Contributions of Climate and Soil Properties to Wheat and Maize Yield Based on Long-Term Fertilization Experiments
Abstract
:1. Introduction
2. Results
2.1. Variations in Main Climatic Factors
2.2. Changes in Soil Properties under Different Fertilization Regimes
2.3. Variations in Crop Yields
2.4. Correlation Coefficients between Crop Yields and Climate Factors and Soil Fertility Factors
2.5. Contributions of Climate and Soil to Crop Yield
3. Discussion
4. Materials and Methods
4.1. Site Description
4.2. Experimental Design
4.3. Soil Sampling and Analysis
4.4. Data Sources
4.5. Data Analysis
Variation Partitioning Analysis and Canonical Correspondence Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- IPCC. Climate Change 2014: Synthesis Report; Core Writing Team, Pachauri, R.K., Meyer, L.A., Eds.; Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; IPCC: Geneva, Switzerland, 2014. [Google Scholar]
- Hu, Q.; Buyanovsky, G. Climate effects on corn yield in Missouri. J. Appl. Meteorol. 2003, 42, 1626–1635. [Google Scholar] [CrossRef]
- Fischer, C.; Hartmann, M.; Reynolds, N.; Leat, P.; Revoredo-Giha, C.; Henchion, M.; Albisu, L.M.; Gracia, A. Factors influencing contractual choice and sustainable relationships in European agri-food supply chains. Eur. Rev. Agric. Econ. 2009, 36, 541–569. [Google Scholar] [CrossRef]
- Edgerton, M.D. Increasing Crop Productivity to Meet Global Needs for Feed, FoodFuel. Plant Physiol. 2009, 149, 7–13. [Google Scholar] [CrossRef] [Green Version]
- FAO. FAO Statistical Yearbook 2013. 2013. Available online: http://faostat.fao.org/site/339/default.aspx (accessed on 10 January 2021).
- Schlenker, W.; Roberts, M.J. Nonlinear temperature effects indicate severe damages to US crop yields under climate change. Proc. Natl. Acad. Sci. USA 2009, 106, 15594–15598. [Google Scholar] [CrossRef] [Green Version]
- Lv, Z.; Liu, X.; Cao, W.; Zhu, Y. Climate change impacts on regional winter wheat production in main wheat production regions of China. Agric. For. Meteorol. 2013, 171, 234–248. [Google Scholar] [CrossRef]
- Song, Y.; Chen, D.; Dong, W. Influence of climate on winter wheat productivity in different climate regions of China, 1961-2000. Clim. Res. 2006, 32, 219–227. [Google Scholar] [CrossRef]
- Chavas, D.R.; Izaurralde, R.C.; Thomson, A.M.; Gao, X. Long-term climate change impacts on agricultural productivity in eastern China. Agric. For. Meteorol. 2009, 149, 1118–1128. [Google Scholar] [CrossRef]
- Lobell, D.B.; Schlenker, W.; Costa-Roberts, J. Climate Trends and Global Crop Production Since 1980. Science 2011, 333, 616–620. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, S.; Wheeler, T.; Challinor, A.; Lin, E.; Ju, H.; Xu, Y. The observed relationships between wheat and climate in China. Agric. For. Meteorol. 2010, 150, 1412–1419. [Google Scholar] [CrossRef]
- Tian, Y.; Chen, J.; Chen, C.; Deng, A.; Song, Z.; Zheng, C.; Hoogmoed, W.; Zhang, W. Warming impacts on winter wheat phenophase and grain yield under field conditions in Yangtze Delta Plain, China. Field Crop. Res. 2012, 134, 193–199. [Google Scholar] [CrossRef]
