Integrated Nutrient Management Enhances Productivity and Nitrogen Use Efficiency of Crops in Acidic and Charland Soils
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of the Experimental Site and Initial Soil Properties
2.2. Experimental Design and Crop Managements
2.3. Harvesting and Data Recording
2.4. Plant Analysis and Determination of Nitrogen Use Efficiency (NUE)
2.5. Soil Sampling and Analysis
2.5.1. Soil Aggregate Properties
2.5.2. Total Nitrogen, pH and Bulk Density
2.6. Statistical Analysis
3. Results
3.1. Effect of Different Treatments on Soil Physicochemical Properties, Crop Productivity, N Uptake and NUE in Acidic Soil
3.1.1. Effect of Different Treatments on Soil Physicochemical Properties
Aggregate Size Distribution
Total Nitrogen, pH, and Bulk Density
3.1.2. Effect of Different Treatments on Crop Yield and System Productivity of Mustard-Boro-T. Aman Rice Cropping Pattern
3.1.3. Effect of Different Treatments on Nitrogen Uptake and NUE by T. Aman and Boro Rice
3.2. Effect of Different Treatments on Soil Physicochemical Properties, Crop Productivity, N Uptake and NUE in Charland Soil
3.2.1. Effect of Different Treatments on Soil Physicochemical Properties
Aggregate Size Distribution
Total Nitrogen, pH, and Bulk Density
3.2.2. Effect of Different Treatments on Crop Yield and System Productivity of Maize-Jute-T. Aman Rice Cropping Pattern
3.2.3. Effect of Different Treatments on N Uptake and NUE by T. Aman Rice and Maize
4. Discussion
4.1. Effect of IPNS on Soil Physicochemical Properties
4.2. Effect of IPNS on Crop Yield, Nitrogen Uptake and Nitrogen Use Efficiency
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Timmusk, S.; Behers, L.; Muthoni, J.; Muraya, A.; Aronsson, A.-C. Perspectives and Challenges of Microbial Application for Crop Improvement. Front. Plant Sci. 2017, 8, 49. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barros, J.A.; Medeiros, E.V.; Costa, D.P.; Duda, G.P.; Lima, J.R.S.; Santos, U.J.; Antonino, A.C.D.; Hammecker, C. Human disturbance affects enzyme activity, microbial biomass and organic carbon in tropical dry sub-humid pasture and forest soils. Arch. Agron. Soil Sci. 2019, 65, 458–472. [Google Scholar] [CrossRef]
- Uddin, S.; Islam, M.R.; Jahangir, M.M.R.; Rahman, M.M.; Hassan, S.; Hassan, M.M.; Abo-Shosha, A.A.; Ahmed, A.F.; Rahman, M.M. Nitrogen Release in Soils Amended with Different Organic and Inorganic Fertilizers under Contrasting Moisture Regimes: A Laboratory Incubation Study. Agronomy 2021, 11, 2163. [Google Scholar] [CrossRef]
- Santiago, A.; Recena, R.; Perea-Torres, F.; Moreno, M.T.; Carmona, E.; Delgado, A. Relationship of soil fertility to biochemical properties under agricultural practices aimed at controlling land degradation. Land Degr. Dev. 2019, 30, 1121–1129. [Google Scholar] [CrossRef]
- Fertilizer Recommendation Guide; Bangladesh Agricultural Research Council: Dhaka, Bangladesh, 2018.
- Satter, S.A.; Islam, M.N. Charlands of Bangladesh: Their extent, management and future research needs. In Proceedings of the Workshop on Soil Fertility, Fertilizer Management and Future Strategy, Dhaka, Bangladesh, 18–19 January 2010; pp. 1–9. [Google Scholar]
- Islam, M.R.; Akter, A.; Hoque, M.A.; Farzana, S.; Uddin, S.; Talukder, M.M.H.; Alsanie, W.F.; Gaber, A.; Hossain, M.A. Lime and Organic Manure Amendment: A Potential Approach for Sustaining Crop Productivity of the T. Aman-Maize-Fallow Cropping Pattern in Acidic Piedmont Soils. Sustainability 2021, 13, 9808. [Google Scholar] [CrossRef]
- E.U. Nitrogen Expert Panel. Nitrogen Use Efficiency (NUE) an Indicator for the Utilization of Nitrogen in Food Systems. Available online: http://www.eunep.com/wp-content/uploads/2017/03/N-ExpertPanel-NUE-Session-1.pdf (accessed on 8 August 2021).
