Comparative Study of Volatile Compounds and Sensory Characteristics of Dalmatian Monovarietal Virgin Olive Oils
Abstract
:1. Introduction
2. Materials and Methods
2.1. Harvesting and Olive Oil Extraction
2.2. Olive Oil Qualitative Parameters
2.3. Determination of Total Phenolic Content
2.4. Determination of Fatty Acid Composition
2.5. Analysis of Volatile Composition by HS-SPME/GC-MS
2.6. Sensory Analyses of VOOs
2.7. Statistical Analyses
3. Results and Discussion
3.1. VOO Quality Assessment
3.2. Fatty Acid Composition
3.3. Volatile Profiling of Dalmatian Monovarietal VOOs
3.4. Sensory Characteristics of Monovarietal VOOs
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Campestre, C.; Angelini, G.; Gasbarri, C.; Angerosa, F. The compounds responsible for the sensory profile in monovarietal virgin olive oils. Molecules 2017, 22, 1833. [Google Scholar] [CrossRef]
- Pouliarekou, E.; Badeka, A.; Tasioula-Margari, M.; Kontakos, S.; Longobardi, F.; Kontominas, M.G. Characterization and classification of Western Greek olive oils according to cultivar and geographical origin based on volatile compounds. J. Chromatogr. A 2011, 1218, 7534–7542. [Google Scholar] [CrossRef]
- Foscolou, A.; Critselis, E.; Panagiotakos, D. Olive oil consumption and human health: A narrative review. Maturitas 2018, 118, 60–66. [Google Scholar] [CrossRef]
- European Union Commission. Commission Delegated Regulation No 2016/2095 of 26 September 2016 amending Regulation (EEC) No 2568/91 on the characteristics of olive oil and olive-residue oil and on the relevant methods of analysis. J. Eur. Union 2016, L326, 1–6. [Google Scholar]
- International Olive Council. Trade Standard on Olive Oils and Olive Pomace Oil; COI/T.15/NC No 3/Rev.1; International Olive Council: Madrid, Spain, 2021. [Google Scholar]
- Veneziani, G.; Esposto, S.; Taticchi, A.; Urbani, S.; Selvaggini, R.; Sordini, B.; Servili, M. Characterization of phenolic and volatile composition of extra virgin olive oil extracted from six Italian cultivars using a cooling treatment of olive paste. LWT Food Sci. Technol. 2018, 87, 523–528. [Google Scholar] [CrossRef]
- Romero, N.; Saavedra, J.; Tapia, F.; Sepúlveda, B.; Aparicio, R. Influence of agroclimatic parameters on phenolic and volatile compounds of Chilean virgin olive oils and characterization based on geographical origin, cultivar and ripening stage. J. Sci. Food Agric. 2016, 96, 583–592. [Google Scholar] [CrossRef]
- Tura, D.; Failla, O.; Bassi, D.; Pedò, S.; Serraiocco, A. Cultivar influence on virgin olive (Olea europea L.) oil flavor based on aromatic compounds and sensorial profile. Sci. Hortic. 2008, 118, 139–148. [Google Scholar] [CrossRef]
- Angerosa, F.; Servili, M.; Selvaggini, R.; Taticchi, A.; Esposto, S.; Montedoro, G.F. Volatile compounds in virgin olive oil: Occurrence and their relationship with the quality. J. Chromatogr. A 2004, 1054, 17–31. [Google Scholar] [CrossRef]
- Tura, D.; Prenzler, P.D.; Bedgood, D.R.; Antolovich, M.; Robards, K. Varietal and processing effects on the volatile profile of Australian olive oils. Food Chem. 2004, 84, 341–349. [Google Scholar] [CrossRef]
- Brkić Bubola, K.; Koprivnjak, O.; Sladonja, B.; Lukić, I. Volatile compounds and sensory profiles of monovarietal virgin olive oils from Buža, Črna and Rosinjola cultivars in Istria (Croatia). Food Technol. Biotechnol. 2012, 50, 192–198. [Google Scholar]
- Brkić Bubola, K.; Krapac, M.; Lukić, I.; Sladonja, B.; Autino, A.; Cantini, C.; Poljuha, D. Morphological and molecular characterization of Bova olive cultivar and aroma fingerprint of its oil. Food Technol. Biotechnol. 2014, 52, 342–350. [Google Scholar]
- Benincasa, C.; De Nino, A.; Lombardo, N.; Perri, E.; Sindona, G.; Tagarelli, A. Assay of aroma active components of virgin olive oils from southern Italian regions by SPME-GC/ion trap mass spectrometry. J. Agric. Food Chem. 2003, 51, 733–741. [Google Scholar] [CrossRef]