- Chen, C.; Lei, C.; Deng, A.; Qian, C.; Hoogmoed, W.; Zhang, W. Will higher minimum temperatures increase corn production in Northeast China? An analysis of historical data over 1965-2008. Agric. For. Meteorol. 2011, 151, 1580–1588. [Google Scholar] [CrossRef]
- Ju, H.; van der Velde, M.; Lin, E.D.; Xiong, W.; Li, Y.C. The impacts of climate change on agricultural production systems in China. Clim. Chang. 2013, 120, 313–324. [Google Scholar] [CrossRef]
- Lobell, D.B.; Burke, M.B.; Tebaldi, C.; Mastrandrea, M.D.; Falcon, W.P.; Naylor, R.L. Prioritizing climate change adaptation needs for food security in 2030. Science 2008, 319, 607–610. [Google Scholar] [CrossRef]
- Nicholls, N. Climate change and Australian wheat yield. Nature 1998, 391, 449. [Google Scholar] [CrossRef]
- Guo, J.H.; Liu, X.J.; Zhang, Y.; Shen, J.L.; Han, W.X.; Zhang, W.F.; Christie, P.; Goulding, K.W.T.; Vitousek, P.M.; Zhang, F.S. Significant Acidification in Major Chinese Croplands. Science 2010, 327, 1008–1010. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Zhang, Y.; Han, W.; Tang, A.; Shen, J.; Cui, Z.; Vitousek, P.; Erisman, J.W.; Goulding, K.; Christie, P.; et al. Enhanced nitrogen deposition over China. Nature 2013, 494, 459–462. [Google Scholar] [CrossRef] [PubMed]
- Xie, Z.; Zhu, J.; Liu, G.; Cadisch, G.; Hasegawa, T.; Chen, C.; Sun, H.; Tang, H.; Zeng, Q. Soil organic carbon stocks in China and changes from 1980s to 2000s. Global Chang. Biol. 2007, 13, 1989–2007. [Google Scholar] [CrossRef]
- Chahouki, M.A. Classification and ordination methods as a tool for analyzing of plant communities. In Multivariate Analysis in Management, Engineering and the Sciences; Freitas, L., Ed.; IntechOpen: London, UK, 2013; pp. 221–252. [Google Scholar]
- Wheeler, T.R.; Batts, G.R.; Ellis, R.H.; Hadley, P.; Morison, J.I.L. Growth and yield of winter wheat (Triticum aestivum) crops in response to CO2 and temperature. J. Agric. Sci. 1996, 127, 37–48. [Google Scholar] [CrossRef]
- Tilman, D.; Downing, J.A. Biodiversity and stability in grasslands. Nature 1994, 367, 363–365. [Google Scholar] [CrossRef]
- van der Heijden, M.G.A.; Klironomos, J.N.; Ursic, M.; Moutoglis, P.; Streitwolf-Engel, R.; Boller, T.; Wiemken, A.; Sanders, I.R. Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity. Nature 1998, 396, 69–72. [Google Scholar] [CrossRef]
- Lobell, D.B.; Ortiz-Monasterio, J.I.; Asner, G.P.; Matson, P.A.; Naylor, R.L.; Falcon, W.P. Analysis of wheat yield and climatic trends in Mexico. Field Crop. Res. 2005, 94, 250–256. [Google Scholar] [CrossRef]
- Saleque, M.A.; Abedin, M.J.; Bhuiyan, N.I.; Zaman, S.K.; Panaullah, G.M. Long-term effects of inorganic and organic fertilizer sources on yield and nutrient accumulation of lowland rice. Field Crop. Res. 2004, 86, 53–65. [Google Scholar] [CrossRef]
- Liu, L.; Hu, C.; Olesen, J.E.; Ju, Z.; Yang, P.; Zhang, Y. Warming and nitrogen fertilization effects on winter wheat yields in northern China varied between four years. Field Crop. Res. 2013, 151, 56–64. [Google Scholar] [CrossRef]
