Phytochemistry, Pharmacological Properties, and Recent Applications of Ficus benghalensis and Ficus religiosa
Abstract
:1. Introduction
2. Methods
Literature Search
3. Morphological Description and Traditional Uses
3.1. Ficus benghalensis
3.2. Ficus religiosa
4. Phytochemical Constituents
5. Pharmacological Actions
5.1. Antioxidants
5.2. Antidiabetic
5.3. Anti-Inflammatory
5.4. Antitumor, Antimitotic, and Antiproliferative
5.5. Anticancer
5.6. Antimutagenic
5.7. Antimicrobial
5.8. Anti-Helminthic Activity
5.9. Hepatoprotective
5.10. Anti-Aging
5.11. Anticoagulant Activity
5.12. Immunomodulatory Activity
5.13. Antistress
5.14. Miscellaneous
6. Toxicity Studies
7. Recent Applications
8. Conclusions and Future Research Prospective
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Rahman, A.H.M.M.; Khanom, A. Taxonomic and ethno-medicinal study of species from Moraceae (Mulberry) family in Bangladesh flora. Res. Plant Sci. 2013, 1, 53–57. [Google Scholar] [CrossRef]
- Gopukumar, S.T.; Praseetha, P.K. Ficus benghalensis Linn—The sacred indian medicinal tree with potent pharmacological remedies. Int. J. Pharm. Sci. Rev. Res. 2015, 32, 223–227. [Google Scholar]
- Kala, C.P. Traditional ecological knowledge, sacred groves and conservation of biodiversity in the pachmarhi biosphere reserve of India. J. Environ. Prot. 2011, 2, 967–973. [Google Scholar] [CrossRef] [Green Version]
- Badgujar, S.; Patel, V.V.; Bandivdekar, A.H.; Mahajan, R.T. Traditional uses, phytochemistry and pharmacology of Ficus carica: A review. Pharm. Biol. 2014, 52, 1487–1503. [Google Scholar] [CrossRef] [Green Version]
- Pierantoni, M.; Tenne, R.; Rephael, B.; Brumfeld, V.; van Casteren, A.; Kupczik, K.; Oron, D.; Addadi, L.; Weiner, S. Mineral deposits in ficus leaves: Morphologies and locations in relation to function. Plant Physiol. 2018, 176, 1751–1763. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Patel, R.; Gautam, P. Medicinal potency of Ficus benghalensis: A review. Int. J. Med. Chem. Anal. 2014, 4, 53–58. [Google Scholar]
- Joseph, B.; Raj, S.J. Phytopharmacological and phytochemical properties of three Ficus species-an overview. Int. J. Pharm. Bio Sci. 2010, 1, 246–253. [Google Scholar]
- Sirisha, N.; Sreenivasulu, M.; Sangeeta, K.; Chetty, C.M. Antioxidant properties of Ficus species—A review. Int. J. Pharmtech. Res. 2010, 2, 2174–2182. [Google Scholar]
- Chaudhary, L.B.; Sudhakar, J.V.; Kumar, A.; Bajpai, O.; Tiwari, R.; Murthy, G.V.S. Synopsis of the genus Ficus L. (Moraceae) in India. Taiwania 2012, 57, 193–216. [Google Scholar]
- Govindan, V.; Francis, G.S. Qualitative and quantitative determination of secondary metabolites and antioxidant potential of Ficus benghalensis linn seed. Int. J. Pharm. Pharm. Sci. 2015, 7, 118–124. [Google Scholar]
- Gill, N.S.; Rashmi, A.; Anmol, K.; Manpreet, K. Free radical scavenging activity and phytochemical investigation of Ficus benjamina fruit. Int. J. Univ. Pharm. Bio. Sci. 2016, 5, 14–26. [Google Scholar]
- Tripathi, R.; Kumar, A.; Kumar, S.; Prakash, S.; Singh, A.K. Ficus benghalensis Linn.: A tribal medicine with vast commercial potential. Indian J. Agric. Allied Sci. 2015, 1, 95–102. [Google Scholar]
- CalPhotos. 2012. Regents of the University of California, Berkeley. Available online: https://calphotos.berkeley.edu/ (accessed on 15 October 2021).
