Evaluation of Antioxidant and Antibacterial Activities of White Mulberry (Morus alba L.) Fruit Extracts
Abstract
:1. Introduction
2. Results
2.1. Antioxidant Activity of Mulberry Extracts
2.2. Total Phenolic, Flavonoid and Anthocyanin Content of Mulberry Extracts
2.3. Antibacterial Activity of Mulberry Extracts
2.4. Antibacterial Adhesion Activity to Intestinal Epithelial Cells of Mulberry Extracts
3. Discussion
4. Materials and Methods
4.1. Reagents and Chemicals
4.2. Materials
4.3. Extraction
4.4. Antioxidant Activities
4.4.1. DPPH Radical Scavenging Assay
4.4.2. ABTS Radical Cation Decolorization Assay
4.4.3. Ferric Reducing Antioxidant Power (FRAP) Assay
4.5. Determination of Total Phenolic Flavonoid and Anthocyanin Content
4.5.1. Total Phenolic Content
4.5.2. Total Flavonoid Content
4.5.3. Determination of Total Anthocyanin Content
4.6. Microorganism
4.7. Antibacterial Activity of Mulberry Extracts
4.7.1. Determination of Antibacterial Activity of Mulberry Extracts by Agar Well Diffusion Method
4.7.2. Determination of Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MBC) of Mulberry Extracts
4.7.3. Time-Kill Assay of Bacteria by Mulberry Extracts
4.8. Cell Culture
4.9. Determination of Cell Toxicity by Mulberry Extracts
4.10. Determination of Antibacterial Adhesion by Mulberry Extracts
4.11. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Getie, M.; Abebe, W.; Tessema, B. Prevalence of enteric bacteria and their antimicrobial susceptibility patterns among food handlers in Gondar town, Northwest Ethiopia. Antimicrob. Resist. Infect. Control 2019, 8, 111. [Google Scholar] [CrossRef] [Green Version]
- Santamaria, J.; Toranzos, G.A. Enteric pathogens and soil: A short review. Int. Microbiol. 2003, 6, 5–9. [Google Scholar] [CrossRef] [PubMed]
- Riddle, M.S. Travel, diarrhea, antibiotics, antimicrobial resistance and practice guidelines—A holistic approach to a health conundrum. Curr. Infect. Dis. Rep. 2020, 22, 1–10. [Google Scholar] [CrossRef]
- Kartal, M. Intellectual property protection in the natural product drug discovery, traditional herbal medicine and herbal medicinal products. Phytother. Res. 2007, 21, 113–119. [Google Scholar] [CrossRef]
- Choi, S.W.; Jang, Y.J.; Lee, Y.J.; Leem, H.H.; Kim, E.O. Analysis of functional constituents in mulberry (Morus alba L.) twigs by different cultivars, producing areas, and heat processings. Prev. Nutr. Food Sci. 2013, 18, 256–262. [Google Scholar] [CrossRef] [Green Version]
- Gerasopoulos, D.; Stavroulakis, G. Quality characteristics of four mulberry (Morus spp.) cultivars in the area of Chania Greece. J. Sci. Food Agric. 1997, 73, 261–264. [Google Scholar] [CrossRef]
- Miljkovic, V.; Nikolic, G.; Mihajlov-Krstev, T.M.; Arsic, B. Antibacterial activities of fruits extracts of three mulberry species (Morus alba L., Morus rubra L. and Morus nigra L.) and bilberry (Vaccinium myrtillus L.). Acta Med. Median. 2018, 57, 5–12. [Google Scholar]