- Dhaliwal, S.S.; Naresh, R.K.; Mandal, A.; Walia, M.K.; Gupta, R.K.; Singh, R.; Dhaliwal, M.K. Effect of Manures and Fertilizers on Soil Physical Properties, Build-Up of Macro and Micronutrients and Uptake in Soil Under Different Cropping Systems, a Review. J. Plant Nutr. 2019, 42, 2873–2900. [Google Scholar] [CrossRef]
- Saffari, N.; Hajabbasi, M.A.; Shirani, H.; Mosaddeghi, M.R.; Owens, G. Influence of corn residue biochar on water retention and penetration resistance in a calcareous sandy loam soil. Geoderma 2021, 383, 114734. [Google Scholar] [CrossRef]
- Irfan, M.; Hussain, Q.; Khan, K.S.; Akmal, M.; Ijaz, S.S.; Hayat, R.; Khalid, A.; Azeem, M.; Rashid, M. Response of soil microbial biomass and enzymatic activity to biochar amendment in the organic carbon deficient arid soil: A 2-year field study. Arab. J. Geosci. 2019, 12, 95. [Google Scholar] [CrossRef]
- Lima, J.R.S.; Silva, W.M.; Medeiros, E.V.; Duda, G.P.; Corrêa, M.M.; Filho, A.P.M.; Clermont-Dauphin, C.; Antonino, A.C.D.; Hammecker, C. Effect of biochar on physicochemical properties of a sandy soil and maize growth in a greenhouse experiment. Geoderma 2018, 319, 14–23. [Google Scholar] [CrossRef]
- Razzaghi, F.; Obour, P.B.; Arthur, E. Does biochar improve soil water retention? A systematic review and meta-analysis. Geoderma 2020, 361, 114055. [Google Scholar] [CrossRef]
- Tanure, M.M.C.; Costa, L.M.; Huiz, H.A.; Fernandes, R.B.A.; Cecon, P.R.; Pereira, J.D., Jr.; Luz, J.M.R. Soil water retention, physiological characteristics, and growth of maize plants in response to biochar application to soil. Soil Till. Res. 2019, 192, 164–173. [Google Scholar] [CrossRef]
- Liu, C.; Liu, F.; Ravnskov, S.; Rubaek, G.H.; Sun, Z.; Andersen, M.N. Impact of wood biochar and its interactions with mycorrhizal fungi, phosphorus fertilization and irrigation strategies on potato growth. J. Agron. Crop Sci. 2016, 203, 131–145. [Google Scholar] [CrossRef]
- Foster, E.J.; Hansen, N.; Wallenstein, M.; Cotrufo, M.F. Biochar and manure amendments impact soil nutrients and microbial enzymatic activities in a semi-arid irrigated maize cropping system. Agric. Ecosyst. Environ. 2016, 233, 404–414. [Google Scholar] [CrossRef] [Green Version]
- Knoblauch, C.; Maarifat, A.A.; Pfeiffer, E.M.; Haefele, S.M. Degradability of black carbon and its impact on trace gas fluxes and carbon turnover in paddy soils. Soil Biol. Biochem. 2011, 43, 1768–1778. [Google Scholar] [CrossRef]
- Yamato, M.; Okimori, Y.; Wibowo, I.F.; Anshori, S.; Ogawa, M. Effects of the application of charred bark of Acacia mangium on the yield of maize, cowpea and peanut, and soil chemical properties in South Sumatra, Indonesia. J. Soil Sci. Plant Nutr. 2006, 52, 489–495. [Google Scholar] [CrossRef]
- Chan, K.Y.; Van Zwieten, B.L.; Meszaros, I.; Downie, D.; Joseph, S. Using poultry litter biochars as soil amendments. Austr. J. Soil Res. 2008, 46, 437–444. [Google Scholar] [CrossRef]
- Agusalim, M.; Utomo, W.H.; Syechfani, M.S. Rice husk biochar for rice based cropping system in acid soil. The characteristics of rice husk biochar and its influence on the properties of acid sulfate soils and rice growth in West Kalimantan, Indonesia. J. Agric. Sci. 2010, 2, 39. [Google Scholar]
- Song, X.; Liu, M.; Wu, D.; Griffiths, B.S.; Jiao, J.; Li, H.; Hu, F. Interaction matters: Synergy between vermicompost and PGPR agents improves soil quality, crop quality and crop yield in the field. Appl. Soil Ecol. 2015, 89, 25–34. [Google Scholar] [CrossRef]
- Kashem, M.; Sarker, A.; Hossain, I.; Islam, M. Comparison of the Effect of Vermicompost and Inorganic Fertilizers on Vegetative Growth and Fruit Production of Tomato (Solanum lycopersicum L.). Open J. Soil Sci. 2015, 5, 53–58. [Google Scholar] [CrossRef] [Green Version]
- Chaudhuri, P.S.; Paul, T.K.; Dey, A.; Datta, M.; Dey, S.K. Effects of rubber leaf litter vermicompost on earthworm population and yield of pineapple (Ananas comosus) in West Tripura. India. Int. J. Recycl. Org. Waste Agric. 2016, 5, 93–103. [Google Scholar] [CrossRef] [Green Version]
- Islam, M.R.; Jahan, R.; Uddin, S.; Harine, I.J.; Hoque, M.A.; Hassan, S.; Hassan, M.M.; Hossain, M.A. Lime and Organic Manure Amendment Enhances Crop Productivity of Wheat–Mungbean–T. Aman Cropping Pattern in Acidic Piedmont Soils. Agronomy 2021, 11, 1595. [Google Scholar] [CrossRef]