- Angerosa, F.; Mostallino, R.; Basti, C.; Vito, R. Virgin olive oil odour notes. Their relationship with volatile compounds from lipoxygenase pathway and secoiridoid compounds. Food Chem. 2000, 68, 283–287. [Google Scholar] [CrossRef]
- Sánchez-Ortiz, A.; Bejaoui, M.A.; Quintero-Flores, A.; Jiménez, A.; Beltrán, G. Biosynthesis of volatile compounds by hydroperoxide lyase enzymatic activity during virgin olive oil extraction process. Food Res. Int. 2018, 111, 220–228. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Ortiz, A.; Pérez, A.G.; Sanz, C. Synthesis of aroma compounds of virgin olive oil: Significance of the cleavage of polyunsaturated fatty acid hydroperoxides during the oil extraction process. Food Res. Int. 2013, 54, 1972–1978. [Google Scholar] [CrossRef] [Green Version]
- Pizarro, C.; Rodríguez-Tecedor, S.; Pérez-del-Notario, N.; González-Sáiz, J.M. Recognition of volatile compounds as markers in geographical discrimination of Spanish extra virgin olive oils by chemometric analysis of non-specific chromatography volatile profiles. J. Chromatogr. A 2011, 1218, 518–523. [Google Scholar] [CrossRef]
- Kandylis, P.; Vekiari, A.S.; Kanellaki, M.; Grati Kamoun, N.; Msallem, M.; Kourkoutas, Y. Comparative study of extra virgin olive oil flavor profile of Koroneiki variety (Olea europaea var. Microcarpa alba) cultivated in Greece and Tunisia during one period of harvesting. Lebensm. Wiss. Technol. 2011, 44, 1333–1341. [Google Scholar] [CrossRef]
- Kritioti, A.; Paikousis, L.; Drouza, C. Characterization of the volatile profile of virgin olive oils of Koroneiki and Cypriot cultivars, and classification according to the variety, geographical region and altitude. LWT 2020, 129, 109543. [Google Scholar] [CrossRef]
- Manai, H.; Mahjoub-Haddada, F.; Oueslati, I.; Daoud, D.; Zarrouk, M. Characterization of monovarietal virgin olive oils from six crossing varieties. Sci. Hortic. 2008, 115, 252–260. [Google Scholar] [CrossRef]
- Peres, F.; Jeleń, H.H.; Majcher, M.M.; Arraias, M.; Martins, L.L.; Ferreira-Dias, S. Characterization of aroma compounds in Portuguese extra virgin olive oils from Galega Vulgar and Cobrançosa cultivars using GC–O and GC × GC–ToFMS. Food Res. Int. 2013, 54, 1979–1986. [Google Scholar] [CrossRef] [Green Version]
- Bajoub, A.; Sánchez-Ortiz, A.; Ajal, E.A.; Ouazzani, N.; Fernández-Gutiérrez, A.; Beltrán, G.; Carrasco-Pancorbo, A. First comprehensive characterization of volatile profile of north Moroccan olive oils: A geographic discriminant approach. Food Res. Int. 2015, 76, 410–417. [Google Scholar] [CrossRef]
- Bianchi, F.; Careri, M.; Chiavaro, E.; Musci, M.; Vittadini, E. Gas chromatographic–mass spectrometric characterisation of the Italian Protected Designation of Origin ‘‘Altamura” bread volatile profile. Food Chem. 2008, 110, 787–793. [Google Scholar] [CrossRef]
- Baccouri, O.; Bendini, A.; Cerretani, L.; Guerfel, M.; Baccouri, B.; Lercker, G.; Zarrouk, M.; Daoud Ben Miled, D. Comparative study on volatile compounds from Tunisian and Sicilian monovarietal virgin olive oils. Food Chem. 2008, 111, 322–328. [Google Scholar] [CrossRef]
- Sanz, C.; Belaj, A.; Sánchez-Ortiz, A.; Pérez, A.G. Natural Variation of Volatile Compounds in Virgin Olive Oil Analyzed by HS-SPME/GC-MS-FID. Separations 2018, 5, 24. [Google Scholar] [CrossRef] [Green Version]
- Kalua, C.M.; Allen, M.S.; Bedgood, D.R.; Bishop, A.G.; Prenzler, P.D.; Robards, K. Olive oil volatile compounds, flavour development and quality: A critical review. Food Chem. 2007, 100, 273–286. [Google Scholar] [CrossRef]
- Reboredo-Rodríguez, P.; González-Barreiro, C.; Cancho-Grande, B.; Simal-Gándara, J. Concentrations of Aroma Compounds and Odor Activity Values of Odorant Series in Different Olive Cultivars and Their Oils. J. Agric. Food Chem. 2013, 61, 5252–5259. [Google Scholar] [CrossRef]