- Rodrigues, E.L.; Marcelino, G.; Silva, G.T.; Figueiredo, P.S.; Garcez, W.S.; Corsino, J.; Guimarães, R.C.A.; Freitas, K.C. Nutraceutical and medicinal potential of the Morus species in metabolic dysfunctions. Int. J. Mol. Sci. 2019, 20, 301. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Ma, Z.F.; Luo, X.; Li, X. Effects of mulberry fruit (Morus alba L.) consumption on health outcomes: A mini-review. Antioxidants 2018, 7, 69. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Imran, M.; Khan, H.; Shah, M.; Khan, R.; Khan, F. Chemical composition and antioxidant activity of certain Morus species. J. Zhejiang Univ. Sci. B 2010, 11, 973–980. [Google Scholar] [CrossRef]
- Jan, B.; Parveen, R.; Zahiruddin, S.; Khan, M.U.; Mohapatra, S.; Ahmad, S. Nutritional constituents of mulberry and their potential applications in food and pharmaceuticals: A review. Saudi J. Biol. Sci. 2021, 28, 3909–3921. [Google Scholar] [CrossRef]
- Jiao, Y.; Wang, X.; Jiang, X.; Kong, F.; Wang, S.; Yan, C. Antidiabetic effects of Morus alba fruit polysaccharides on high-fat diet- and streptozotocin-induced type 2 diabetes in rats. J. Ethnopharmacol. 2017, 199, 119–127. [Google Scholar] [CrossRef]
- Kawvised, S.; Wattanathorn, J.; Thukham-Mee, W. Neuroprotective and cognitive-enhancing effects of microencapsulation of mulberry fruit extract in animal model of menopausal women with metabolic syndrome. Oxid. Med. Cell. Longev. 2017, 2017, 2962316. [Google Scholar] [CrossRef]
- Huang, H.P.; Chang, Y.C.; Wu, C.H.; Hung, C.N.; Wang, C.J. Anthocyanin-rich Mulberry extract inhibit the gastric cancer cell growth in vitro and xenograft mice by inducing signals of p38/p53 and c-jun. Food Chem. 2011, 129, 1703–1709. [Google Scholar] [CrossRef]
- Yuan, Q.; Zhao, L. The mulberry (Morus alba l.) fruit-a review of characteristic components and health benefits. J. Agric. Food Chem. 2017, 65, 10383–10394. [Google Scholar] [CrossRef]
- Chen, H.; Yu, W.; Chen, G.; Meng, S.; Xiang, Z.; He, N. Antinociceptive and antibacterial properties of anthocyanins and flavonols from fruits of black and non-black mulberries. Molecules 2017, 23, 4. [Google Scholar] [CrossRef] [Green Version]
- Ercisli, S.; Orhan, E. Chemical composition of white (Morus alba), red (Morus rubra) and black (Morus nigra) mulberry fruits. Food Chem. 2007, 103, 1380–1384. [Google Scholar] [CrossRef]
- Aramwit, P.; Bang, N.; Srichana, T. The properties and stability of anthocyanins in mulberry fruits. Food Res. Int. 2010, 43, 1093–1097. [Google Scholar] [CrossRef]
- Butkhup, L.; Samappito, W.; Samappito, S. Phenolic composition and antioxidant activity of white mulberry (Morus alba L.) fruits. Int. J. Food Sci. Technol. 2013, 48, 934–940. [Google Scholar] [CrossRef]
- Arfan, M.; Khan, R.; Rybarczyk, A.; Amarowicz, R. Antioxidant activity of mulberry fruit extracts. Int. J. Mol. Sci. 2012, 13, 2472–2480. [Google Scholar] [CrossRef] [PubMed]
- Lin, J.Y.; Tang, C.Y. Determination of total phenolic and flavonoid contents in selected fruits and vegetables, as well as their stimulatory effects on mouse splenocyte proliferation. Food Chem. 2007, 101, 140–147. [Google Scholar] [CrossRef]