- Islam, M.R.; Talukder, M.M.H.; Hoque, M.A.; Uddin, S.; Hoque, T.S.; Rea, R.S.; Kasim, S. Lime and Manure Amendment Improve Soil Fertility, Productivity and Nutrient Uptake of Rice-Mustard-Rice Cropping Pattern in an Acidic Terrace Soil. Agriculture 2021, 11(11), 1070. [Google Scholar] [CrossRef]
- Selim, M. Potential role of cropping system and integrated nutrient management on nutrients uptake and utilization by maize grown in calcareous soil. Egyp. J. Agron. 2018, 40, 297–312. [Google Scholar] [CrossRef]
- Selim, M.M.; Al-Owied, A.J.A. Genotypic responses of pearl millet to integrated nutrient management. Biosci. Res. 2017, 14, 156–169. [Google Scholar]
- Zhang, H.L.; Lal, R.; Zhao, X.; Xue, J.F.; Chen, F. Opportunities and challenges of soil carbon sequestration by conservation agriculture in China. Advan. Agron. 2014, 124, 1–36. [Google Scholar]
- Bilkis, S.; Islam, M.R.; Jahiruddin, M.; Rahman, M.M. Integrated Use of Manure and Fertilizers Increases Rice Yield, Nutrient Uptake and Soil Fertility in the Boro-Fallow-T. Aman Rice Cropping Pattern. SAARC J. Agric. 2017, 15, 147–161. [Google Scholar] [CrossRef] [Green Version]
- Saha, R.; Mishra, V.K.; Majumdar, B.; Laxminarayan, K.; Ghosh, P.K. Effect of Integrated Nutrient Management on Soil Physical Properties and Crop Productivity under a Maize (Zea mays)–Mustard (Brassica campestris) Cropping Sequence in Acidic Soils of Northeast India. Commun. Soil Sci. Plant Anal. 2010, 41, 2187–2200. [Google Scholar] [CrossRef]
- Chaudhry, U.K.; Shahzad, S.; Naqqash, M.N.; Saboor, A.; Abbas, M.S.; Saeed, F.; Yaqoob, S. Integration of biochar and chemical fertilizer to enhance quality of soil and wheat crop (Triticum aestivum L.). J. Biodiv. Environ. Sci. 2016, 9, 348–358. [Google Scholar]
- Kumar, R.; Naresh, R.K.; Shipra, Y.; Chandra, M.S. Influence of Balanced Fertilization on Productivity, Nutrient Use Efficiency and Profitability of Rice in Inceptisol: A Review. Int. J. Curr. Microbiol. Appl. Sci. 2020, 9, 568–590. [Google Scholar] [CrossRef]
- Ahmed, S.; Humphreys, E.; Salim, M.; Chauhan, B.S. Growth, yield and nitrogen use efficiency of dry-seeded rice as influenced by nitrogen and seed rates in Bangladesh. Field Crops Res. 2015, 186, 18–31. [Google Scholar] [CrossRef]
- Guo, J.; Hu, X.; Gao, L.; Xie, K.; Ling, N.; Shen, Q.; Hu, S.; Guo, S. The rice production practices of high yield and high nitrogen use efficiency in Jiangsu, China. Nat. Sci. Rep. 2017, 7, 2101. [Google Scholar] [CrossRef] [PubMed]
- Ali, M.M.; Tarafder, M.M.A.; Mohsin, N.; Haque, M.A. Soil characterization and fertility assessment of charlands for increased cropping intensity and crop productivity. Prog. Agric. 2020, 31, 56–67. [Google Scholar] [CrossRef]
- Kumar, U.; Rashid, H.; Tithi, N.H.; Mia, M.Y. Status of soil properties in relationship with soil pH in Madhupur tract of Tangail district in Bangladesh. Prog. Agric. 2019, 30, 282–287. [Google Scholar] [CrossRef] [Green Version]
- Jahangir, M.M.R.; Islam, S.; Nitu, T.T.; Uddin, S.; Kabir, A.K.M.A.; Meah, M.B.; Islam, R. Bio-Compost-Based Integrated Soil Fertility Management Improves Post-Harvest Soil Structural and Elemental Quality in a Two-Year Conservation Agriculture Practice. Agronomy 2021, 11, 2101. [Google Scholar] [CrossRef]
- FAO; UNDP. Land Resources Appraisal of Bangladesh for Agricultural Development. Report 2. Agro-ecological regions of Bangladesh; Food and Agriculture Organization: Rome, Italy, 1988; pp. 212–221. [Google Scholar]
- Sahlemedhin, S.; Taye, B. Procedures for Soil and Plant Analysis. Technical Paper No. 74; National Soil Research Center, Ethiopian Agricultural Research Organization: Addis Ababa, Ethiopia, 2000; p. 89. [Google Scholar]
- Bremner, J.M.; Mulvaney, C.S. Nitrogen-Total. In Methods of Soil Analysis, Part 2. Chemical and Microbiological Properties; Page, A.L., Miller, R.H., Keeney, D.R., Eds.; ASA: Madison, WI, USA; SSSAL: Madison, WI, USA, 1982; pp. 595–624. [Google Scholar]
- Rani, S.; Sukumari, P. Root Growth, Nutrient Uptake and Yield of Medicinal Rice Njavara under Different Establishment Techniques and Nutrient Sources. Am. J. Plant Sci. 2013, 4, 35343. [Google Scholar] [CrossRef] [Green Version]