- Uceda, M.; Frias, L. Harvest dates. Evolution of the fruit oil content, oil composition and oil quality. In Proceedings of the Del Segundo Seminario Oleicola Internacional; IOC: Cordoba, Spain, 1975; pp. 125–128. [Google Scholar]
- Brkić Bubola, K.; Koprivnjak, O.; Sladonja, B.; Škevin, D.; Belobrajić, I. Chemical and sensorial changes of Croatian monovarietal olive oils during ripening. Eur. J. Lipid Sci. Technol. 2012, 114, 1400–1408. [Google Scholar] [CrossRef]
- Ranalli, A.; Cabras, P.; Iannucci, E.; Contento, S. Lipochromes, vitamins, aromas and other components of virgin olive oil are affected by processing technology. Food Chem. 2001, 73, 445–451. [Google Scholar] [CrossRef]
- Raffo, A.; Bucci, R.; D’Aloise, A.; Pastore, G. Combined effects of reduced malaxation oxygen levels and storage time on extra-virgin olive oil volatiles investigated by a novel chemometric approach. Food Chem. 2015, 18, 257–267. [Google Scholar] [CrossRef] [PubMed]
- Žanetić, M.; Cerretani, L.; Škevin, D.; Politeo, O.; Vitanović, E.; Jukić Špika, M.; Perica, S.; Ožić, M. Influence of polyphenolic compounds on the oxidative stability of virgin olive oils from selected autochthonous varieties. J. Food Agric. Environ. 2013, 11, 126–131. [Google Scholar]
- Kiritsakis, A.K. Flavor components of olive oil—A review. J. Am. Oil Chem. Soc. 1998, 75, 673–681. [Google Scholar] [CrossRef]
- Brkić Bubola, K.; Koprivnjak, O.; Sladonja, B.; Belobrajić, I. Influence of storage temperature on quality parameters, phenols and volatile compounds of Croatian virgin olive oils. Grasas y Aceites 2014, 65, e034. [Google Scholar] [CrossRef]
- Brkić Bubola, K.; Lukić, M.; Lukić, I.; Koprivnjak, O. Effect of different clarification methods on volatile aroma compound composition of virgin olive oil. Food Technol. Biotechnol. 2019, 57, 503–512. [Google Scholar] [CrossRef]
- Mele, M.A.; Islam, M.Z.; Kang, H.M.; Giuffrè, A.M. Pre- and post-harvest factors and their impact on oil composition and quality of olive fruit. Emir. J. Food Agric. 2018, 30, 592–603. [Google Scholar] [CrossRef] [Green Version]
- Caporaso, N. Virgin Olive Oils: Environmental Conditions, Agronomical Factors and Processing Technology Affecting the Chemistry of Flavor Profile. J. Food Chem. Nanotechnol. 2016, 2, 21–31. [Google Scholar] [CrossRef]
- Vichi, S.; Castellote, A.I.; Pizzale, L.; Conte, L.S.; Buxaderas, S.; López-Tamames, E. Analysis of virgin olive oil volatile compounds by headspace solid-phase microextraction coupled to gas chromatography with mass spectrometric and flame ionization detection. J. Chromatogr. A 2003, 983, 19–33. [Google Scholar] [CrossRef]
- Jukić Špika, M.; Perica, S.; Žanetić, M.; Škevin, D. Virgin Olive Oil Phenols, Fatty Acid Composition and Sensory Profile: Can Cultivar Overpower Environmental and Ripening Effect? Antioxidants 2021, 10, 689. [Google Scholar] [CrossRef]
- Beltrán, G.; Aguilera, M.P.; Del Rio, C.; Sanchez, S.; Martinez, L. Influence of fruit ripening process on the natural antioxidant content of Hojiblanca virgin olive oils. Food Chem. 2005, 89, 207–215. [Google Scholar] [CrossRef]
- Gómez-Rico, A.; Salvador, M.D.; Fregapane, G. Virgin olive oil and olive fruit minor constituents as affected by irrigation management based on SWP and TDF as compared to ETc in medium-density young olive orchards (Olea europaea L. cv. Cornicabra and Morisca). Food Res. Int. 2009, 42, 1067–1076. [Google Scholar] [CrossRef]
- Magagna, F.; Valverde-Som, L.; Ruíz-Sambl, C.; Cuadros-Rodríguez, L.; Reichenbach, S.; Bicchi, C.; Cordero, C. Combined untargeted and targeted fingerprinting with comprehensive two-dimensional chromatography for volatiles and ripening indicators in olive oil. Anal. Chim. Acta 2016, 936, 245–258. [Google Scholar] [CrossRef]