- Wang, W.; Zu, Y.; Fu, Y.; Efferth, T. In vitro antioxidant and antimicrobial activity of extracts from Morus alba L. leaves, stems and fruits. Am. J. Chin. Med. 2012, 40, 349–356. [Google Scholar] [CrossRef]
- Siddhuraju, P.; Mohan, P.S.; Becker, K. Studies on the antioxidant activity of Indian Laburnum (Cassia fistula L.): A preliminary assessment of crude extracts from stem bark, leaves, flowers, and fruit pulp. Food Chem. 2002, 79, 61–67. [Google Scholar] [CrossRef]
- Jiang, D.Q.; Guo, Y.; Xu, D.H.; Huang, Y.S.; Yuan, K.; Lv, Z.Q. Antioxidant and anti-fatigue effects of anthocyanins of mulberry juice purification (MJP) and mulberry marc purification (MMP) from different varieties mulberry fruit in China. Food Chem. Toxicol. 2013, 59, 1–7. [Google Scholar] [CrossRef]
- Evelson, P.; Travacio, M.; Repetto, M.; Escobar, J.; Llesuy, S.; Lissi, E.A. Evaluation of total reactive antioxidant potential (TRAP) of tissue homogenates and their cytosols. Arch. Biochem. Biophys. 2001, 388, 261–266. [Google Scholar] [CrossRef] [PubMed]
- Cao, G.; Prior, R.L. Measurement of oxygen radical absorbance capacity in biological samples. Methods Enzymol. 1999, 299, 50–62. [Google Scholar]
- van den Berg, R.; Haenen, G.R.; van den Berg, H.; Bast, A.A.L.T. Applicability of an improved Trolox equivalent antioxidant capacity (TEAC) assay for evaluation of antioxidant capacity measurements of mixtures. Food Chem. 1999, 66, 511–517. [Google Scholar] [CrossRef]
- Guo, C.; Yang, J.; Wei, J.; Li, Y.; Xu, J.; Jiang, Y. Antioxidant activities of peel, pulp and seed fractions of common fruits as determined by FRAP assay. Nutr. Res. 2003, 23, 1719–1726. [Google Scholar] [CrossRef]
- Giampieri, F.; Tulipani, S.; Alvarez-Suarez, J.M.; Quiles, J.L.; Mezzetti, B.; Battino, M. The strawberry: Composition, nutritional quality, and impact on human health. Nutrition 2012, 28, 9–19. [Google Scholar] [CrossRef]
- Augusto, T.R.; Salinas, E.S.S.; Alencar, S.M.; D’arce, M.A.B.R.; Camargo, A.C.D.; Vieira, T.M.F.D.S. Phenolic compounds and antioxidant activity of hydroalcoholic extracts of wild and cultivated murtilla (Ugni molinae Turcz.). Food Sci. Technol. 2014, 34, 667–679. [Google Scholar] [CrossRef] [Green Version]
- Isabelle, M.; Lee, B.L.; Ong, C.N.; Liu, X.; Huang, D. Peroxyl radical scavenging capacity, polyphenolics, and lipophilic antioxidant profiles of mulberry fruits cultivated in southern China. J. Agric. Food Chem. 2008, 56, 9410–9416. [Google Scholar] [CrossRef]
- Mahmood, T.; Anwar, F.; Abbas, M.; Saari, N. Effect of maturity on phenolics (phenolic acids and flavonoids) profile of strawberry cultivars and mulberry species from Pakistan. Int. J. Mol. Sci. 2012, 13, 4591–4607. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Xiao, G.; Chen, W.; Xu, Y.; Wu, J. Auantification and purification of mulberry anthocyanins with macroporous resins. J. Biomed. Biotechnol. 2004, 2004, 326–331. [Google Scholar] [CrossRef] [Green Version]
