrogen deposition and warming. J. Veg. Sci. 2017, 28, 1220–1229. [Google Scholar] [CrossRef]
- Zechmeister, H.G.; Kropik, M.; Popovtschak, M.; Scharrer-Liska, G. Bryophytes in a latrine as indicators of climate change in the 17th century. Veg. Hist. Archaeobot. 2019, 28, 575–581. [Google Scholar] [CrossRef] [Green Version]
- Proctor, M.C.F. Climatic Responses and Limits of Bryophytes: Comparisons and Contrasts with Vascular Plants. In Bryophyte Ecology and Climate Change; Tuba, Z., Slack, N.G., Stark, L.R., Eds.; Cambridge University Press: Cambridge, UK, 2011; pp. 35–54. [Google Scholar]
- Proctor, M.C.F.; Tuba, Z. Poikilohydry and homoihydry: Antithesis or spectrum of possibilities? New Phytol. 2002, 156, 327–349. [Google Scholar] [CrossRef] [Green Version]
- Proctor, M.C.F.; Oliver, M.J.; Wood, A.J.; Alpert, P.; Stark, L.R.; Cleavitt, N.L.; Mishler, B.D. Desiccation-tolerance in bryophytes: A review. Bryologist 2007, 110, 595–621. [Google Scholar] [CrossRef]
- Bates, J.W.; Thompson, K.; Grime, J.P. Effects of simulated long-term climatic change on the bryophytes of a limestone grassland community. Glob. Chang. Biol. 2005, 11, 757–769. [Google Scholar] [CrossRef]
- Ruete, A.; Yang, W.; Barring, L.; Stenseth, N.C.; Snäll, T. Disentangling Effects of Uncertainties on Population Projections: Climate Change Impact on an Epixylic Bryophyte. R. Soc. Lond. B Biol. Sci. 2012, 279, 3098–3105. [Google Scholar] [CrossRef] [PubMed]
- Hodgetts, N.; Blockeel, T.; Konstantinova, N.; Lönnell, N.; Papp, B.; Schnyder, N. Buxbaumia viridis; The IUCN Red List of Threatened Species 2019: E.T84329324A87793246; Available online: https://www.iucnredlist.org/species/84329324/87793246 (accessed on 5 May 2020).
- Lassauce, A.; Paillet, Y.; Jactel, H.; Bouget, C. Deadwood as a surrogate for forest biodiversity: Meta-analysis of correlations between deadwood volume and species richness of saproxylic organisms. Ecol. Indic. 2011, 11, 1027–1039. [Google Scholar] [CrossRef]
- Paillet, Y.; Berges, L.; Hjalten, J.; Odor, P.; Avon, C.; Bernhardt-Romermann, M.; Bijlsma, R.J.; De Bruyn, L.; Fuhr, M.; Grandin, U.; et al. Biodiversity Differences between Managed and Unmanaged Forests: Meta-Analysis of Species Richness in Europe. Conserv. Biol. 2010, 24, 101–112. [Google Scholar] [CrossRef]
- Düggelin, C.; Kellner, M. Schweizerisches Forstinventar. Feldaufnahme-Anleitung 2017. Available online: https://www.dora.lib4ri.ch/wsl/islandora/object/wsl:16234 (accessed on 13 May 2020).
- Odor, P.; Van Hees, A.F.M. Preferences of Dead Wood Inhabiting Bryophytes for Decay Stage, Log Size and Habitat Types in Hungarian Beech Forests. J. Bryol. 2004, 26, 79–95. [Google Scholar] [CrossRef]
- Duckett, J.G.; Burch, J.; Fletcher, P.W.; Matcham, H.W.; Read, D.J.; Russell, A.J.; Pressel, S. In vitro cultivation of bryophytes: A review of practicalities, problems, progress and promise. J. Bryol. 2004, 26, 3–20. [Google Scholar] [CrossRef]
- Pardow, A.; Lakatos, M. Desiccation Tolerance and Global Change: Implications for Tropical Bryophytes in Lowland Forests. Biotropica 2013, 45, 27–36. [Google Scholar] [CrossRef]
- Dilks, T.J.K.; Proctor, M.C.F. Pattern of Recovery of Bryophytes after Desiccation. J. Bryol. 1974, 8, 97–115. [Google Scholar] [CrossRef]
- Tuba, Z. Bryophyte Physiological Processes in a Changing Climate: An Overview. In Bryophyte Ecology and Climate Change; Tuba, Z., Slack, N.G., Stark, L.R., Eds.; Cambridge University Press: Cambridge, UK, 2011; pp. 13–32. [Google Scholar]
- Wiklund, K.; Rydin, H. Ecophysiological Constraints on Spore Establishment in Bryophytes. Funct. Ecol. 2004, 18, 907–913. [Google Scholar] [CrossRef]
- Deme, J.; Erzberger, P.; Kovacs, D.; Toth, I.Z.; Csiky, J. Buxbaumia viridis (Moug. ex Lam. & DC.) Brid. ex Moug. & Nestl. in Hungary predominantly terricolous and found in managed forests. Cryptogam. Bryol. 2020, 41, 89–103. [Google Scholar] [CrossRef]
- Spitale, D. The interaction between elevational gradient and substratum reveals how bryophytes respond to the climate. J. Veg. Sci. 2016, 27, 844–853. [Google Scholar] [CrossRef]