- Giuffrè, A.M.; Capocasale, M.; Macrì, R.; Caracciolo, M.M.; Zappia, C.; Poiana, M. Volatile profiles of extra virgin olive oil, olive pomace oil, soybean oil and palm oil in different heating conditions. LWT 2019, 17, 108631. [Google Scholar] [CrossRef]
- Morales, M.T.; Berry, A.J.; McIntyre, P.S.; Aparicio, R. Tentative analysis of virgin olive oil aroma by supercritical fluid extraction-high-resolution gas chromatography-mass spectrometry. J. Chromatogr. A 1998, 819, 267–275. [Google Scholar] [CrossRef]
- Aparicio-Ruiz, R.; García-González, D.L.; Morales, M.T.; Lobo-Prieto, A.; Romero, I. Comparison of two analytical methods validated for the determination of volatile compounds in virgin olive oil: GC-FID vs. GC-MS. Talanta 2018, 187, 133–141. [Google Scholar] [CrossRef]
- Kanavouras, A.; Kiritsakis, A.; Hernandez, R.J. Comparative study on volatile analysis of extra virgin olive oil by dynamic headspace and solid phase micro-extraction. Food Chem. 2005, 90, 69–79. [Google Scholar] [CrossRef]
- Conte, L.; Bendini, A.; Valli, E.; Lucci, P.; Moret, S.; Maquet, A.; Lacoste, F.; Brereton, P.; García-González, D.L.; Moreda, W.; et al. Olive oil quality and authenticity: A review of current EU legislation, standards, relevant methods of analyses, their drawbacks and recommendations for the future. Trends Food Sci. Technol. 2019, 105, 483–493. [Google Scholar] [CrossRef]
- Bianchi, F.; Careri, M.; Mangia, A.; Musci, M. Retention indices in the analysis of food aroma volatile compounds in temperature-programmed gas chromatography: Database creation and evaluation of precision and robustness. J. Sep. Sci. 2007, 30, 563–572. [Google Scholar] [CrossRef] [Green Version]
- Romero, I.; García-González, D.L.; Aparicio-Ruiz, R.; Morales, M.T. Validation of SPME-GCMS method for the analysis of virgin olive oil volatiles responsible for sensory defects. Talanta 2015, 134, 394–401. [Google Scholar] [CrossRef] [PubMed]
- Cecchi, L.; Migliorini, M.; Mulinacci, N. Virgin Olive Oil Volatile Compounds: Composition, Sensory Characteristics, Analytical Approaches, Quality Control, and Authentication. J. Agric. Food Chem. 2021, 69, 2013–2040. [Google Scholar] [CrossRef] [PubMed]
- Procida, G.; Cichelli, A.; Lagazio, C.; Conte, L.S. Relationships between volatile compounds and sensory characteristics in virgin olive oil by analytical and chemometric approaches. J. Sci. Food Agric. 2016, 96, 311–318. [Google Scholar] [CrossRef] [PubMed]
- Cerretani, L.; Salvador, M.D.; Bendini, A.; Fregapane, G. Relationship Between Sensory Evaluation Performed by Italian and Spanish Official Panels and Volatile and Phenolic Profiles of Virgin Olive Oils. Chem. Percept. 2008, 1, 258–267. [Google Scholar] [CrossRef]
- Barbieri, S.; Bendini, A.; Valli, E.; Gallina Toschi, T. Do consumers recognize the positive sensorial attributes of extra virgin olive oils related with their composition? A case study on conventional and organic products. J. Food Compos. Anal. 2015, 44, 186–195. [Google Scholar] [CrossRef]
- Perica, S.; Strikić, F.; Žanetić, M.; Vuletin Selak, G.; Klepo, T. Scientific achievements in Croatian olive sector and future outlook. In Proceedings of the 49th Croatian & 9th International Symposium on Agriculture, Dubrovnik, Croatia, 16–21 February 2014; pp. 7–16. [Google Scholar]
- Luna, G.; Morales, M.T.; Aparicio, R. Characterisation of 39 varietal virgin olive oils by their volatile compositions. Food Chem. 2006, 98, 243–252. [Google Scholar] [CrossRef]
- Strikić, F.; Klepo, T.; Rošin, J.; Radunić, M. Indigenous Cultivars of Olives in Croatia; Institute for Adriatic Crops and Karst Reclamation: Split, Croatia, 2010; pp. 10–42. [Google Scholar]
- International Olive Council. Available online: https://www.internationaloliveoil.org (accessed on 16 September 2021).
- Ministry of Agriculture. Available online: https://poljoprivreda.gov.hr/maslinarstvo/194 (accessed on 16 September 2021).