- Wang, H.X.; Xu, J.L.; Liu, X.J.; Zhang, D.; Li, L.W.; Li, W.; Sheng, L.X. Effects of long-term application of organic fertilizer on improving organic matter content and retarding acidity in red soil from China. Soil Tillage Res. 2019, 195, 104382. [Google Scholar] [CrossRef]
- Yang, S.; Li, R.; Tan, H.; Zhou, L.; Xie, R.; Huang, J. Differences of soil biological characteristics and bacterial diversity of sugarcane fields in red soil region affected by long-term single chemical fertilization and chemical organic combined application. J. Plant Nutr. Fertilizers. 2016, 22, 1024–1030. [Google Scholar]
- Ji, G.; Xu, M.; Wen, S.; Wang, B.; Zhang, L.; Liu, L. Characteristics of soil pH and exchangeable acidity in red soil profile under different vegetation types. Acta Ecol. Sin. 2015, 26, 2639–2645. [Google Scholar]
- Zhong, C.; Li, Z.; Zhang, R.; Guo, Y.; Zhang, H.; Liang, H. Leaching and adsorption characteristics of coumoxystrobin in soil. Agrochemicals 2018, 57, 650–653. [Google Scholar]
- Rostaei, M.; Fallah, S.; Lorigooini, Z.; Surki, A.A. The effect of organic manure and chemical fertilizer on essential oil, chemical compositions and antioxidant activity of dill (Anethum graveolens) in sole and intercropped with soybean (Glycine max). J. Clean. Prod. 2018, 199, 18–26. [Google Scholar] [CrossRef]
- Hu, W.; Li, G.; Ren, Y.; Ma, C.; Zhang, S. The effects of combined organic manure in different carbon-to-nitroge ratio on wheat biomass and soil properties in low fertility soil. Soil Fertilizer Sci. China 2011, 2, 22–27. [Google Scholar]
- Huang, S.; Peng, X.; Huang, Q.; Zhang, W. Soil aggregation and organic carbon fractions affected by long-term fertilization in a red soil of subtropical China. Geoderma 2010, 154, 364–369. [Google Scholar] [CrossRef]
- Lal, R. Soil Carbon Sequestration Impacts on Global Climate Change and Food Security. Science 2004, 304, 1623–1627. [Google Scholar] [CrossRef] [Green Version]
- Da Silva, J.R.M.; Silva, L.L. Evaluation of the relationship between maize yield spatial and temporal variability and different topographic attributes. Biosys. Eng. 2008, 101, 183–190. [Google Scholar] [CrossRef] [Green Version]
- Schlenker, W.; Lobell, D. Robust negative impacts of climate change on African agriculture. Environ. Res. Lett. 2010, 5, 014010. [Google Scholar] [CrossRef]
- Goulding, K.W.T. Soil acidification and the importance of liming agricultural soils with particular reference to the United Kingdom. Soil Use Manag. 2016, 32, 390–399. [Google Scholar] [CrossRef] [PubMed]
- Rheinheimer, D.S.; Tiecher, T.; Gonzatto, R.; Zafar, M.; Brunetto, G. Residual effect of surface-applied lime on soil acidity properties in a long-term experiment under no-till in a Southern Brazilian sandy Ultisol. Geoderma 2018, 313, 7–16. [Google Scholar] [CrossRef]
- Mo, Z.; Huo, Z.; Ye, C.; Wu, C.; Li, H.; Quan, W.; Tang, G. Spatial-temporal distribution and climatic risk zonation of freeze injury winter wheat during overwintering stage in Beijing region. Chin. J. Ecol. 2013, 32, 3197–3206. [Google Scholar]
