Immunomodulatory Effect of Helleborus purpurascens Waldst. & Kit.
Abstract
:1. Introduction
2. Results and Discussion
2.1. Chemical Analysis
2.2. In Vitro Assays
2.3. In Vivo Assay
3. Materials and Methods
3.1. Plant Material
3.2. Preparation of the Hellebore Extracts
3.3. HPTLC Analysis
3.4. HPLC Analysis
3.5. In Vitro Tests
3.6. In Vivo Assay of the Immunostimulatory Potential
3.6.1. Animals and Housing Conditions
3.6.2. Ethical Statement
3.6.3. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Maior, M.; Dobrotă, C. Natural compounds with important medical potential found in Helleborus sp. Open Life Sci. 2013, 8, 272–285. [Google Scholar] [CrossRef] [Green Version]
- Kerek, F. Boicil, a new and very efficient antialgic, spasmolytic, and blood vessel regulating drug obtained from the plant Helleborus. F. Biochem. Cell B 2005, 37, 2239–2253. [Google Scholar]
- Nueleanu, V.I. The effect of the unspecific therapy with hellebore (Helleborus purpurascens) on young sheep. In Proceedings of the 43rd Croatian and 3rd International Symposium on Agriculture, Opatija, Croatia, 18–21 February 2008; pp. 791–794. [Google Scholar]
- Davidovic, V.; Todorovic, J.; Stojanović, B.; Relic, R. Plant usage in protecting the farm animal health. Biotehnol. Anim. Husb. 2012, 28, 87–98. [Google Scholar] [CrossRef]
- Kerek, F. The structure of the digitalis like and natriuretic factors identified as macrocyclic derivatives of the inorganic carbon suboxide. Hypertens. Res. 2000, 23, 33–38. [Google Scholar] [CrossRef] [Green Version]
- Szegli, G.; Herold, A.; Cremer, L.; Călugaru, A.; Matache, C.; Durbaca, S. Immunpharmacology studies on MCS-18. Investig. Med. Prod. Doss. 2005, 2, 1–42. [Google Scholar]
- Neacsu, C.; Ciobanu, C.; Barbu, I.; Toader, O.; Szegli, G.; Kerek, F.; Babes, A. Substance MCS-18 Isolated from Helleborus Purpurascens Is a Potent Antagonist of the Capsaicin Receptor, TRPV1, in Rat Cultured Sensory Neurons. Physiol. Res. 2010, 59, 289–298. [Google Scholar] [CrossRef] [PubMed]
- Dietel, B.; Muench, R.; Kuehn, C.; Kerek, F.; Steinkasserer, A.; Achenbach, S.; Garlichs, C.D.; Zinser, E. MCS-18, a natural product isolated from Helleborus purpurascens, inhibits maturation of dendritic cells in ApoE-deficient mice and prevents early atherosclerosis progression. Atheroscler 2014, 235, 263–272. [Google Scholar] [CrossRef] [PubMed]
- Kerek, F. Peptide Having a High Cysteine Content. U.S. Patent 7750114 B2, 6 July 2010. [Google Scholar]
- Wagner, H.; Bladt, S. Plant Drug Analysis-A Thin Layer Chromatography Atlas, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 1996; p. 120. [Google Scholar]
- Yang, F.-Y.; Su, Y.-F.; Wang, Y.; Chai, X.; Han, X.; Wu, Z.-H.; Gao, X.-M. Bufadienolides and phytoecdystones from the rhizomes of Helleborus thibetanus (Ranunculaceae). Biochem. Syst. Ecol. 2010, 38, 759–763. [Google Scholar] [CrossRef]
- Das, N.; Mishra, S.K.; Bishayee, A.; Ali, E.S.; Bishayee, A. The phytochemical, biological, and medicinal attributes of phytoecdysteroids: An updated review. Acta Pharm. Sin. B 2020, 11, 1740–1766. [Google Scholar] [CrossRef] [PubMed]
- Verma, R.P.; Hansch, C. An Approach towards the Quantitative Structure-Activity Relationships of Caffeic Acid and its Derivatives. Chem. Bio. Chem. 2004, 5, 1188–1195. [Google Scholar] [CrossRef] [PubMed]
- Martucciello, S.; Paolella, G.; Muzashvili, T.; Skhirtladze, A.; Pizza, C.; Caputo, I.; Piacente, S. Steroids from Helleborus caucasicus reduce cancer cell viability inducing apoptosis and GRP78 down-regulation. Chem. Interact. 2018, 279, 43–50. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.-Z.; Zhang, H.-W.; Fan, H.; Liang, X.-F.; Song, B.; Chen, H.; Huang, W.-L.; Yue, Z.-G.; Song, X.-M.; Liu, J.-L. Steroidal constituents from Helleborus thibetanus and their cytotoxicities. Chin. J. Nat. Med. 2019, 17, 778–784. [Google Scholar] [CrossRef]