- Lukić, I.; Žanetić, M.; Jukić Špika, M.; Lukić, M.; Koprivnjak, O.; Brkić Bubola, K. Complex interactive effects of ripening degree, malaxation duration and temperature on Oblica cv. virgin olive oil phenols, volatiles and sensory quality. Food Chem. 2017, 232, 610–620. [Google Scholar] [CrossRef]
- Koprivnjak, O.; Brkić Bubola, K.; Majetić, V.; Škevin, D. Influence of free fatty acids, sterols and phospholipids on volatile compounds in olive oil headspace determined by solid phase microextraction-gas chromatography. Eur. Food Res. Technol. 2009, 229, 539–547. [Google Scholar] [CrossRef]
- Žanetić, M.; Škevin, D.; Vitanović, E.; Jukić Špika, M.; Perica, S. Survey of phenolic compounds and sensorial profile of Dalmatian virgin olive oils. Pomol. Croat. 2011, 17, 19–30. [Google Scholar]
- Šarolić, M.; Gugić, M.; Tuberoso, C.I.G.; Jerković, I.; Šuste, M.; Marijanović, Z.; Kuś, P.M. Volatile Profile, Phytochemicals and Antioxidant Activity of Virgin Olive Oils from Croatian Autochthonous Varieties Mašnjača and Krvavica in Comparison with Italian Variety Leccino. Molecules 2014, 19, 881–895. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kottek, M.; Grieser, J.; Beck, C.; Rudolf, B.; Rubel, F. World Map of the Köppen-Geiger Climate Classification Updated. Meteorol. Z. 2006, 15, 259–263. [Google Scholar] [CrossRef]
- Gutfinger, T. Polyphenols in olive oils. J. Am. Oil Chem. Soc. 1981, 58, 966–968. [Google Scholar] [CrossRef]
- ISO 12966-2. Animal and Vegetable Fats and Oils—Gas Chromatography of Fatty Acid Methyl Esters—Part 2: Preparation of Methyl Esters of Fatty Acids; International Organization for Standardization: Geneva, Switzerland, 2011. [Google Scholar]
- ISO 5508. Animal and Vegetable Fats and Oils—Analysis by Gas Chromatography of Methyl Esters of Fatty Acids; International Organization for Standardization: Geneva, Switzerland, 1999. [Google Scholar]
- Vichi, S.; Guadayol, J.M.; Caixach, J.; López-Tamames, E.; Buxaderas, S. Comparative study of different extraction techniques for the analysis of virgin olive oil aroma. Food Chem. 2007, 105, 1171–1178. [Google Scholar] [CrossRef]
- International Olive Council. Sensory Analyses of Olive Oil: Method for the Organoleptic Assessment of Virgin Olive Oil; COI/T.20/Doc. No 15/Rev. 10; International Olive Council: Madrid, Spain, 2018. [Google Scholar]
- International Olive Council. Guide for Selection, Training and Quality Control of Virgin Olive Oil Tasters–Qualifications of Tasters, Panel Leaders and Trainers; COI/T.20/Doc. No 14/Rev. 7; International Olive Council: Madrid, Spain, 2021. [Google Scholar]
- International Olive Council. Organoleptic Assessment of Extra Virgin Olive Oil Applying to Use a Designation of Origin; COI/T.20/Doc. No 22; International Olive Council: Madrid, Spain, 2005. [Google Scholar]