- Moll, R.H.; Kamprath, E.L.; Jackson, A. Analysis and interpretation of factors which contribute to efficiency of nitrogen utilization. Agron. J. 1982, 74, 562–564. [Google Scholar] [CrossRef]
- De Leenheer, L.; De Boodt, M. Determination of aggregate stability by change in mean weight diameter. Medeligen Van land Bouwhogeshcool en de Opzoekingstation van de Staat te Gent 1967, 24, 290–300. [Google Scholar]
- Van Bavel, C.H.M. Mean weight diameter of soil aggregates as a statistical index of aggregation. Soil Sci. Soc. Am. J. 1950, 14, 20–23. [Google Scholar] [CrossRef] [Green Version]
- Zheng, H.; Liu, W.; Zheng, J.; Luo, Y.; Li, R.; Wang, H. Effect of long-term tillage on soil aggregates and aggregate-associated carbon in black soil of Northeast China. PLoS ONE 2018, 13, e0199523. [Google Scholar] [CrossRef]
- Jahangir, M.M.R.; Roobroeck, D.; Van Cleemput, O.; Boeckx, P. Spatial variability and biophysicochemical controls on N2O emissions from differently tilled arable soils. Biol. Fert. Soils 2011, 47, 753–766. [Google Scholar] [CrossRef]
- Jackson, M.L. Soil Chemical Analysis; Prentice Hall of India Pvt. Ltd.: New Delhi, India, 1973; pp. 69–182. [Google Scholar]
- McKenzie, N.J.; Jacquier, D.J.; Isbell, R.F.; Brown, K. Australian Soils and Landscapes—An Illustrated Compendium; CSIRO Publishing: Collingwood, VIC, Australia, 2004. [Google Scholar]
- Black, C.A. Methods of Soil Analysis, Part I, Agronomy Monographs 9; ASA: Madison, WI, USA, 1965. [Google Scholar]
- Burrell, L.D.; Zehetner, F.; Rampazzo, N.; Wimmer, B.; Soja, G. Long-term effects of biochar on soil physical properties. Geoderma 2016, 282, 96–102. [Google Scholar] [CrossRef]
- Hartley, W.; Riby, P.; Waterson, J. Effects of three different biochars on aggregate stability, organic carbon mobility and micronutrient bioavailability. J. Environ. Manag. 2016, 181, 770–778. [Google Scholar] [CrossRef] [Green Version]
- Blanco-Canqui, H. Biochar and soil physical properties. Soil Sci. Soc. Am. J. 2017, 81, 687–711. [Google Scholar] [CrossRef] [Green Version]
- Ibrahim, A.; Marie, H.A.M.E.; Elfaki, J. Impact of biochar and compost on aggregate stability in loamy sand soil. Agric. Res. J. 2021, 58, 34–44. [Google Scholar] [CrossRef]
- Mi, W.; Wu, Y.; Zhao, H.; Wu, L.; Liu, Y. Effects of combined organic manure and mineral fertilization on soil aggregation and aggregate-associated organic carbon in two agricultural soils. J. Plant Nutr. 2018, 41, 2256–2265. [Google Scholar] [CrossRef]
- Annabi, M.; Houot, S.; Francou, C.; Poitrenaud, M.; Bissonnais, Y.L. Soil Aggregate Stability Improvement with Urban Composts of Different Maturities. Soil Sci. Soc. Am. J. 2007, 71, 413–423. [Google Scholar] [CrossRef]
- Šimanský, V. Effects of biochar and biochar with nitrogen on soil organic matter and soil structure in Haplic Luvisol. Acta Fytotech Zootech 2016, 19, 129–138. [Google Scholar] [CrossRef] [Green Version]
- Ma, N.; Zhang, L.; Zhang, Y.; Yang, L.; Yu, C.; Yin, G.; Doane, T.A.; Wu, Z.; Zhu, P.; Ma, X. Biochar improves soil aggregate stability and water availability in a Mollisol after three years of field application. Pedoshere 2015, 25, 713–719. [Google Scholar] [CrossRef]
- Das, B.; Chakraborty, D.; Singh, V.K.; Aggarwal, P.; Singh, R.; Dwivedi, B.S.; Mishra, R.P. Effect of integrated nutrient management practice on soil aggregate properties, its stability and aggregate-associated carbon content in an intensive rice-wheat system. Soil Till. Res. 2014, 136, 9–18. [Google Scholar] [CrossRef]
- Wang, X.J.; Jia, Z.K.; Liang, L.Y.; Yang, B.P.; Ding, R.X.; Nie, J.F.; Wang, J.P. Maize straw effects on soil aggregation and other properties in arid land. Soil Till. Res. 2015, 153, 131–136. [Google Scholar] [CrossRef]
- Six, J.; Bossuyt, H.; Degryze, S.; Denef, K. A history of research on the link between (micro) aggregates, soil biota, and soil organic matter dynamics. Soil Till. Res. 2004, 79, 7–31. [Google Scholar] [CrossRef]
- Mikha, M.M.; Rice, C.W. Tillage and manure effects on soil and aggregate-associated carbon and nitrogen. Soil Sci. Soc. Am. J. 2004, 68, 809–816. [Google Scholar] [CrossRef]