- Grims, F.; Köckinger, H.; Krisai, R.; Schriebl, A.; Suanjak, M.; Zechmeister, H.; Ehrendorfer, F. Die Laubmoose Österreichs. Catalogus Florae Austriae, II. Teil, Bryophyten (Moose), Heft 1, Musci (Laubmoose); Österreichische Akademie der Wissenschaften: Wien, Austria, 1999. [Google Scholar]
- Juratzka, J. Die Laubmoosflora von Oesterreich-Ungarn; Zoologisch-Botanische Gesellschaft: Wien, Austria, 1882. [Google Scholar]
- Turetsky, M.R.; Bond-Lamberty, B.; Euskirchen, E.; Talbot, J.; Frolking, S.; McGuire, A.D.; Tuittila, E.S. The resilience and functional role of moss in boreal and arctic ecosystems. New Phytol. 2012, 196, 49–67. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nakatsubo, T. Predicting the impact of climatic warming on the carbon balance of the moss Sanionia uncinata on a maritime Antarctic island. J. Plant Res. 2002, 115, 99–106. [Google Scholar] [CrossRef]
- IPCC. Synthesis Report. In Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Core Writing Team, Pachauri, R.K., Meyer, L.A., Eds.; IPCC: Geneva, Switzerland, 2014; p. 151. [Google Scholar]
- Lexer, M.J.; Honninger, K.; Scheifinger, H.; Matulla, C.; Groll, N.; Kromp-Kolb, H.; Schadauer, K.; Starlinger, F.; Englisch, M. The sensitivity of Austrian forests to scenarios of climatic change: A large-scale risk assessment based on a modified gap model and forest inventory data. For. Ecol. Manag. 2002, 162, 53–72. [Google Scholar] [CrossRef]
- Lindner, M.; Maroschek, M.; Netherer, S.; Kremer, A.; Barbati, A.; Garcia-Gonzalo, J.; Seidl, R.; Delzon, S.; Corona, P.; Kolstrom, M.; et al. Climate change impacts, adaptive capacity, and vulnerability of European forest ecosystems. For. Ecol. Manag. 2010, 259, 698–709. [Google Scholar] [CrossRef]
- Zechmeister, H.G.; Kropik, M.; Schröck, C. Erfassung der Moose im Anhang II Der FFH-Richtlinie im Nationalpark Kalkalpen. 2017. Available online: https://www.kalkalpen.at/de/Erfassung_der_FFH_Moose_im_Nationalpark_Kalkalpen (accessed on 4 September 2020).
- Köckinger, H. Die Horn- und Lebermoose Österreichs (Anthocerotophyta und Marchantiophyta). In Catalogus Florae Austriae, II, Teil; Österreichische Akademie der Wissenschaften: Wien, Austria, 2017. [Google Scholar]
- Pauli, H.; Gottfried, M.; Dullinger, S.; Abdaladze, O.; Akhalkatsi, M.; Alonso, J.L.B.; Coldea, G.; Dick, J.; Erschbamer, B.; Calzado, R.F.; et al. Recent Plant Diversity Changes on Europe’s Mountain Summits. Science 2012, 336, 353–355. [Google Scholar] [CrossRef] [Green Version]
- Steinbauer, M.J.; Grytnes, J.A.; Jurasinski, G.; Kulonen, A.; Lenoir, J.; Pauli, H.; Rixen, C.; Winkler, M.; Bardy-Durchhalter, M.; Barni, E.; et al. Accelerated increase in plant species richness on mountain summits is linked to warming. Nature 2018, 556, 231–234. [Google Scholar] [CrossRef]
- He, X.L.; He, K.S.; Hyvonen, J. Will bryophytes survive in a warming world? Perspect. Plant Ecol. Evol. Syst. 2016, 19, 49–60. [Google Scholar] [CrossRef]
- Cornelissen, J.H.C.; Lang, S.I.; Soudzilovskaia, N.A.; During, H.J. Comparative cryptogam ecology: A review of bryophyte and lichen traits that drive biogeochemistry. Ann. Bot. 2007, 99, 987–1001. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Proctor, M.C.F. Mosses and alternative adaptation to life on land. New Phytol. 2000, 148, 1–3. [Google Scholar] [CrossRef]
- Köckinger, H.; Suanjak, M.; Schriebl, A.; Schröck, C. Die Moose Kärntens; Verlag des Naturwissenschaftlichen Vereins für Kärnten: Klagenfurt, Austria, 2008; Volume 4. [Google Scholar]
- Zechmeister, H.G.; Hagel, H.; Gendo, A.; Osvaldik, V.; Patek, M.; Prinz, M.; Schröck, C.; Köckinger, H. Die Rote Liste der Moose Niederösterreichs. Wiss. Wiss. Mitt. Niederösterreichischen Landesmus. 2013, 24, 7–126. [Google Scholar]
- Schröck, C.; Köckinger, H.; Schlüsselmayr, G. Katalog und Rote Liste der Moose Oberösterreichs. Stapfia 2014, 100, 1–247. [Google Scholar]
- Schröck, C.; Amann, G.; Köckinger, H.; Krisai, R.; Schlüsselmayr, G.; Zechmeister, H. Stellungnahme zum Abdeckungsgrad der österreichischen N2000-Gebiete gemäß FFH-Richtlinie im Bereich der Organismengruppe der Moose. Available online: https://www.researchgate.net/publication/310467667_Stellungnahme_zum_Abdeckungsgrad_der_osterreichischen_N2000-Gebiete_gemass_FFH-Richtlinie_im_Bereich_der_Organismengruppe_der_Moose (accessed on 10 May 2020).