- Leporini, M.; Loizzo, M.R.; Tenuta, M.C.; Falco, T.; Sicari, V.; Pellicanò, T.M.; Tundis, R. Calabrian extra-virgin olive oil from Frantoio cultivar: Chemical composition and health properties. Emir. J. Food Agric 2018, 30, 631–637. [Google Scholar] [CrossRef]
- Aguilera, M.P.; Beltrán, G.; Ortega, D.; Fernández, A.; Jiménez, A.; Uceda, M. Characterisation of virgin olive oil of Italian olive cultivars: “Frantoio” and “Leccino”, grown in Andalusia. Food Chem. 2005, 89, 387–391. [Google Scholar] [CrossRef]
- Velasco, J.; Dobargenes, C. Oxidative stability of virgin olive oil. Eur. J. Lipid Sci. Technol. 2002, 104, 661–676. [Google Scholar] [CrossRef]
- EFSA NDA Panel. Scientific Opinion on the Substantiation of Health Claims Related to Olive Oil and Maintenance of Normal Blood LDL-Cholesterol Concentrations (ID 1316, 1332), Maintenance of Normal (Fasting) Blood Concentrations of Triglycerides (ID 1316, 1332), Maintenan. EFSA J. 2011, 9, 1–19. [Google Scholar] [CrossRef]
- Reboredo-Rodríguez, P.; González-Barreiro, C.; Cancho-Grande, B.; Simal-Gándara, J. Aroma biogenesis and distribution between olive pulps and seeds with identification of aroma trends among cultivars. Food Chem. 2013, 141, 637–643. [Google Scholar] [CrossRef] [PubMed]
- Beltrán, G.; Ruano, M.T.; Jiménez, A.; Uceda, M.; Aguilera, M.P. Evaluation of virgin olive oil bitterness by total phenol content analysis. Eur. J. Lipid Sci. Technol. 2007, 108, 193–197. [Google Scholar] [CrossRef]
- Mayuoni-Kirshinbaum, L.; Porat, R. The flavor of pomegranate fruit: A review. J. Sci. Food Agric. 2014, 94, 21–27. Available online: https://onlinelibrary.wiley.com/doi/epdf/10.1002/jsfa.6311 (accessed on 24 August 2021). [CrossRef]
- Lukić, I.; Carlin, S.; Horvat, I.; Vrhovsek, U. Combined targeted and untargeted profiling of volatile aroma compounds with comprehensive two-dimensional gas chromatography for differentiation of virgin olive oils according to variety and geographical origin. Food Chem. 2019, 270, 403–414. [Google Scholar] [CrossRef]
- Caporale, G.; Policastro, S.; Monteleone, E. Bitterness enhancement induced by cut grass odorant (cis-3-hexen-1-ol) in a model olive oil. Food Qual. Prefer. 2004, 15, 219–227. [Google Scholar] [CrossRef]
- Genovese, A.; Yang, N.; Linforth, R.; Sacchi, R.; Fisk, I. The role of phenolic compounds on olive oil aroma release. Food Res. Int. 2018, 112, 319–327. [Google Scholar] [CrossRef]
Cultivar | |||||
---|---|---|---|---|---|
Parameter | Oblica | Lastovka | Levantinka | Krvavica | EVOO * |
FFA% (oleic acid) | 0.4 ± 0.1 a | 0.4 ± 0.0 a | 0.4 ± 0.2 a | 0.2 ± 0.0 a | ≤0.8 |
PV (meq O2/kg) | 3.7 ± 0.7 b | 6.5 ± 0.1 a | 6.3 ± 1.6 a | 3.6 ± 0.2 b | ≤20 |
K232 | 1.83 ± 0.31 a | 1.74 ± 0.08 a | 2.30 ± 0.19 a | 1.85 ± 0.05 a | ≤2.50 |
K270 | 0.16 ± 0.01 a | 0.19 ± 0.03 a | 0.16 ± 0.01 a | 0.19 ± 0.01 a | ≤0.22 |
∆K | −0.00 ± 0.00 a | 0.00 ± 0.00 a | 0.00 ± 0.00 a | −0.00 ± 0.00 a | ≤0.01 |
TPC (mg Gallic acid/kg of oil) | 438.3 ± 12.4 ab | 312.0 ± 3.4 bc | 302.1 ± 79.0 b | 438.9 ± 52.0 a |