- Helgason, B.L.; Walley, F.L.; Germida, J.J. No-till soil management increases microbial biomass and alters community profiles in soil aggregates. Appl. Soil Ecol. 2010, 46, 390–397. [Google Scholar] [CrossRef]
- Zhang, X.K.; Wu, X.; Zhang, S.X.; Xing, Y.H.; Wang, R.; Liang, W.J. Organic amendment effects on aggregate-associated organic C, microbial biomass C and glomalin in agricultural soils. Catena 2014, 123, 188–194. [Google Scholar] [CrossRef]
- Bronick, C.J.; Lal, R. Soil structure and management: A review. Geoderma 2005, 124, 3–22. [Google Scholar] [CrossRef]
- Xin, X.L.; Zhang, J.B.; Zhu, A.N.; Zhang, C.Z. Effects of long-term (23 years) mineral fertilizer and compost application on physical properties of fluvo-aquic soil in the North China plain. Soil Till. Res. 2016, 156, 166–172. [Google Scholar] [CrossRef]
- Abiven, S.; Menasseri, S.; Angers, D.A.; Leterme, P. Dynamics of aggregate stability and biological binding agents during decomposition of organic materials. Eur. J. Soil Sci. 2007, 58, 239–247. [Google Scholar] [CrossRef]
- Van Chuong, N. Effect of lime, organic and inorganic fertilizers on soil chemical properties and yield of chilli (Capsicum frutescens L.). AGU Int. J. Sci. 2019, 7, 84–90. [Google Scholar]
- Tong, C.L.; Xiao, H.; Tang, G.Y.; Wang, H.Q.; Huang, T.; Xia, H.A.; Keith, S.J.; Li, Y.; Liu, S.L.; Wu, J.S. Long-term fertilizer effects on organic carbon and total nitrogen and coupling relationships of C and N in paddy soils in subtropical China. Soil Till. Res. 2009, 106, 8–14. [Google Scholar] [CrossRef]
- Khalil, M.; Hossain, M.; Schmidhalter, U. Carbon and nitrogen mineralization in different upland soils of the subtropics treated with organic materials. Soil Biol. Biochem. 2005, 37, 1507–1518. [Google Scholar] [CrossRef]
- Dong, W.; Zhang, X.; Wang, H.; Dai, X.; Sun, X.; Qiu, W.; Yang, F. Effect of Different Fertilizer Application on the Soil Fertility of Paddy Soils in Red Soil Region of Southern China. PLoS ONE 2012, 7, e44504. [Google Scholar] [CrossRef] [Green Version]
- Kai, T.; Nishimori, S.; Tamaki, M. Effect of Organic and Chemical Fertilizer Application on Growth, Yield, and Quality of Small-Sized Tomatoes. J. Agric. Chem. Environ. 2020, 9, 121–133. [Google Scholar] [CrossRef]
- Lin, W.; Lin, M.; Zhou, H.; Wu, H.; Li, Z.; Lin, W. The effects of chemical and organic fertilizer usage on rhizosphere soil in tea orchards. PLoS ONE 2019, 14, e0217018. [Google Scholar] [CrossRef]
- Zhang, H.M.; Wang, B.R.; Xu, M.G.; Fan, T.L. Crop yield and soil responses to long-term fertilization on a red soil in southern China. Pedosphere 2009, 19, 199–207. [Google Scholar] [CrossRef]
- Li, B.Y.; Huang, S.M.; Wei, M.B.; Zhang, H.L.; Shen, A.L.; Xu, J.M.; Ruan, X.L. Dynamics of soil and grain micronutrients as affected by long-term fertilization in an aquic Inceptisol. Pedosphere 2010, 20, 725–735. [Google Scholar] [CrossRef]
- Oladele, S.; Adeyemo, A.; Awodun, M.; Ajayi, A.; Fasina, A. Effects of biochar and nitrogen fertilizer on soil physicochemical properties, nitrogen use efficiency and upland rice (Oryza sativa) yield grown on an Alfisol in Southwestern Nigeria. Int. J. Recycl. Organic Waste Agric. 2019, 8, 295–308. [Google Scholar] [CrossRef] [Green Version]
- Ramos, M.C. Effects of compost amendment on the available soil water and grape yield in vineyards planted after land levelling. Agric. Water Manag. 2017, 191, 67–76. [Google Scholar] [CrossRef]
- Yazdanpanah, N.; Mahmoodabadi, M.; Cerdà, A. The impact of organic amendments on soil hydrology, structure and microbial respiration in semiarid lands. Geoderma 2016, 266, 58–65. [Google Scholar] [CrossRef]
- Athira, M.; Jagadeeswaran, R.; Kumaraperumal, R. Influence of soil organic matter on bulk density in Coimbatore soils. Int. J. Chem. Stud. 2019, 7, 3520–3523. [Google Scholar]
- Uddin, S.; Nitu, T.T.; Milu, U.M.; Nasreen, S.S.; Hossenuzzaman, M.; Haque, M.E.; Hossain, B.; Jahiruddin, M.; Bell, R.W.; Müller, C.; et al. Ammonia fluxes and emission factors under an intensively managed wetland rice ecosystem. Environ. Sci. Process. Impacts 2021, 23, 132–143. [Google Scholar] [CrossRef] [PubMed]
- Iqbal, A.; He, L.; Khan, A.; Wei, S.; Akhtar, K.; Ali, I.; Ullah, S.; Munsif, F.; Zhao, Q.; Jiang, L. Organic Manure Coupled with Inorganic Fertilizer: An Approach for the Sustainable Production of Rice by Improving Soil Properties and Nitrogen Use Efficiency. Agronomy 2019, 9, 651. [Google Scholar] [CrossRef] [Green Version]