- Li, W.; Shan, F.; Sun, S.; Corke, H.; Beta, T. Free radical scavenging properties and phenolic content of Chinese black-grained wheat. J. Agric. Food Chem. 2005, 53, 8533–8536. [Google Scholar] [CrossRef]
- Thabti, I.; Elfalleh, W.; Tlili, N.; Ziadi, M.; Campos, M.G.; Ferchichi, A. Phenols, flavonoids, and antioxidant and antibacterial activity of leaves and stem bark of Morus species. Int. J. Food Prop. 2014, 17, 842–854. [Google Scholar] [CrossRef] [Green Version]
- Sivapriya, M.; Dinesha, R.; Harsha, R.; Gowda, S.S.T.; Srinivas, L. Antibacterial activity of different extracts of sundakai (Solanum torvum) fruit coat. Int. J. Biol. Chem. 2011, 5, 61–67. [Google Scholar] [CrossRef]
- Cowan, M.M. Plant products as antimicrobial agent. Clin. Microbiol. Rev. 1999, 12, 564–582. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mueller, M.; de la Pena, A.; Derendorf, H. Issues in pharmacokinetics and pharmacodynamics of anti-infective agents: Kill curves versus MIC. Antimicrob. Agents Chemother. 2004, 48, 369–377. [Google Scholar] [CrossRef] [Green Version]
- Puupponen-Pimia, R.; Nohynek, L.; Meier, C.; Kähkönen, M.; Heinonen, M.; Hopia, A.; Oksman-Caldentey, K.M. Antimicrobial properties of phenolic compounds from berries. J. Appl. Microbiol. 2001, 90, 494–507. [Google Scholar] [CrossRef]
- Puupponen-Pimia, R.; Nohynek, L.; Hartmann-Schmidlin, S.; Kähkönen, M.; Heinonen, M.; Määttä-Riihinen, K.; Oksman-Caldentey, K.M. Berry phenolics selectively inhibit the growth of intestinal pathogens. J. Appl. Microbiol. 2005, 98, 991–1000. [Google Scholar] [CrossRef]
- Ageorges, V.; Monteiro, R.; Leroy, S.; Burgess, C.M.; Pizza, M.; Chaucheyras-Durand, F.; Desvaux, M. Molecular determinants of surface colonisation in diarrhoeagenic Escherichia coli (DEC): From bacterial adhesion to biofilm formation. FEMS Microbiol. Rev. 2020, 44, 314–350. [Google Scholar] [CrossRef] [PubMed]
- Pizarro-Cerdá, J.; Cossart, P. Bacterial adhesion and entry into host cells. Cell 2006, 124, 715–727. [Google Scholar] [CrossRef] [Green Version]
- Hidalgo, G.; Chan, M.; Tufenkji, N. Inhibition of Escherichia coli cft073 flic expression and motility by cranberry materials. Appl. Environ. Microbiol. 2011, 77, 6852–6857. [Google Scholar] [CrossRef] [Green Version]
- Famuyide, I.M.; Aro, A.O.; Fasina, F.O.; Eloff, J.N.; McGaw, L.J. Antibacterial activity and mode of action of acetone crude leaf extracts of under investigated Syzygium and Eugenia (Myrtaceae) species on multidrug resistant porcine diarrhoeagenic Escherichia coli. BMC Vet. Res. 2019, 15, 162. [Google Scholar] [CrossRef] [Green Version]
- Cunningham, D.G.; Vannozzi, S.A.; Turk, R.; Roderick, R.; O’Shea, E.; Brilliant, K. Cranberry phytochemicals and their health benefits. ACS Symp. Ser. 2004, 871, 35–51. [Google Scholar]