Fatty Acid * (% of Total) | Cultivars | EVOO * | |||
---|---|---|---|---|---|
Oblica | Lastovka | Levantinka | Krvavica | ||
C16:0 | 12.26 ± 0.38 a | 12.32 ± 0.59 a | 11.72 ± 0.13 a | 14.00 ± 0.93 a | 7.50–20.00 |
C16:1 | 0.75 ± 0.06 b | 0.75 ± 0.04 b | 1.04 ± 0.24 b | 2.40 ± 0.43 a | 0.30–3.50 |
C17:0 | 0.03 ± 0.01 b | 0.10 ± 0.01 a | 0.04 ± 0.00 b | 0.04 ± 0.00 b | ≤0.40 |
C17:1, n-9 | 0.08 ± 0.04 a | 0.19 ± 0.06 a | 0.08 ± 0.01 a | 0.07 ± 0.00 a | ≤0.60 |
C18:0 | 1.43 ± 0.51 a | 1.71 ± 0.48 a | 1.90 ± 0.10 a | 1.40 ± 0.74 a | 0.50–5.00 |
C18:1 | 75.91 ± 1.41 a | 71.81 ± 1.15 b | 76.17 ± 0.30 a | 77.14 ± 0.34 a | 55.00–83.00 |
C18:2 | 9.66 ± 0.85 b | 11.63 ± 0.29 a | 6.78 ± 0.19 c | 4.62 ± 0.04 d | 2.50–21.00 |
C18:3 | 0.66 ± 0.07 a | 0.66 ± 0.04 a | 0.66 ± 0.03 a | 0.75 ± 0.15 a | ≤1.00 |
C20:0 | 0.39 ± 0.06 a | 0.48 ± 0.09 a | 0.53 ± 0.11 a | 0.30 ± 0.00 a | ≤0.60 |
C20:1, n-9 | 0.36 ± 0.03 a | 0.38 ± 0.11 a | 0.40 ± 0.08 a | 0.41 ± 0.00 a | ≤0.50 |
C22:0 | 0.11 ± 0.01 a | 0.10 ± 0.01 a | 0.11 ± 0.01 a | 0.10 ± 0.00 a | ≤0.30 |
C24:0 | 0.10 ± 0.01 a | 0.10 ± 0.00 a | 0.10 ± 0.00 a | 0.10 ± 0.00 a | ≤0.20 |
C18:1/C18:2 | 7.92 ± 0.49 c | 6.18 ± 0.09 d | 11.24 ± 0.30 b | 16.83 ± 0.53 a | - |
MUFA | 77.10 ± 1.47 ab | 73.12 ± 1.35 b | 77.68 ± 0.34 a | 80.01 ± 0.76 a | - |
PUFA | 10.31 ± 0.92 a | 12.28 ± 0.35 a | 7.44 ± 0.21 b | 5.36 ± 0.18 c | - |
UFA | 86.75 ± 2.32 a | 84.74 ± 1.65 a | 84.46 ± 0.53 a | 84.63 ± 0.79 a | - |
SFA | 14.33 ± 0.85 a | 14.79 ± 0.73 a | 14.39 ± 0.33 a | 15.94 ± 1.66 a | - |
MUFA/PUFA | 7.50 ± 0.52 c | 5.95 ± 0.04 d | 10.43 ± 0.25 b | 14.91 ± 0.36 a | - |
Oblica | Lastovka | Levantinka | Krvavica | ||||
---|---|---|---|---|---|---|---|
Compound | Identification Method | KI * | KI-Ref | Mean * (%) | Mean (%) | Mean (%) | Mean (%) |
±SD | ±SD | ±SD | ±SD | ||||
Aldehydes | |||||||
Hexanal | KI, MS, RT | 1072 | 1074 1, 1086 2, 1073 3 | 12.74 ± 4.59 b | 23.69 ± 2.87 a | 1.34 ± 1.05 c | 13.76 ± 0.04 b |
Z-3-Hexenal | KI, MS | 1135 | 1137 1, 1115 2 | 2.87 ± 3.55 a | 0.48 ± 0.01 a | 0.25 ± 0.28 a | 5.91 ± 1.61 a |
Heptanal | KI, MS | 1191 | 1184 1, 1190 2 | 0.04 ± 0.02 b | 0.39 ± 0.03 a | 0.03 ± 0.02 b | 0.16 ± 0.07 b |
E-2-Hexenal | KI, MS, RT | 1208 | 1216 1, 1225 2, 1129 3 | 48.03 ± 9.66 a | 43.3 ± 16.92 a | 74.84 ± 1.48 b | 45.28 ± 1.44 a |
(E,E) or (E,Z)-2,4-Hexadienal | KI, MS | 1384 | 1397 1, 1402 3 | 1.45 ± 1.42 a | 0.26 ± 0.02 a | 0.30 ± 0.35 a | 1.55 ± 1.83 a |
(E,E) or (E,Z)-2,4-Hexadienal | KI, MS | 1388 | 1397 1, 1402 3 | 8.23 ± 8.48 a | 4.15 ± 0.5 a | 1.84 ± 2.45 a | 13.36 ± 2.67 a |
(Z)-2-Heptenal | KI, MS | 1314 | 1320 4 | 0.08 ± 0.07 b | 1.08 ± 0.1 a | 0.10 ± 0.04 b | 0.18 ± 0.1 b |
Octanal | KI, MS, RT | 1282 | 1288 1, 1296 2, 1297 3 | 0.05 ± 0.02 a | 7.50 ± 8.72 a | 0.05 ± 0.02 a | 0.22 ± 0.11 a |
E,E-2,4- Heptadienal | KI, MS | 1451 | 1463 1 | 0.18 ± 0.18 a | 0.44 ± 0.27 a | 0.22 ± 0.23 a | 0.54 ± 0.03 a |
Total aldehydes | 73.67 ± 8.68 a | 81.29 ± 6.19 a | 78.97 ± 0.85 a | 80.94 ± 4.32 a | |||
