Compositional Characteristics of Glucuronide Conjugates in Regional Glechoma hederacea var. longituba Herbal Extracts Using a Set of Polyphenolic Marker Compounds
Abstract
:1. Introduction
2. Experimental
2.1. Materials and Reagents
2.2. Preparation of the Hot-Water Extracts of GHL Sample
2.3. Total Phenol Content
2.4. Radical Scavenging Activity
2.5. HPLC Analysis
2.6. LC–ESI Tandem Mass Spectrometry
3. Results and Discussion
3.1. Total Phenol Content and Radical Scavenging Activity
3.2. Selection of Marker Compounds
3.3. Quantitative Analysis of the Selected Markers Using HPLC
3.4. Compositional Characteristics between the Regional GHL Extracts
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Terao, J.; Piskula, M.K. Flavonoids as inhibitors of lipid peroxidation in membranes. In Flavonoids in Health and Disease, 2nd ed.; Rice-Evans, C.A., Packer, L., Eds.; Taylor & Francis: London, UK, 1997; pp. 277–295. [Google Scholar]
- Miller, N.J. Flavonoids and phenylpropanoids as contributors to the antioxidant activity of fruit juices. In Flavonoids in Health and Disease, 2nd ed.; Rice-Evans, C.A., Packer, L., Eds.; Taylor & Francis: London, UK, 1997; pp. 38–405. [Google Scholar]
- Kinsella, J.E.; Frankel, E.; German, B.; Kanner, J. Possible mechanisms for the protective role of antioxidants in wine and plant foods. Food Technol. 1993, 47, 85–89. [Google Scholar]
- Bors, W.; Saran, M. Radical Scavenging by Flavonoid Antioxidants. Free Radic. Res. Commun. 1987, 2, 289–294. [Google Scholar] [CrossRef]
- Tokuda, M.; Ohigashi, H.; Koshimizu, K.; Ito, Y. Inhibitory effects of ursolic and oleanolic acid on skin tumor promotion by 12-O-tetradecanylphorbol- 13-acetate. Cancer Lett. 1986, 33, 279–285. [Google Scholar] [CrossRef]
- Kumarasamy, Y.; Cox, P.; Jaspars, M.; Nahar, L.; Sarker, S. Biological activity of Glechoma hederacea. Fitoterapia 2002, 73, 721–723. [Google Scholar] [CrossRef]
- Kumarasamy, Y.; Cox, P.J.; Jaspars, M.; Nahar, L.; Sarker, S.D. Isolation, structure elucidation and biological activity of hederacine A and B, two unique alkaloids from Glechoma hederacea. Tetrahedron 2003, 59, 6403–6407. [Google Scholar] [CrossRef]
- An, H.J.; Jeong, H.J.; Um, J.Y.; Kim, H.M.; Hong, S.H. Glechoma hederacea inhibits inflammatory mediator release in IFN-r and LPS-stimulated mouse peritoneal macrophages. J. Ethnopharmacol. 2006, 106, 418–424. [Google Scholar] [CrossRef] [PubMed]
- Chou, S.; Chan, Y.; Chung, Y. Studies on the Antimutagenicity and Antioxidant Activity of the Hot Water Extract of Glechoma hederacea. J. Food Drug Anal. 2012, 20, 637–645. [Google Scholar]
- Yang, N.-Y.; Duan, J.-A.; Li, P.; Qian, S.-H. Chemical constituents of Glechoma longituba. Yao Xue Xue Bao Acta Pharm. Sin. 2006, 41, 431–434. [Google Scholar]
- Cai, H.; Cai, B.; Shan, Q.; Cao, G. Simultaneous determination of four bioactive compounds in Glechoma longituba extracts by high performance liquid chromatography. Pharmacogn. Mag. 2013, 9, 216–219. [Google Scholar] [CrossRef] [Green Version]
- Ni, S.; Qian, D.; Duan, J.-A.; Guo, J.; Shang, E.-X.; Shu, Y.; Xue, C. UPLC–QTOF/MS-based screening and identification of the constituents and their metabolites in rat plasma and urine after oral administration of Glechoma longituba extract. J. Chromatogr. B 2010, 878, 2741–2750. [Google Scholar] [CrossRef]