- Foo, L.Y.; Lu, Y.; Howell, A.B.; Vorsa, N. A-type proanthocyanidin trimers from cranberry that inhibit adherence of uropathogenic P-fimbriated Escherichia coli. J. Nat. Prod. 2000, 63, 1225–1228. [Google Scholar] [CrossRef]
- Sharma, S.; Sabnis, S. Study of anti adhesive properties of fruit juices and plant extracts on urinary tract pathogens. Asian J. Exp. Biol. Sci. 2010, 3, 100–103. [Google Scholar]
- Gonelimali, F.D.; Lin, J.; Miao, W.; Xuan, J.; Charles, F.; Chen, M.; Hatab, S.R. Antimicrobial properties and mechanism of action of some plant extracts against food pathogens and spoilage microorganisms. Front. Microbiol. 2018, 9, 1639. [Google Scholar] [CrossRef]
- Abubakar, A.R.; Haque, M. Preparation of medicinal plants: Basic extraction and fractionation procedures for experimental purposes. J. Pharm. Bioallied. Sci. 2020, 12, 1. [Google Scholar] [CrossRef]
- Formagio, A.S.N.; Volobuff, C.R.F.; Santiago, M.; Cardoso, C.A.L.; Vieira, M.D.C.; Pereira, Z.V. Evaluation of antioxidant activity, total flavonoids, tannins and phenolic compounds in Psychotria leaf extracts. Antioxidants 2014, 3, 745–757. [Google Scholar] [CrossRef] [Green Version]
- Elfalleh, W.; Nasri, N.; Marzougui, N.; Thabti, I.; M’rabet, A.; Yahya, Y.; Lachiheb, B.; Guasmi, F.; Ferchichi, A. Physico-chemical properties and DPPH-ABTS scavenging activity of some local pomegranate (Punica granatum) ecotypes. Int. J. Food Sci. Nutr. 2009, 60, 197–210. [Google Scholar] [CrossRef]
- Lee, K.J.; Oh, Y.C.; Cho, W.K.; Ma, J.Y. Antioxidant and anti-inflammatory activity determination of one hundred kinds of pure chemical compounds using offline and online screening HPLC assay. Evid. Based Complement. Altern. Med. 2015, 2015, 165457. [Google Scholar] [CrossRef] [Green Version]
- Rabeta, M.S.; Faraniza, R. Total phenolic content and ferric reducing antioxidant power of the leaves and fruits of Garcinia atroviridis and Cynometra cauliflora. Int. Food Res. J. 2013, 20, 1691–1696. [Google Scholar]
- Hosseinian, F.S.; Li, W.; Beta, T. Measurement of anthocyanins and other phytochemicals in purple wheat. Food Chem. 2007, 109, 916–924. [Google Scholar] [CrossRef]
- Jahangirian, H.; Haron, M.J.; Ismail, M.H.S.; Rafiee-Moghaddam, R.; Afsah-Hejri, L.; Abdollahi, Y.; Rezayi, M.; Vafaei, N. Well diffusion method for evaluation of antibacterial activity of copper phenyl fatty hydroxamate synthesized from canola and palm kernel oils. Dig. J. Nanomater. Bios. 2013, 8, 1263–1270. [Google Scholar]
- Hasan, S.; Singh, K.; Danisuddin, M.; Verma, P.K.; Khan, A.U. Inhibition of major virulence pathways of Streptococcus mutans by quercitrin and deoxynojirimycin: A synergistic approach of infection control. PLoS ONE 2014, 9, e91736. [Google Scholar] [CrossRef] [Green Version]