- Mahmood, F.; Khan, I.; Ashraf, U.; Shahzad, T.; Hussain, S.; Shahid, M.; Abid, M.; Ullah, S. Effects of organic and inorganic manures on maize and their residual impact on soil physico-chemical properties. J. Soil Sci. Plant Nutr. 2017, 17, 22–32. [Google Scholar] [CrossRef] [Green Version]
- Bedada, W.; Karltun, E.; Lemenih, M.; Tolera, M. Long-term addition of compost and NP fertilizer increases crop yield and improves soil quality in experiments on smallholder farms. Agric. Ecosyst. Environ. 2014, 195, 193–201. [Google Scholar] [CrossRef]
- Liang, Q.; Chen, H.; Gong, Y.; Fan, M.; Yang, H.; Lal, R.; Kuzyakov, Y. Effects of 15 years of manure and inorganic fertilizers on soil organic carbon fractions in a wheat-maize system in the North China Plain. Nutr. Cycl. Agroecosyst. 2012, 92, 21–33. [Google Scholar] [CrossRef]
- Hossain, A.T.; Rahman, F.; Saha, P.K.; Solaiman, A.R.M. Effects of different aged poultry litter on the yield and nutrient balance in boro rice cultivation. Bangladesh J. Agric. Res. 2010, 35, 497–505. [Google Scholar] [CrossRef]
- Puli, M.R.; Prasad, P.R.K.; Jayalakshmi, M.; Rao, B.S. Effect of Organic and Inorganic Sources of Nutrients on NPK Uptake by Rice Crop at Various Growth Periods. Res. J. Agric. Sci. 2017, 8, 64–69. [Google Scholar]
- De-shui, T.; Ji-yun, J.; Shao-wen, H.; Shu-tian, L.; Ping, H. Effect of long-term application of K fertilizer and wheat straw to soil on crop yield and soil K under different planting systems. Agr. Sci. China 2007, 6, 200–207. [Google Scholar] [CrossRef]
- Takahashi, S.; Anwar, M.R. Wheat grain yield, phosphorus uptake and soil phosphorus fraction after 23 years of annual fertilizer application to an Andosol. Field Crops Res. 2007, 101, 160–171. [Google Scholar] [CrossRef]
- Dawe, D.; Dobermann, A.; Ladha, J.; Yadav, R.; Bao, L.; Gupta, R.; Lal, P.; Panalluah, G.; Sariam, O.; Singh, Y.; et al. Do organic amendments improve yield trends and profitability in intensive rice systems? Field Crops Res. 2003, 83, 191–213. [Google Scholar] [CrossRef]
- Fofana, B.; Tamélokpo, A.; Wopereis, M.; Breman, H.; Dzotsi, K.; Carsky, R. Nitrogen use efficiency by maize as affected by a mucuna short fallow and P application in the coastal savanna of West Africa. Nutr. Cycl. Agroecosyst. 2005, 71, 227–237. [Google Scholar] [CrossRef]
- Rehim, A.; Khan, M.; Imran, M.; Bashir, M.A.; Ul-Allah, S.; Khan, M.N.; Hussain, M. Integrated use of farm manure and synthetic nitrogen fertilizer improves nitrogen use efficiency, yield and grain quality in wheat. Italian J. Agron. 2020, 15, 1360. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Li, C.; Wang, Y.; Hu, Y.; Christie, P.; Zhang, J.; Li, X. Maize yield and soil fertility with combined use of compost and inorganic fertilizers on a calcareous soil on the North China Plain. Soil Till. Res. 2016, 155, 85–94. [Google Scholar] [CrossRef]
Characteristics | Acidic Soil | Charland Soil |
---|---|---|
Texture | Clay Loam | Sandy Loam |
SOC (g kg−1) | 9.9 | 5.3 |
TN (g kg−1) | 0.9 | 0.5 |
Available P (mg kg−1) | 17.63 | 12.37 |
Available S (mg kg−1) | 14.95 | 10.53 |
Available K (cmolc kg−1) | 0.12 | 0.12 |
pH | 5.5 | 6.6 |
CEC (cmolc kg−1) | 17.71 | 10.31 |
Moisture (%) | 21.69 | 17.28 |
Bulk Density (g cm−3) | 1.15 | 1.32 |
Organic Amendments | OC (g kg−1) | TN (g kg−1) | pH | CEC (cmolc kg−1) | Available P (mg kg−1) | Available K (cmolc kg−1) | Available S (mg kg−1) |
---|---|---|---|---|---|---|---|
PM | 85.6 | 20.5 | 8.3 | 12.29 | 839 | 6.34 | 1898 |
VC | 75.7 | 10.8 | 7.7 | 11.83 | 1020 | 4.99 | 377 |
OF | 72.7 | 11.2 | 7.3 | 10.07 | 983 | 5.47 | 1469 |
RHB | 175.2 | 18.1 | 7.5 | 19.54 | 1149 | 15.99 | 415 |
PMB | 337.6 | 30.8 | 8.5 | 35.68 | 1437 | 22.61 | 2094 |
Treatment | MaAS (%) | MiAS (%) | SI (ratio) | MWD (mm) | GMD (mm) |
---|---|---|---|---|---|
Control | 33.97 ± 1.50 b | 66.03 ± 1.50 a | 0.52 ± 0.03 b | 0.60 ± 0.03 b | 0.22 ± 0.01 b |
PM | 40.92 ± 0.76 a | 59.08 ± 0.76 b | 0.69 ± 0.02 ab | 0.71 ± 0.02 ab | 0.27 ± 0.01 ab |
RHB | 40.94 ± 0.75 a | 59.06 ± 0.75 b | 0.69 ± 0.02 ab | 0.72 ± 0.01 ab | 0.28 ± 0.01 ab |