- Melillo, J.M.; Steudler, P.A.; Aber, J.D.; Newkirk, K.; Lux, H.; Bowles, F.P.; Catricala, C.; Magill, A.; Ahrens, T.; Morrisseau, S. Soil warming and carbon-cycle feedbacks to the climate system. Ecol. Soc. Am. Annu. Meet. Abstr. 2002, 87, 210. [Google Scholar] [CrossRef] [PubMed]
- Bell, C.; McIntyre, N.; Cox, S.; Tissue, D.; Zak, J. Soil microbial responses to temporal variations of moisture and temperature in a Chihuahuan Desert Grassland. Microb. Ecol. 2008, 56, 153–167. [Google Scholar] [CrossRef]
- Jiao, X.; Gao, C.; Lue, G.; Sui, Y. Effect of Long-Term Fertilization on Soil Enzyme Activities Under Different Hydrothermal Conditions in Northeast China. Agric. Sci. China 2011, 10, 412–422. [Google Scholar] [CrossRef]
- Cross, W.F.; Hood, J.M.; Benstead, J.P.; Huryn, A.D.; Nelson, D. Interactions between temperature and nutrients across levels of ecological organization. Glob. Change Biol. 2015, 21, 1025–1040. [Google Scholar] [CrossRef] [Green Version]
- Kamewada, K.; Yoshizawa, C. Impacts of climate change on soil nitrogen kinetics and rice production in Andisol paddy fields. Soil Sci. Plant Nutr. 2018, 64, 752–766. [Google Scholar] [CrossRef] [Green Version]
- Yin, H.; Li, Y.; Xiao, J.; Xu, Z.; Cheng, X.; Liu, Q. Enhanced root exudation stimulates soil nitrogen transformations in a subalpine coniferous forest under experimental warming. Glob. Change Biol. 2013, 19, 2158–2167. [Google Scholar] [CrossRef]
- Wang, G.; Li, T.; Zhang, W.; Yu, Y. Impacts of Agricultural Management and Climate Change on Future Soil Organic Carbon Dynamics in North China Plain. PLoS ONE 2014, 9, e94827. [Google Scholar] [CrossRef]
- Lobell, D.B. Changes in diurnal temperature range and national cereal yields. Agric. For. Meteorol. 2007, 145, 229–238. [Google Scholar] [CrossRef]
- Welch, J.R.; Vincent, J.R.; Auffhammer, M.; Moya, P.F.; Dobermann, A.; Dawe, D. Rice yields in tropical/subtropical Asia exhibit large but opposing sensitivities to minimum and maximum temperatures. Proc. Natl. Acad. Sci. USA 2010, 107, 14562–14567. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chinese Meteorological Administration Archives. 2014. Available online: http://new-cdc.cma.gov.cn:8081/home.do (accessed on 25 January 2021).
- Borcard, D.; Legendre, P.; Drapeau, P. Partialling out the spatial component of ecological variation. Ecology 1992, 73, 1045–1055. [Google Scholar] [CrossRef] [Green Version]
- Jari, O. Multivariate Analysis of Ecological Communities in R: Vegan Tutorial. 2013. Available online: http://vegan.r-forge.r-project.org/ (accessed on 20 March 2021).
Station | Treatment | pH | SOM | TN | AP | AK | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
Mean ± SE | Trend | Mean ± SE | Trend | Mean ± SE | Trend | Mean ± SE | Trend | Mean ± SE | Trend | ||
(g kg−1) | (g kg−1 a−1) | (g kg−1) | (g kg−1 a−1) | (mg kg−1) | (mg kg−1 a−1) | (mg kg−1) | (mg kg−1 a−1) | ||||