- Hiebl, J.; Frei, C. Daily temperature grids for Austria since 1961—Concept, creation and applicability. Theor. Appl. Climatol. 2016, 124, 161–178. [Google Scholar] [CrossRef]
- Hiebl, J.; Frei, C. Daily precipitation grids for Austria since 1961—Development and evaluation of a spatial dataset for hydroclimatic monitoring and modelling. Theor. Appl. Climatol. 2018, 132, 327–345. [Google Scholar] [CrossRef]
- Proctor, M.C.F. Physiological Ecology: Water Relations, Light and Temperature Responses, Carbon Balance. In Bryophyte Ecology; Smith, A.J.E., Ed.; Chapman and Hall: London, UK, 1982; pp. 333–381. [Google Scholar]
- Vanderpoorten, A.; Goffinet, B. Introduction to Bryophytes; Cambridge University Press: New York, NY, USA, 2009; ISBN 978-0-521-70073-3. [Google Scholar]
- Steiner, H.; Oettel, J.; Langmaier, M.; Lipp, S.; Frank, G. Anleitung zur Wiederholungsaufnahme in Naturwaldreservaten. Bundesforschungszentrum Wald BFW-Dok. 2018, 26, 62. [Google Scholar]
- Naimi, B.; Hamm, N.; Groen, T.A.; Skidmore, A.K.; Toxopeus, A.G. Where is positional uncertainty a problem for species distribution modelling? Ecography 2014, 37, 191–203. [Google Scholar] [CrossRef]
- Calcagno, V. Model Selection and Multimodel Inference Made Easy. R Package Version 1.0.8. Available online: https://CRAN.R-project.org/package=glmulti (accessed on 2 November 2020).
- Fox, J.; Weisberg, S. An R Companion to Applied Regression; Sage: Thousand Oaks, CA, USA, 2019. [Google Scholar]
- Kuhn, M. Building Predictive Models in R Using the caret Package. J. Stat. Softw. 2008, 28, 1–26. [Google Scholar] [CrossRef] [Green Version]
- Allouche, O.; Tsoar, A.; Kadmon, R. Assessing the accuracy of species distribution models: Prevalence, kappa and the true skill statistic (TSS). J. Appl. Ecol. 2006, 43, 1223–1232. [Google Scholar] [CrossRef]
- R Development Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2019. [Google Scholar]
Temperature | Temp_Mean | Mean Annual Temperature |
---|---|---|
tempsum_gt_15 | temperature sum of days with more than 15 °C mean temperature | |
days_over_tmean_10 | number of days above 10 °C mean temperature | |
Precipitation | prec_sum | annual precipitation sum |
precgt0C | annual precipitation sum of days with a mean temperature above 0 °C | |
Desiccation | p0cont | maximum number of consecutive days without precipitation |
p0cont_gt_20 | maximum number of consecutive days without precipitation and at least 20 °C |
Estimate | Std.Error | z-Value | p-Value | |
---|---|---|---|---|
AIC = 173.27; R2 = 0.312 | ||||
p0cont_gt_20 | −0.934 | 0.157 | −5.949 | 0.000 |
deadwood | 0.009 | 0.004 | 2.053 | 0.040 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kropik, M.; Zechmeister, H.G.; Moser, D. Climate Variables Outstrip Deadwood Amount: Desiccation as the Main Trigger for Buxbaumia viridis Occurrence. Plants 2021, 10, 61. https://doi.org/10.3390/plants10010061
Kropik M, Zechmeister HG, Moser D. Climate Variables Outstrip Deadwood Amount: Desiccation as the Main Trigger for Buxbaumia viridis Occurrence. Plants. 2021; 10(1):61. https://doi.org/10.3390/plants10010061
Chicago/Turabian StyleKropik, Michaela, Harald G. Zechmeister, and Dietmar Moser. 2021. "Climate Variables Outstrip Deadwood Amount: Desiccation as the Main Trigger for Buxbaumia viridis Occurrence" Plants 10, no. 1: 61. https://doi.org/10.3390/plants10010061
APA StyleKropik, M., Zechmeister, H. G., & Moser, D. (2021). Climate Variables Outstrip Deadwood Amount: Desiccation as the Main Trigger for Buxbaumia viridis Occurrence. Plants, 10(1), 61. https://doi.org/10.3390/plants10010061