Alcohols | |||||||
1-Penten-3-ol | KI, MS | 1159 | 1164 1, 1166 2, 1163 3 | 1.61 ± 1.26 a | 2.42 ± 2.55 a | 0.51 ± 0.16 a | 2.12 ± 0.17 a |
Z-2-Penten-1-ol | KI, MS, RT | 1302 | 1320 1, 1329 2, 1321 3 | 0.90 ± 0.88 a | 2.44 ± 0.61 a | 0.73 ± 0.41 a | 1.88 ± 2.21 a |
E-2-Penten-1-ol | KI, MS | 1310 | 1320 2, 1333 3 | 2.40 ± 1.48 b | 6.22 ± 0.06 a | 0.84 ± 0.38 b | 2.74 ± 0.41 b |
Hexanol | KI, MS, RT | 1344 | 1357 1, 1362 2, 1360 3, 1354 4 | 0.20 ± 0.10 b | 1.01 ± 0.19 b | 4.49 ± 1.12 a | 0.40 ± 0.09 b |
E-3-Hexen-1-ol | KI, MS, RT | 1354 | 1366 1, 1372 2, 1372 3 | 0.15 ± 0.01 a | 0.04 ± 0 b | 0.20 ± 0.05 a | 0.10 ± 0.01 ab |
Z-3-Hexen-1-ol | KI, MS, RT | 1374 | 1385 1, 1392 2, 1385 3, 1388 4 | 13.25 ± 6.33 a | 1.24 ± 0.27 a | 7.35 ± 0.98 a | 2.97 ± 1.37 a |
Total alcohols | 18.51 ± 2.62 a | 13.37 ± 3.19 a | 14.12 ± 1.91 a | 10.21 ± 0.16 a | |||
Esters | |||||||
Methyl acetate | KI, MS | <1000 | 800 1 | 0.4 ± 0.07 a | 0.34 ± 0.02 a | 0.29 ± 0.26 a | 0.27 ± 0.04 a |
Ethyl acetate | KI, MS, RT | <1000 | 892 1, 895 3 | 0.06 ± 0.02 a | 0.78 ± 0.79 a | 0.49 ± 0.52 a | 0.11 ± 0.01 a |
Hexyl acetate | KI, MS, RT | 1268 | 1247 1, 1281 2, 1269 4 | 0.00 ± 0.00 b | 0.63 ± 0.02 a | 0.08 ± 0.08 b | 0.05 ± 0.00 b |
Total esters | 0.46 ± 0.05 a | 1.75 ± 0.80 a | 0.86 ± 0.70 a | 0.43 ± 0.03 a | |||
Terpenes | |||||||
α-Copaene | KI, MS | 1487 | 1481 1, 1500 2, 1505 3 | 1.30 ± 1.53 a | 0.34 ± 0.17 a | 2.10 ± 1.58a | 3.15 ± 1.54 a |
Total terpenes | 1.30 ± 1.53 a | 0.34 ± 0.17 a | 2.10 ± 1.58a | 3.15 ± 1.54 a | |||
Organic acids | |||||||
Acetic acid | KI, MS, RT | 1430 | 1448 1 | 1.17 ± 1.18 a | 2.67 ± 3.66 a | 0.03 ± 0.03 a | 4.84 ± 5.59 a |
Propanoic acid | KI, MS | 1519 | 1528 1 | 0.06 ± 0.04 a | 0.14 ± 0.04 a | 0.13 ± 0.11 a | 0.27 ± 0.04 a |
Total organic acids | 1.23 ± 1.14 a | 2.81 ± 3.62 a | 0.16 ± 0.14 a | 5.11 ± 5.64 a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Žanetić, M.; Jukić Špika, M.; Ožić, M.M.; Brkić Bubola, K. Comparative Study of Volatile Compounds and Sensory Characteristics of Dalmatian Monovarietal Virgin Olive Oils. Plants 2021, 10, 1995. https://doi.org/10.3390/plants10101995
Žanetić M, Jukić Špika M, Ožić MM, Brkić Bubola K. Comparative Study of Volatile Compounds and Sensory Characteristics of Dalmatian Monovarietal Virgin Olive Oils. Plants. 2021; 10(10):1995. https://doi.org/10.3390/plants10101995
Chicago/Turabian StyleŽanetić, Mirella, Maja Jukić Špika, Mia Mirjana Ožić, and Karolina Brkić Bubola. 2021. "Comparative Study of Volatile Compounds and Sensory Characteristics of Dalmatian Monovarietal Virgin Olive Oils" Plants 10, no. 10: 1995. https://doi.org/10.3390/plants10101995
APA StyleŽanetić, M., Jukić Špika, M., Ožić, M. M., & Brkić Bubola, K. (2021). Comparative Study of Volatile Compounds and Sensory Characteristics of Dalmatian Monovarietal Virgin Olive Oils. Plants, 10(10), 1995. https://doi.org/10.3390/plants10101995