- Ma, L.; Meng, Y.; Tu, C.; Cao, X.; Wang, H.; Li, Y.; Man, S.; Zhou, J.; Li, M.; Liu, Z.; et al. A cardiac glycoside HTF-1 isolated from Helleborus thibetanus Franch displays potent in vitro anti-cancer activity via caspase-9, MAPK and PI3K-Akt-mTOR pathways. Eur. J. Med. Chem. 2018, 158, 743–752. [Google Scholar] [CrossRef] [PubMed]
- Yokosuka, A.; Iguchi, T.; Kawahata, R.; Mimaki, Y. Cytotoxic bufadienolides from the whole plants of Helleborus foetidus. Phytochem. Lett. 2018, 23, 94–99. [Google Scholar] [CrossRef]
- Iguchi, T.; Yokosuka, A.; Tamura, N.; Takano, S.; Mimaki, Y. Bufadienolide glycosides and bufadienolides from the whole plants of Helleborus lividus, and their cytotoxic activity. Phytochemistry 2020, 176, 112415. [Google Scholar] [CrossRef] [PubMed]
Scheme 100 | Reference Compound (mg/100 g Dry Extract) | |
---|---|---|
β-Ecdysone | Caffeic Acid | |
H1 | 216.64 ± 0.5 | 56.48 ± 0.43 |
H2 | 143.16 ± 0.48 | 36.41 ± 0.35 |
Group I C | Group II D | Group III D + L | Group IV D + H1 | Group V D + H2 | |
---|---|---|---|---|---|
WBC (×109/L) | 4.87 ± 1.254 | 2.77 ± 0.96 | 3.4 ± 0.81 | 2.82 ± 0.7 | 5.09 ± 2.85 |
LYM (×109/L) | 3.07 ± 0.944 | 1.37 ± 0.33 | 1.69 ± 0.74 | 1.11 ± 0.31 | 1.17 ± 0.27 |
GRA (×109/L) | 1.77 ± 0.695 | 1.16 ± 0.44 | 1.39 ± 0.31 | 1.46 ± 0.28 | 3.57 ± 2.84 |
LY% | 63.3 ± 10.19 | 49.8 ± 4.16 | 48.8 ± 11.4 | 39.4 ± 2.48 | 30.7 ± 22.3 |
GR% | 36 ± 10.1 | 41.8 ± 1.26 | 41.5 ± 10.4 | 52.4 ± 3.56 | 63.3 ± 18.6 |
RBC | 8.8 ± 0.242 | 9.21 ± 0.41 | 8.87 ± 0.58 | 8.32 ± 1.3 | 9.29 ± 0.32 |
HGB | 17 ± 0.058 | 17.6 ± 0.71 | 17.6 ± 0.67 | 17.5 ± 0.67 | 17.8 ± 0.26 |
HCT% | 47.8 ± 1.518 | 50 ± 2.73 | 49.6 ± 2.76 | 49.5 ± 1.67 | 50.4 ± 0.91 |
MCV (fl) | 54.3 ± 0.577 | 54.3 ± 1.15 | 56 ± 1.73 | 55 ± 1 | 54 ± 1 |
MCH (pg) | 19.4 ± 0.513 | 19.1 ± 0.12 | 19.9 ± 1.02 | 19.5 ± 0.42 | 19.2 ± 0.4 |
MCHC (g/dL) | 35.6 ± 1.054 | 35.3 ± 0.99 | 35.5 ± 0.95 | 35.3 ± 0.42 | 35.3 ± 0.1 |
PLT (×109/L/L) | 869 ± 169.1 | 611 ± 98.1 | 564 ± 116 | 693 ± 56,2 | 572 ± 74.1 |
Days | 1 | 2 | 3 | 4 | 5 | 6 |
---|---|---|---|---|---|---|
weight | g | g | g | g | g | g |
Group I | 299.84 | 306.83 | 309.43 | 306.74 | 305.48 | 312.61 |
Group II | 292.59 | 279.62 | 274.19 | 260.82 | 253.28 | 261.82 |
Group III | 296.61 | 286.75 | 282.80 | 271.40 | 260.22 | 268.95 |
Group IV | 303.89 | 295.36 | 282.82 | 270.97 | 266.94 | 276.17 |
Group V | 297.22 | 292.58 | 277.90 | 264.62 | 256.06 | 258.32 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grigore, A.; Bubueanu, C.; Pirvu, L.; Neagu, G.; Bejanaru, I.; Vulturescu, V.; Panteli, M.; Rasit, I. Immunomodulatory Effect of Helleborus purpurascens Waldst. & Kit. Plants 2021, 10, 1990. https://doi.org/10.3390/plants10101990
Grigore A, Bubueanu C, Pirvu L, Neagu G, Bejanaru I, Vulturescu V, Panteli M, Rasit I. Immunomodulatory Effect of Helleborus purpurascens Waldst. & Kit. Plants. 2021; 10(10):1990. https://doi.org/10.3390/plants10101990
Chicago/Turabian StyleGrigore, Alice, Corina Bubueanu, Lucia Pirvu, Georgeta Neagu, Ionica Bejanaru, Virginia Vulturescu, Minerva Panteli, and Iuksel Rasit. 2021. "Immunomodulatory Effect of Helleborus purpurascens Waldst. & Kit." Plants 10, no. 10: 1990. https://doi.org/10.3390/plants10101990
APA StyleGrigore, A., Bubueanu, C., Pirvu, L., Neagu, G., Bejanaru, I., Vulturescu, V., Panteli, M., & Rasit, I. (2021). Immunomodulatory Effect of Helleborus purpurascens Waldst. & Kit. Plants, 10(10), 1990. https://doi.org/10.3390/plants10101990