- Souza, G.R.; Oliveira-Junior, R.G.; Diniz, T.C.; Branco, A.; Lima-Saraiva, S.R.G.; Guimaraes, A.L.; Oliveira, A.P.; Pacheco, A.G.M.; Silva, M.G.; Moraes-Filho, M.O.; et al. Assessment of antibacterial, cytotoxic and antioxidant activities of Morus nigra L. (Moraceae). Braz. J. Biol. 2016, 78, 248–254. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peck, K.R.; Kim, M.J.; Choi, J.Y.; Kim, H.S.; Kang, C.I.; Cho, Y.K.; Park, D.W.; Lee, H.J.; Lee, M.S.; Ko, K.S. In vitro time kill studies of antimicrobial agents against blood isolates of imipenem-resistant Acinetobacter baumannii, including colistin or tigecyclin- resistant isolates. J. Med. Microbiol. 2012, 61, 353–360. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, C.; Hong, B.; Batabyil, S.; Jeon, T.I.; Yang, S.H.; Hwang, S.G. Anti-inflammatory activity of the ethanol extract of Dictamnus dasycarpus leaf in lipopolysaccharide-activated macrophages. BMC Complement. Altern. Med. 2014, 14, 330. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duary, R.K.; Rajput, Y.S.; Batish, V.K.; Grover, S. Assessing the adhesion of putative indigenous probiotic lactobacilli to human colonic epithelial cells. Indian J. Med. Res. 2011, 134, 664–671. [Google Scholar]
- Fournier, E.; Roussel, C.; Dominicis, A.; Ley, D.; Peyron, M.A.; Collado, V.; Mercier-Bonin, M.; Lacroix, C.; Alric, M.; Van de Wiele, T.; et al. In vitro models of gut digestion across childhood: Current developments, challenges and future trends. Biotechnol. Adv. 2021, 107796. [Google Scholar] [CrossRef]
- Etienne-Mesmin, L.; Chassaing, B.; Desvaux, M.; De Paepe, K.; Gresse, R.; Sauvaitre, T.; Forano, E.; Van de Wiele, T.; Schüller, S.; Juge, N.; et al. Experimental models to study intestinal microbes–mucus interactions in health and disease. FEMS Microbiol. Rev. 2019, 43, 457–489. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bouayed, J.; Hoffmann, L.; Bohn, T. Total phenolics, flavonoids, anthocyanins and antioxidant activity following simulated gastro-intestinal digestion and dialysis of apple varieties: Bioaccessibility and potential uptake. Food Chem. 2011, 128, 14–21. [Google Scholar] [CrossRef] [PubMed]
Extraction | Province of Origin | DPPH | ABTS | FRAP (mg FeSO4/g Extract) | ||
---|---|---|---|---|---|---|
IC50 (mg/mL) | Antioxidant Activity (mg GAE/g Extract) | IC50 (mg/mL) | Antioxidant Activity (mg TEAC/g Extract) | |||
Ethanolic | Chiang Mai Mae Hong Son | 2.20 ± 0.16 a | 1.77 ± 0.46 a | 10.09 ± 0.05 b | 2.13 ± 0.02 ab | 52.67 ± 1.34 a |
1.53 ± 0.18 b | 2.61 ± 0.39 a | 15.06 ± 0.88 c | 1.78 ± 0.03 a | 62.18 ± 2.05 ab | ||
Aqueous | Chiang Mai | 0.69 ± 0.04 c | 6.74 ± 0.66 b | 6.84 ± 0.59 a | 3.34 ± 0.36 c | 77.89 ± 1.11 c |
Mae Hong Son | 1.00 ± 0.29 c | 4.22 ± 1.53 ab | 10.53 ± 0.37 b | 2.54 ± 0.57 b | 67.51 ± 2.51 bc |
Extraction | Province of Origin | Total Phenolic Content (mg GAE/g Extract) | Total Flavonoid Content (mg QE/g Extract) | Total Anthocyanin Content (mg Cy-3-glc/g Extract) |
---|---|---|---|---|
Ethanolic | Chiang Mai | 13.97 ± 0.71 a | 0.28 ± 0.05 a | 26.90 ± 1.95 a |
Mae Hong Son | 13.95 ± 2.85 a | 2.54 ± 0.11 b | 35.90 ± 1.18 b | |
Aqueous | Chiang Mai | 23.77 ± 1.96 b | 1.24 ± 0.17 c | 143.61 ± 2.95 c |
Mae Hong Son | 23.36 ± 2.87 b | 1.43 ± 0.03 c | 177.84 ± 3.54 d |
Extraction | Province of Origin | Inhibition Zone Diameter (mm) | ||||