- Ni, S.M.; Qian, D.W.; Duan, J.A.; Yang, N.Y.; Guo, J.M. Qualitative and quantitative analysis of the major bioactive phenolic compounds of Glechoma longituba by LC-coupled with PAD and ESI-MS detection. Nat. Prod. Commun. 2011, 6, 17–20. [Google Scholar] [PubMed]
- Zhang, D.-W.; Cheng, Y.; Wang, N.-L.; Zhang, J.-C.; Yang, M.-S.; Yao, X.-S. Effects of total flavonoids and flavonol glycosides from Epimedium koreanum Nakai on the proliferation and differentiation of primary osteoblasts. Phytomedicine 2008, 15, 55–61. [Google Scholar] [CrossRef]
- Zhang, H.; Wu, X.; Wang, J.; Wang, M.; Wang, X.; Shen, T.; Wang, S.; Ren, D. Flavonoids from the leaves of Epimedium Koreanum Nakai and their potential cytotoxic activities. Nat. Prod. Res. 2020, 34, 1256–1263. [Google Scholar] [CrossRef]
- Zhu, Y.-D.; Zou, J.; Zhao, W.-M. Two new monoterpenoid glycosides from Glechoma longituba. J. Asian Nat. Prod. Res. 2008, 10, 199–204. [Google Scholar] [CrossRef] [PubMed]
- Judzentiene, A.; Stoncius, A.; Budiene, J. Chemical composition of the essential oils fromGlechoma hederaceaplants grown under controlled environmental conditions in Lithuania. J. Essent. Oil Res. 2015, 27, 454–458. [Google Scholar] [CrossRef]
- Mockute, D.; Bernotiene, G.; Judzentiene, A. The Essential Oil of Ground Ivy (Glechoma hederaceaL) Growing Wild In Eastern Lithuania. J. Essent. Oil Res. 2007, 19, 449–451. [Google Scholar] [CrossRef]
- Bianco, G.; Agerbirk, N.; Losito, I.; Cataldi, T.R.I. Acylated glucosinolates with diverse acyl groups investigated by high resolution mass spectrometry and infrared multiphoton dissociation. Phytochemistry 2014, 100, 92–102. [Google Scholar] [CrossRef]
- Cho, K.; Choi, Y.-J.; Ahn, Y.H. Identification of Polyphenol Glucuronide Conjugates in Glechoma hederacea var. longituba Hot Water Extracts by High-Performance Liquid Chromatography-Tandem Mass Spectrometry (HPLC-MS/MS). Molecules 2020, 25, 4713. [Google Scholar] [CrossRef]
- Sonboli, A.; Mojarrad, M.; Ebrahimi, S.N.; Enayat, S. Free Radical Scavenging Activity and Total Phenolic Content of Methanolic Extracts from Male Inflorescence of Salix aegyptiaca Grown in Iran. Iran. J. Pharm. Res. 2010, 9, 293–296. [Google Scholar] [PubMed]
- Qadir, M.A.; Shahzadi, S.K.; Bashir, A.; Munir, A.; Shahzad, S. Evaluation of Phenolic Compounds and Antioxidant and Antimicrobial Activities of Some Common Herbs. Int. J. Anal. Chem. 2017, 2017, 1–6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tan, T.; Zhang, J.; Xu, X.; Huang, W.-P.; Luo, Y. Geographical discrimination of Glechomae Herba based on fifteen phenolic constituents determined by LC-MS/MS method combined with chemometric methods. Biomed. Chromatogr. 2018, 32, e4239. [Google Scholar] [CrossRef]
- Schulz, M.; Weissenböck, G. Three specific UDP-glucuronate: Flavone-glucuronosyl-transferases from primary leaves of Secale cereale. Phytochemistry 1988, 27, 1261–1267. [Google Scholar] [CrossRef]
- Marvalin, C.; Azerad, R. Microbial glucuronidation of polyphenols. J. Mol. Catal. B Enzym. 2011, 73, 43–52. [Google Scholar] [CrossRef]