PMB | 44.00 ± 2.21 a | 56.00 ± 2.21 b | 0.79 ± 0.07 a | 0.78 ± 0.04 a | 0.32 ± 0.03 a |
Dolomite + RD | 41.19 ± 1.70 a | 58.81 ± 1.70 b | 0.70 ± 0.05 ab | 0.71 ± 0.03 ab | 0.28 ± 0.01 ab |
RD | 39.89 ± 0.47 ab | 60.11 ± 0.47 ab | 0.66 ± 0.01 ab | 0.69 ± 0.01 ab | 0.26 ± 0.00 ab |
Level of significance | ** | ** | * | ** | ** |
Treatment | TN (%) | pH (H2O) | BD (g cm−3) |
---|---|---|---|
Control | 0.09 ± 0.00 bc | 5.41 ± 0.03 b | 1.25 ± 0.02 |
PM | 0.11 ± 0.00 ab | 5.57 ± 0.04 ab | 1.15 ± 0.03 |
RHB | 0.09 ± 0.00 c | 5.54 ± 0.03 b | 1.22 ± 0.02 |
PMB | 0.12 ± 0.00 a | 5.72 ± 0.02 a | 1.18 ± 0.03 |
Dolomite + RD | 0.11 ± 0.00 a | 5.22 ± 0.04 c | 1.23 ± 0.03 |
RD | 0.10 ± 0.01 abc | 5.23 ± 0.04 c | 1.24 ± 0.04 |
Level of significance | *** | *** | ns |
Grain Yield | ||||||||
---|---|---|---|---|---|---|---|---|
Mustard | Boro | T. Aman | System Productivity | |||||
2019 | 2020 | 2019 | 2020 | 2019 | 2020 | 2019 | 2020 | |
Control | 0.6 ± 0.02 d | 0.7 ± 0.02 d | 4.0 ± 0.10 c | 3.5 ± 0.35 c | 3.6 ± 0.27 c | 3.5 ± 0.45 b | 9.2 ± 0.27 d | 8.7 ± 0.25 b |
PM | 1.0 ± 0.01 c | 1.4 ± 0.10 bc | 6.5 ± 0.18 a | 6.6 ± 0.28 ab | 5.4 ± 0.11 b | 5.2 ± 0.47 a | 14.4 ± 0.31 bc | 15.3 ± 0.83 a |
RHB | 1.1 ± 0.01 b | 1.3 ± 0.16 c | 6.7 ± 0.17 a | 6.3 ± 0.42 b | 5.5 ± 0.13 ab | 5.6 ± 0.28 a | 15.0 ± 0.19 abc | 15.2 ± 0.31 a |
PMB | 1.3 ± 0.01 a | 1.3 ± 0.10 c | 6.6 ± 0.04 a | 7.1 ± 0.20 a | 5.7 ± 0.11 ab | 5.5 ± 0.06 a | 15.6 ± 0.13 a | 15.8 ± 0.13 a |
Dolomite + RD | 1.0 ± 0.01 c | 1.6 ± 0.07 a | 5.9 ± 0.25 b | 6.5 ± 0.38 ab | 6.0 ± 0.09 a | 5.4 ± 0.22 a | 14.3 ± 0.10 c | 15.9 ± 0.41 a |
RD | 1.3 ± 0.01 a | 1.5 ± 0.25 ab | 6.2 ± 0.39 ab | 6.6 ± 0.23 ab | 5.6 ± 0.10 ab | 5.0 ± 0.13 a | 15.1 ± 0.23 ab | 15.5 ± 0.19 a |
Level of significance | *** | *** | *** | *** | *** | *** | *** | *** |
Straw Yield | ||||||||
Treament | Mustard | Boro | T. Aman | |||||
2019 | 2020 | 2019 | 2020 | 2019 | 2020 | |||
Control | 1.1 ± 0.06 a | 0.9 ± 0.13 b | 4.4 ± 0.13 a | 4.0 ± 0.40 b | 4.3 ± 0.32 b | 4.6 ± 0.36 b | ||
PM | 1.9 ± 0.39 a | 2.2 ± 0.21 a | 6.7 ± 0.16 b | 7.0 ± 0.15 a | 6.0 ± 0.17 a | 5.8 ± 0.50 ab | ||
RHB | 1.5 ± 0.34 a | 2.0 ± 0.41 ab | 6.9 ± 0.09 b | 7.1 ± 0.44 a | 6.4 ± 0.12 a | 5.8 ± 0.45 ab | ||
PMB | 1.1 ± 0.09 a | 1.6 ± 0.12 ab | 6.9 ± 0.09 b | 7.1 ± 0.08 a | 6.5 ± 0.20 a | 6.1 ± 0.15 a | ||
Dolomite + RD | 1.6 ± 0.20 a | 2.7 ± 0.12 a | 6.2 ± 0.30 b | 6.8 ± 0.19 a | 6.5 ± 0.16 a | 6.1 ± 0.04 a | ||
RD | 1.9 ± 0.24 a | 1.9 ± 0.40 ab | 6.4 ± 0.36 b | 6.6 ± 0.17 a | 6.5 ± 0.30 a | 5.3 ± 0.24 ab | ||
Level of significance | ns | ** | *** | *** | *** | * |
Treatment | N Uptake (kg ha−1) | NUE (%) | ||||||
---|---|---|---|---|---|---|---|---|
Aman 2019 | Aman 2020 | Boro 2019 | Boro 2020 | Aman 2019 | Aman 2020 | Boro 2019 | Boro 2020 | |
Control | 54.1 ± 3.5 c | 53.4 ± 3.9 b | 57.4 ± 2.9 b | 52.6 ± 2.5 c | ||||
PM | 83.7 ± 0.6 ab | 82.3 ± 4.4 a | 97.7 ± 3.2 a | 93.4 ± 1.5 b | 32.8 ± 0.8 a | 32.1 ± 4.9 ab | 33.6 ± 2.7 | 34.0 ± 1.25 b |
RHB | 78.5 ± 2.08 b | 83.7 ± 4.7 a | 100.3 ± 3.9 a | 92.8 ± 1.1 b | 27.1 ± 2.3 b | 33.6 ± 5.3 b | 35.7 ± 3.3 | 33.5 ± 0.92 b |
PMB | 88.4 ± 1.04 a | 88.6 ± 2.3 a | 102.4 ± 0.3 a | 103.2 ± 1.0 a | 38.1 ± 1.2 a | 39.0 ± 2.6 a | 37.5 ± 0.3 | 42.2 ± 0.9 a |
Dolomite + RD | 82.2 ± 1.5 ab | 83.6 ± 3.02 a | 95.1 ± 2.1 a | 95.2 ± 2.1 ab | 31.2 ± 1.7 b | 33.5 ± 3.4 ab | 31.4 ± 1.8 | 35.5 ± 1.8 b |
RD | 82.2 ± 0.5 ab | 82.3 ± 1.8 a | 96.8 ± 1.07 a | 94.3 ± 1.3 b | 31.2 ± 0.6 b | 32.0 ± 2.0 ab | 32.8 ± 0.9 | 34.8 ± 1.1 b |
Level of signific ance | *** | *** | *** | *** | ** | * | ns | ** |
Treatment | MaAS (%) | MiAS (%) | SI (Ratio) | MWD (mm) | GMD (mm) |
---|---|---|---|---|---|
Control | 25.24 ± 2.88 b | 74.76 ± 2.88 a | 0.34 ± 0.05 b | 0.46 ± 0.05 b | 0.16 ± 0.01 b |
PM | 26.36 ± 2.05 b | 76.14 ± 1.97 a | 0.35 ± 0.03 b | 0.48 ± 0.04 b | 0.16 ± 0.01 b |
PMB | 30.83 ± 2.26 a | 69.17 ± 2.26 b | 0.45 ± 0.05 a | 0.51 ± 0.04 a | 0.19 ± 0.02 a |
OF | 25.86 ± 1.68 b | 74.14 ± 1.68 a | 0.35 ± 0.03 b | 0.45 ± 0.03 b | 0.17 ± 0.01 b |
VC | 26.02 ± 3.26 b | 73.98 ± 3.26 a | 0.36 ± 0.06 b | 0.43 ± 0.04 b | 0.17 ± 0.02 b |
RD | 23.76 ± 1.45 b | 76.24 ± 1.45 a | 0.31 ± 0.02 b | 0.40 ± 0.02 b | 0.15 ± 0.01 b |
Level of signific ance | *** | *** | *** | *** | *** |
Treatment | TN (%) | pH (H2O) | BD g cm−3 |