Changping | CK | 8.20 ± 0.04 | 0.0086 | 14.94 ± 0.50 | 0.3024 ** | 0.66 ± 0.04 | −0.0179 ** | 3.37 ± 0.24 | −0.0683 | 67.28 ± 2.80 | −1.402 ** |
N | 8.09 ± 0.04 | −0.007 | 15.01 ± 0.38 | 0.2373 ** | 0.77 ± 0.03 | −0.0074 | 3.05 ± 0.22 | −0.1138 ** | 67.47 ± 2.56 | −1.1152 ** | |
NPK | 8.12 ± 0.03 | −0.0038 | 14.56 ± 0.32 | 0.1344 ** | 0.79 ± 0.03 | 0.0037 | 13.01 ± 1.01 | 0.2322 | 77.65 ± 2.45 | 0.1166 | |
NPKM | 8.03 ± 0.03 | −0.0127* | 16.38 ± 0.64 | 0.4083 ** | 0.88 ± 0.04 | 0.0091 | 62.18 ± 11.34 | 7.5046 ** | 85.31 ± 2.97 | 0.8338 | |
Zhengzhou | CK | 8.52 ± 0.06 | 0.0291 ** | 10.47 ± 0.09 | −0.0018 | 0.67 ± 0.02 | 0.0122 ** | 3.33 ± 0.34 | −0.1893 ** | 55.93 ± 1.87 | 0.0658 |
N | 8.43 ± 0.04 | 0.0177 ** | 10.95 ± 0.15 | 0.0543 * | 0.70 ± 0.02 | 0.0034 | 3.42 ± 0.33 | −0.1449 ** | 55.45 ± 1.42 | 0.0421 | |
NPK | 8.37 ± 0.02 | 0.0089 * | 11.90 ± 0.25 | 0.1717 ** | 0.72 ± 0.02 | 0.0105 ** | 19.96 ± 1.68 | 0.8812 ** | 85.52 ± 5.02 | 3.2008 ** | |
NPKM | 8.34 ± 0.03 | 0.0069 | 14.95 ± 0.56 | 0.4076 ** | 0.88 ± 0.04 | 0.026 ** | 40.76 ± 5.07 | 3.5277 ** | 120.59 ± 10.24 | 7.1037 ** | |
Qiyang | CK | 5.72 ± 0.09 | −0.0433 ** | 15.24 ± 0.26 | 0.0545 | 0.79 ± 0.03 | −0.0058 | 4.74 ± 0.46 | −0.1466 | 69.01 ± 7.88 | −4.6054 ** |
N | 4.67 ± 0.19 | −0.1194 ** | 16.27 ± 0.36 | 0.1819 ** | 0.98 ± 0.03 | 0.01 | 4.25 ± 0.42 | −0.0917 | 58.23 ± 7.95 | −3.4518 ** | |
NPK | 4.78 ± 0.13 | −0.0736 ** | 18.19 ± 0.63 | 0.3902 ** | 1.06 ± 0.03 | 0.0031 | 29.58 ± 3.15 | 1.4664 ** | 134.05 ± 7.24 | 1.4316 | |
NPKM | 5.95 ± 0.07 | −0.0214 | 22.47 ± 1.22 | 0.7278 ** | 1.27 ± 0.04 | 0.0122 | 101.09 ± 14.12 | 9.8349 ** | 224.97 ± 10.77 | 6.5402 ** |
Site | Treatment | Wheat | Maize | ||
---|---|---|---|---|---|
Mean ± SE | Trend | Mean ± SE | Trend | ||
(kg ha−1) | (kg ha−1 a−1) | (kg ha−1) | (kg ha−1 a−1) | ||
Changping | CK | 537.6 ± 58.3 | −34.65 ** | 1755.8 ± 143.4 | −55.94 * |
N | 600.5 ± 74.3 | −45.56 ** | 2079.6 ± 242.3 | −91.94 * | |
NPK | 3811.7 ± 225.6 | 113.78 ** | 4988.5 ± 265.1 | 64.24 | |
NPKM | 4250.1 ± 246.9 | 105.06* | 5644.7 ± 283.2 | 100.01 * | |
Zhengzhou | CK | 1859.0 ± 75.2 | −19.96 | 2817.1 ± 191.5 | −83.10 * |
N | 2370.9 ± 224.6 | −92.89 * | 3433.6 ± 274.5 | −141.01 ** | |
NPK | 6326.3 ± 160.7 | 73.20 ** | 6598.0 ± 367.8 | 151.60 * | |
NPKM | 5732.9 ± 174.1 | 22.23 | 6826.0 ± 349.3 | 147.99 * | |
Qiyang | CK | 353.5 ± 28.9 | −15.19 ** | 266.8 ± 47.4 | −24.86 ** |
N | 342.4 ± 93.1 | −61.53 ** | 607.7 ± 183.6 | −113.65 ** | |
NPK | 1188.9 ± 110.2 | −66.12 ** | 3048.9 ± 319.4 | −161.14 ** | |
NPKM | 1699.6 ± 89.2 | 8.58 | 5055.7 ± 241.2 | 71.99 |
Site | Treatment | Tavg | Tmax | Tmin | Prec | pH | SOM | TN | AP | AK |
---|---|---|---|---|---|---|---|---|---|---|
Changping | CK | −0.187 | −0.109 | −0.126 | −0.222 | −0.490 * | −0.546 * | 0.356 | 0.412 | 0.413 |
N | −0.237 | −0.103 | −0.228 | −0.215 | 0.11 | −0.579 ** | 0.259 | 0.585 ** | 0.287 | |
NPK | 0.131 | 0.070 | 0.093 | 0.127 | 0.254 | 0.175 | 0.354 | 0.645 ** | −0.054 | |
NPKM | 0.224 | 0.236 | 0.109 | 0.045 | −0.148 | 0.495 * | 0.403 | 0.560 * | 0.217 | |