- D’Archivio, M.; Filesi, C.; Varì, R.; Scazzocchio, B.; Masella, R. Bioavailability of the Polyphenols: Status and Controversies. Int. J. Mol. Sci. 2010, 11, 1321–1342. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Zhang, X.; Guo, Q.; Liu, L.; Li, C.; Cao, L.; Qin, Q.; Zhao, M.; Wang, W. Effects of UV-B Radiation on the Content of Bioactive Components and the Antioxidant Activity of Prunella vulgaris L. Spica during Development. Molecules 2018, 23, 989. [Google Scholar] [CrossRef] [Green Version]
- Pigni, N.B.; Aranibar, C.; Mas, A.L.; Aguirre, A.; Borneo, R.; Wunderlin, D.; Baroni, M.V. Chemical profile and bioaccessibility of polyphenols from wheat pasta supplemented with partially-deoiled chia flour. LWT 2020, 124, 109134. [Google Scholar] [CrossRef]
Peak No. | Identified Compound | Rt (min) | Formula | Theo. Mono-Isotopic Mass | Theo. [M-H]− (m/z) | Exp. [M-H]− (m/z) | Δ, ppm |
---|---|---|---|---|---|---|---|
1 | {[(2E)-3-(3,4-Dihydroxyphenyl)-2-propenoyl]oxy}malonic acid | 20.15 | C12H10O8 | 282.0376 | 281.0298 | 281.0294 | −1.3 |
2 | Trans-caffeic acid | 25.99 | C9H8O4 | 180.0423 | 179.0345 | 179.0341 | −2.1 |
3 | Dihydroferulic acid 4-O-glucuronide | 35.77 | C16H20O10 | 372.1056 | 371.0978 | 371.0965 | −3.4 |
4 | Luteolin-7-O-di-glucuronide | 50.35 | C27H26O18 | 638.1119 | 637.1041 | 637.1043 | 0.4 |
5 | Apigenin-7-O-di-glucuronide | 59.16 | C27H26O17 | 622.117 | 621.1092 | 621.1091 | −0.1 |
6 | Luteolin-7-O-glucuronide | 65.24 | C21H18O12 | 462.0798 | 461.0720 | 461.0711 | −1.9 |
7 | Glucopyranosyl rosemarinic acid, salviaflaside | 70.69 | C24H26O13 | 522.1373 | 521.1295 | 521.1284 | −2.1 |
8 | Apigenin-7-O-glucuronide | 77.48 | C21H18O11 | 446.0849 | 445.0771 | 445.0765 | −1.3 |
9 | Rosmarinic acid | 81.72 | C18H16O8 | 360.0845 | 359.0767 | 359.0765 | −0.5 |
Marker Compound | Area (mAU * s) | Av. Area (mAU * s) | STDEV | RSD, % | ||
---|---|---|---|---|---|---|
Run 1 | Run 2 | Run 3 | ||||
1 | 669.1 | 667.5 | 627.7 | 654.8 | 23.4 | 3.6 |
2 | 130.5 | 135.2 | 127.0 | 130.9 | 4.1 | 3.2 |
3 | 89.6 | 92.6 | 87.0 | 89.7 | 2.8 | 3.1 |
4 | 242.9 | 250.6 | 237.4 | 243.6 | 6.6 | 2.7 |
5 | 263.6 | 271.7 | 257.7 | 264.3 | 7.0 | 2.7 |
6 | 56.1 | 57.9 | 54.4 | 56.2 | 1.8 | 3.2 |
7* | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. |
8 | 61.5 | 63.8 | 59.9 | 61.7 | 1.9 | 3.1 |
9 | 843.4 | 873.5 | 820.3 | 845.7 | 26.6 | 3.2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hahm, Y.H.; Cho, K.; Ahn, Y.H. Compositional Characteristics of Glucuronide Conjugates in Regional Glechoma hederacea var. longituba Herbal Extracts Using a Set of Polyphenolic Marker Compounds. Plants 2021, 10, 2353. https://doi.org/10.3390/plants10112353
Hahm YH, Cho K, Ahn YH. Compositional Characteristics of Glucuronide Conjugates in Regional Glechoma hederacea var. longituba Herbal Extracts Using a Set of Polyphenolic Marker Compounds. Plants. 2021; 10(11):2353. https://doi.org/10.3390/plants10112353
Chicago/Turabian StyleHahm, Young Hye, Kun Cho, and Yeong Hee Ahn. 2021. "Compositional Characteristics of Glucuronide Conjugates in Regional Glechoma hederacea var. longituba Herbal Extracts Using a Set of Polyphenolic Marker Compounds" Plants 10, no. 11: 2353. https://doi.org/10.3390/plants10112353