---|---|---|---|
Control | 0.07 ± 0.01 | 6.43 ± 0.11 | 1.33 ± 0.05 a |
PM | 0.07 ± 0.01 | 6.53 ± 0.13 | 1.30 ± 0.00 ab |
PMB | 0.07 ± 0.00 | 6.55 ± 0.05 | 1.26 ± 0.05 b |
OF | 0.07 ± 0.01 | 6.59 ± 0.09 | 1.29 ± 0.06 ab |
VC | 0.07 ± 0.01 | 6.43 ± 0.08 | 1.32 ± 0.04 a |
RD | 0.06 ± 0.00 | 6.47 ± 0.14 | 1.33 ± 0.06 a |
Level of significance | ns | ns | * |
Grain Yield | ||||||||
---|---|---|---|---|---|---|---|---|
Treatment | Maize | Jute | T. Aman | System Productivity | ||||
2019 | 2020 | 2019 | 2020 | 2019 | 2020 | 2019 | 2020 | |
Control | 4.6 ± 0.02 c | 3.3 ± 0.31 d | 2.5 ± 0.26 b | 1.2 ± 0.30 c | 3.7 ± 0.11 d | 1.8 ± 0.18 d | 14.1 ± 0.31 b | 7.8 ± 0.43 d |
PM | 8.7 ± 0.02 a | 7.1 ± 0.53 bc | 3.3 ± 0.29 ab | 2.3 ± 0.33 ab | 4.6 ± 0.29 c | 3.4 ± 0.23 c | 20.5 ± 0.37 a | 15.4 ± 0.61 ab |
PMB | 7.9 ± 0.02 ab | 7.6 ± 0.25 a | 3.6 ± 0.39 a | 2.6 ± 0.18 a | 5.4 ± 0.19 ab | 3.5 ± 0.22 bc | 21.3 ± 0.45 a | 16.8 ± 0.44 a |
OF | 8.0 ± 0.01 ab | 7.0 ± 0.29 bc | 3.4 ± 0.38 ab | 1.6 ± 0.11 bc | 5.4 ± 0.12 a | 4.3 ± 0.11 a | 21.1 ± 0.59 a | 14.6 ± 0.26 bc |
VC | 7.4 ± 0.03 b | 6.8 ± 0.50 c | 3.7 ± 0.41 a | 1.7 ± 0.05 bc | 4.8 ± 0.03 bc | 3.2 ± 0.09 c | 20.5 ± 0.72 a | 13.6 ± 0.15 c |
RD | 8.1 ± 0.03 ab | 7.2 ± 0.15 b | 3.1 ± 0.15 ab | 1.6 ± 0.16 bc | 5.2 ± 0.24 ab | 3.9 ± 0.28 ab | 20.2 ± 0.43 a | 14.3 ± 0.28 bc |
Level of significance | *** | *** | * | *** | *** | *** | *** | *** |
Straw Yield | ||||||||
Treatment | Maize | T. Aman | ||||||
2019 | 2020 | 2019 | 2020 | |||||
Control | 5.5 ± 0.03 e | 9.0 ± 0.27 b | 4.4 ± 0.13 b | 2.3 ± 0.25 a | ||||
PM | 11.9 ± 0.03 b | 16.2 ± 0.45 a | 5.4 ± 0.25 ab | 4.4 ± 0.35 b | ||||
PMB | 13.1 ± 0.17 a | 15.8 ± 0.41 a | 5.7 ± 0.36 a | 5.1 ± 0.47 b | ||||
OF | 10.9 ± 0.02 d | 15.5 ± 0.19 a | 5.8 ± 0.24 a | 4.9 ± 0.07 b | ||||
VC | 11.3 ± 0.05 c | 14.4 ± 0.82 a | 5.6 ± 0.03 a | 4.4 ± 0.10 b | ||||
RD | 12.8 ± 0.05 a | 16.3 ± 0.25 a | 5.8 ± 0.11 a | 4.5 ± 0.31 b | ||||
Level of significance | *** | *** | ** | *** |
Treatment | N Uptake (kg ha−1) | NUE (%) | ||||||
---|---|---|---|---|---|---|---|---|
Aman 2019 | Aman 2020 | Maize 2019 | Maize 2020 | Aman 2019 | Aman 2020 | Maize 2019 | Maize 2020 | |
Control | 67.1 ± 3.7 c | 31.1 ± 0.8 d | 97.8 ± 3.7 b | 72.1 ± 1.2 c | ||||
PM | 90.9 ± 0.9 b | 58.2 ± 0.8 c | 169.5 ± 1.5 a | 140.2 ± 0.5 b | 26.4 ± 1.0 c | 30.1 ± 1.0 c | 32.6 ± 0.7 b | 31.0 ± 0.2 c |
PMB | 95.4 ± 0.5 ab | 60.2 ± 0.4 bc | 170.0 ± 0.4 a | 144.0 ± 1.3 b | 31.5 ± 0.6 b | 32.3 ± 0.5 bc | 32.8 ± 0.2 ab | 32.7 ± 0.6 b |
OF | 98.8 ± 0.6 a | 65.1 ± 0.2 a | 175.3 ± 0.6 a | 148.3 ± 0.2 a | 35.3 ± 0.7 a | 37.7 ± 0.3 a | 35.3 ± 0.3 a | 34.6 ± 0.1 a |
VC | 96.2 ± 0.3 ab | 59.8 ± 0.6 bc | 167.7 ± 1.3 a | 143.7 ± 0.2 b | 32.4 ± 0.4 b | 31.9 ± 0.8 bc | 31.8 ± 0.6 b | 32.6 ± 0.1 b |
RD | 96.0 ± 0.3 ab | 61.8 ± 0.7 b | 170.2 ± 1.1 a | 144.3 ± 0.6 ab | 32.2 ± 0.4 b | 34.1 ± 0.8 b | 32.9 ± 0.5 ab | 32.8 ± 0.3 b |
Level of significance | *** | *** | *** | *** | *** | *** | ** | *** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rahman, M.M.; Uddin, S.; Jahangir, M.M.R.; Solaiman, Z.M.; Alamri, S.; Siddiqui, M.H.; Islam, M.R. Integrated Nutrient Management Enhances Productivity and Nitrogen Use Efficiency of Crops in Acidic and Charland Soils. Plants 2021, 10, 2547. https://doi.org/10.3390/plants10112547
Rahman MM, Uddin S, Jahangir MMR, Solaiman ZM, Alamri S, Siddiqui MH, Islam MR. Integrated Nutrient Management Enhances Productivity and Nitrogen Use Efficiency of Crops in Acidic and Charland Soils. Plants. 2021; 10(11):2547. https://doi.org/10.3390/plants10112547
Chicago/Turabian StyleRahman, Mohammad Mojibur, Shihab Uddin, Mohammad Mofizur Rahman Jahangir, Zakaria M. Solaiman, Saud Alamri, Manzer H. Siddiqui, and Mohammad Rafiqul Islam. 2021. "Integrated Nutrient Management Enhances Productivity and Nitrogen Use Efficiency of Crops in Acidic and Charland Soils" Plants 10, no. 11: 2547. https://doi.org/10.3390/plants10112547
APA StyleRahman, M. M., Uddin, S., Jahangir, M. M. R., Solaiman, Z. M., Alamri, S., Siddiqui, M. H., & Islam, M. R. (2021). Integrated Nutrient Management Enhances Productivity and Nitrogen Use Efficiency of Crops in Acidic and Charland Soils. Plants, 10(11), 2547. https://doi.org/10.3390/plants10112547