---|---|---|---|---|---|---|
E. coli | S. Typhi | S. dysenteriae | S. aureus | V. cholerae | ||
Ethanolic | Chiang Mai | 13.83 ± 0.76 a | 13.67 ± 0.58 a | 20.83 ± 0.76 a | 17.83 ± 0.76 a | 15.00 ± 0.50 a |
Mae Hong Son | 15.50 ± 0.50 ab | 16.50 ± 0.50 b | 25.67 ± 0.58 c | 23.50 ± 0.50 c | 16.00 ± 00 ab | |
Aqueous | Chiang Mai | 16.17 ± 0.76 b | 16.67 ± 0.76 b | 20.00 ± 0.00 a | 20.83 ± 0.76 b | 16.33 ± 0.76 ab |
Mae Hong Son | 20.00 ± 0.00 c | 17.50 ± 0.50 b | 24.00 ± 0.00 c | 22.33 ± 0.58 bc | 17.17 ± 0.29 b | |
Positive control | 28.83 ± 0.76 d | 27.50 ± 0.87 c | 24.83 ± 0.76 bc | 29.33 ± 0.58 d | 29.33 ± 0.58 c |
Extraction | Province of Origin | Concentration of Mulberry Extract (mg/mL) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
E. coli | S. Typhi | S. dysenteriae | S. aureus | V. cholerae | |||||||
MIC | MBC | MIC | MBC | MIC | MBC | MIC | MBC | MIC | MBC | ||
Ethanolic | Chiang Mai | 62.5 | 62.5 | 15.63 | 31.25 | 31.25 | 31.25 | 31.25 | 31.25 | 15.63 | 62.5 |
Mae Hong Son | 31.25 | 31.25 | 31.25 | 31.25 | 15.63 | 15.63 | 3.91 | 3.91 | 15.63 | 15.63 | |
Aqueous | Chiang Mai | 125 | 125 | 125 | 125 | 31.25 | 62.5 | 62.5 | 62.5 | 31.25 | 62.5 |
Mae Hong Son | 62.5 | 62.5 | 31.25 | 31.25 | 62.5 | 62.5 | 7.81 | 15.63 | 15.63 | 15.63 |
Mulberry Fruit Extracts | Province of Origin | % Inhibition of Bacterial Adhesion | ||||
---|---|---|---|---|---|---|
E. coli | S. Typhi | S. dysenteriae | S. aureus | V. cholerae | ||
Ethanolic | Chiang Mai | 78.57 ± 2.66 d | 55.24 ± 3.19 b | 43.48 ± 3.00 d | 32.01 ± 2.65 a | 44.34 ± 1.69 b |
Mae Hong Son | 9.52 ± 1.32 a | 28.63 ± 4.94 a | 8.70 ± 1.02 a | 43.88 ± 1.66 b | 16.04 ± 1.07 a | |
Aqueous | Chiang Mai | 73.81 ± 1.07 c | 75.00 ± 4.33 c | 21.74 ± 2.89 b | 58.27 ± 3.00 c | 42.45 ± 3.30 b |
Mae Hong Son | 58.73 ± 0.11 b | 66.53 ± 1.43 c | 34.78 ± 3.80 c | 58.27 ± 4.29 c | 58.49 ± 1.79 c |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Suriyaprom, S.; Kaewkod, T.; Promputtha, I.; Desvaux, M.; Tragoolpua, Y. Evaluation of Antioxidant and Antibacterial Activities of White Mulberry (Morus alba L.) Fruit Extracts. Plants 2021, 10, 2736. https://doi.org/10.3390/plants10122736
Suriyaprom S, Kaewkod T, Promputtha I, Desvaux M, Tragoolpua Y. Evaluation of Antioxidant and Antibacterial Activities of White Mulberry (Morus alba L.) Fruit Extracts. Plants. 2021; 10(12):2736. https://doi.org/10.3390/plants10122736
Chicago/Turabian StyleSuriyaprom, Sureeporn, Thida Kaewkod, Itthayakorn Promputtha, Mickaël Desvaux, and Yingmanee Tragoolpua. 2021. "Evaluation of Antioxidant and Antibacterial Activities of White Mulberry (Morus alba L.) Fruit Extracts" Plants 10, no. 12: 2736. https://doi.org/10.3390/plants10122736
APA StyleSuriyaprom, S., Kaewkod, T., Promputtha, I., Desvaux, M., & Tragoolpua, Y. (2021). Evaluation of Antioxidant and Antibacterial Activities of White Mulberry (Morus alba L.) Fruit Extracts. Plants, 10(12), 2736. https://doi.org/10.3390/plants10122736