Zhengzhou | CK | −0.152 | 0.112 | −0.296 | −0.002 | 0.222 | 0.324 | −0.357 | 0.011 | −0.212 |
N | −0.412 | −0.100 | −0.500 * | 0.137 | −0.134 | −0.614 ** | −0.444 * | 0.733 ** | 0.268 | |
NPK | 0.632 ** | 0.533 * | 0.576 ** | −0.485 * | 0.297 | 0.452 * | 0.243 | 0.324 | 0.378 | |
NPKM | 0.277 | 0.369 | 0.151 | −0.271 | −0.049 | 0.221 | 0.209 | 0.234 | 0.231 | |
Qiyang | CK | −0.523 * | −0.524 * | −0.515 * | 0.225 | 0.421 | −0.103 | 0.289 | 0.591 ** | 0.491 * |
N | −0.487 * | −0.510 * | −0.476 * | 0.239 | 0.888 ** | −0.631 ** | −0.335 | 0.390 | 0.672 ** | |
NPK | −0.472 * | −0.468 * | −0.508 * | 0.244 | 0.768 ** | −0.632 ** | −0.026 | −0.513 * | −0.327 | |
NPKM | 0.001 | 0.025 | −0.014 | 0.250 | 0.097 | 0.077 | −0.118 | 0.076 | 0.237 |
Site | Treatment | Tavg | Tmax | Tmin | Prec | pH | SOM | TN | AP | AK |
---|---|---|---|---|---|---|---|---|---|---|
Changping | CK | 0.018 | 0.081 | −0.128 | 0.162 | −0.064 | −0.227 | 0.549 * | 0.359 | 0.282 |
N | −0.023 | −0.001 | −0.136 | 0.248 | 0.071 | −0.347 | 0.248 | 0.455 * | 0.391 | |
NPK | −0.002 | 0.13 | −0.001 | −0.205 | 0.049 | 0.194 | 0.43 | 0.334 | 0.173 | |
NPKM | 0.036 | 0.185 | 0.005 | −0.303 | −0.252 | 0.444 * | 0.444 * | 0.466 * | 0.258 | |
Zhengzhou | CK | −0.418 | −0.146 | −0.650 ** | −0.624 ** | −0.410 | −0.225 | −0.180 | 0.500 * | −0.093 |
N | −0.315 | −0.012 | −0.552 * | −0.644 ** | −0.362 | −0.500 * | −0.110 | 0.769 ** | 0.220 | |
NPK | −0.068 | −0.167 | 0.016 | 0.039 | 0.108 | 0.35 | 0.526 * | 0.08 | 0.482 * | |
NPKM | 0.041 | −0.056 | 0.104 | −0.021 | 0.058 | 0.513 * | 0.612 ** | 0.567 ** | 0.570 ** | |
Qiyang | CK | −0.362 | −0.324 | −0.547 * | 0.165 | 0.761 ** | 0.111 | −0.024 | 0.331 | 0.683 ** |
N | −0.236 | −0.197 | −0.422 * | 0.008 | 0.872 ** | −0.509 * | −0.364 | 0.286 | 0.663 ** | |
NPK | −0.355 | −0.299 | −0.452 * | 0.268 | 0.121 | −0.476 * | −0.254 | −0.203 | −0.104 | |
NPKM | −0.007 | −0.048 | 0.133 | −0.086 | −0.541 * | 0.524 * | 0.248 | 0.476 * | 0.352 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wei, S.; Peng, A.; Huang, X.; Deng, A.; Chen, C.; Zhang, W. Contributions of Climate and Soil Properties to Wheat and Maize Yield Based on Long-Term Fertilization Experiments. Plants 2021, 10, 2002. https://doi.org/10.3390/plants10102002
Wei S, Peng A, Huang X, Deng A, Chen C, Zhang W. Contributions of Climate and Soil Properties to Wheat and Maize Yield Based on Long-Term Fertilization Experiments. Plants. 2021; 10(10):2002. https://doi.org/10.3390/plants10102002
Chicago/Turabian StyleWei, Shengbao, Anchun Peng, Xiaomin Huang, Aixing Deng, Changqing Chen, and Weijian Zhang. 2021. "Contributions of Climate and Soil Properties to Wheat and Maize Yield Based on Long-Term Fertilization Experiments" Plants 10, no. 10: 2002. https://doi.org/10.3390/plants10102002
APA StyleWei, S., Peng, A., Huang, X., Deng, A., Chen, C., & Zhang, W. (2021). Contributions of Climate and Soil Properties to Wheat and Maize Yield Based on Long-Term Fertilization Experiments. Plants, 10(10), 2002. https://doi.org/10.3390/plants10102002