- Saha, S.; Goswami, G. Study of antiulcer activity of Ficus religiosa L. on experimentally induced gastric ulcers in rats. Asian Pac. J. Trop. Med. 2010, 3, 791–793. [Google Scholar] [CrossRef] [Green Version]
- Yadav, Y.C. Hepatoprotective effect of Ficus religiosa latex on cisplatin induced liver injury in wistar rats. Rev. Bras. Farm. 2015, 25, 278–283. [Google Scholar] [CrossRef] [Green Version]
- Kumar, A.; Sandeep, D.; Tomer, V.; Gat, Y.; Kumar, V. Ficus religiosa: A wholesome medicinal tree. J. Pharmacogn. Phytochem. 2018, 7, 32–37. [Google Scholar]
- Rao, K.B.; Ojha, V.; Preeti, G.K.; Karthik, L. Phytochemical composition and antioxidant activity of Ficus benghalensis (Moraceae) leaf extract. J. Biol. Act. Prod. Nat. 2014, 4, 236–248. [Google Scholar] [CrossRef]
- Babu, K.; Shankar, S.G.; Rai, S. Comparative pharmacognostic studies on the barks of four Ficus species. Turk. J. Bot. 2010, 34, 215–224. [Google Scholar] [CrossRef]
- Murti, K.; Kumar, U. Antimicrobial activity of Ficus benghalensis and Ficus racemosa roots L. Am. J. Microbiol. 2011, 2, 21–24. [Google Scholar] [CrossRef] [Green Version]
- Naquvi, K.J.; Ali, M.; Ahamad, J. Two new phytosterols from the stem bark of Ficus bengalensis L. J. Saudi Chem. Soc. 2015, 19, 650–654. [Google Scholar] [CrossRef] [Green Version]
- Verma, V.K.; Sehgal, N.; Prakash, O. Characterization and screening of bioactive compounds in the extract prepared from aerial roots of Ficus benghalensis. Int. J. Pharm. Sci. Res. 2015, 6, 5056. [Google Scholar] [CrossRef]
- Tharini, P.; Sivaraj, C.; Arumugam, P.; Manimaran, A. Antioxidant activities and GCMS analysis fruits of Ficus benghalensis L. J. Pharmacogn. Phytochem. 2018, 7, 518–523. [Google Scholar]
- Poudel, A.; Satyal, P.; Setzer, W.N. Composition and bioactivities of the leaf essential oil of Ficus religiosa Linn. Am. J. Essent. Oil 2015, 2, 16–17. [Google Scholar]
- Rathod, V.D.; Digambar, N.W.; Pillai, S.; Bhangale, J.O.; Bhangale, P.J. Antiarthritic activity of ethanolic extract of Ficus religiosa leaves in FCA induced arthritis in rats. World J. Pharm. Res. 2018, 7, 778–789. [Google Scholar]
- Wilson, V.; Shetye, S.S.; Kaur, K.; Shetty, S. Study of synergistic effects on antioxidant activity and antimicrobial activity of polyherbal formulations containing Ficus species. Int. J. Pharm. Pharm. Sci. 2016, 8, 50–53. [Google Scholar]
- Manorenjitha, M.S.; Norita, A.K.; Norhisham, S.; Asmawi, M.Z. GC-MS analysis of bioactive components of Ficus religiosa (Linn.) stem. Int. J. Pharm. Bio Sci. 2013, 4, 99–103. [Google Scholar]
- Goyal, A.K. Phytochemistry and in vitro studies on anti-fertility effect of Ficus religiosa fruits extract on uterine morphology of goat (Capra hircus). Int. J. Drug Dev. Res. 2014, 6, 141–158. [Google Scholar]
- Rathee, D.; Rathee, S.; Rathee, P.; Deep, A.; Anandjiwala, S.; Rathee, D. HPTLC densitometric quantification of stigmasterol and lupeol from Ficus religiosa. Arab. J. Chem. 2015, 8, 366–371. [Google Scholar] [CrossRef] [Green Version]
- Verma, I.; Gupta, R.K. Estimation of phytochemical, nutritional, antioxidant and antibacterial activity of dried fruit of sacred figs (Ficus religiosa) and formulation of value added product (hard candy). J. Pharmacogn. Phytochem. 2015, 4, 257–267. [Google Scholar]
- Kumari, M.; Sharma, A.; Jagannadham, M. Religiosin B, a milk-clotting serine protease from Ficus religiosa. Food Chem. 2012, 131, 1295–1303. [Google Scholar] [CrossRef]
- Sharma, A.; Kumari, M.; Jagannadham, M. Religiosin C, a cucumisin-like serine protease from Ficus religiosa. Process. Biochem. 2012, 47, 914–921. [Google Scholar] [CrossRef]
- Jayant, K.K.; Vijayakumar, B.S. In-Vitro anti-oxidant and anti-diabetic potential of endophytic fungi associated with Ficus religiosa. Ital. J. Mycol. 2021, 50, 10–20. [Google Scholar] [CrossRef]
- Pathak, K.V.; Keharia, H. Identification of surfactins and iturins produced by potent fungal antagonist, Bacillus subtilis K1 isolated from aerial roots of banyan (Ficus benghalensis) tree using mass spectrometry. 3 Biotech 2014, 4, 283–295. [Google Scholar] [CrossRef] [Green Version]
- Maheshwari, S.; Rajagopal, K.; Sriraman, V.; Lokesh, K.; Meenambiga, S.; Balakrishnan, M.; Ramalingam, A. 1-Eicosane, A Hydrocarbon from Curvularia lunata an endophytic fungi isolated from bark tissue of Ficus religiosa. Res. J. Pharm. Technol. 2018, 11, 5297. [Google Scholar] [CrossRef]
- Mishra, P.D.; Verekar, S.A.; Kulkarni-Almeida, A.; Roy, S.K. Anti-inflammatory and anti-diabetic naphthaquinones from an endophytic fungus Dendryphion nanum (Nees) s. hughes. Indian J. Chem. 2013, 52, 565–567. [Google Scholar]
- Kasote, D.; Katyare, S.S.; Hegde, M.V.; Bae, H. Significance of antioxidant potential of plants and its relevance to therapeutic applications. Int. J. Biol. Sci. 2015, 11, 982–991. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yadav, A.; Kumari, R.; Yadav, A.; Mishra, J.P.; Srivatva, S.; Prabha, S. Antioxidants and its functions in human body-a review. Res. Environ. Life Sci. 2016, 9, 1328–1331. [Google Scholar]
- Salehi, B.; Ata, A.; Kumar, N.V.A.; Sharopov, F.; Ramírez-Alarcón, K.; Ruiz-Ortega, A.; Ayatollahi, S.A.; Fokou, P.V.T.; Kobarfard, F.; Zakaria, Z.A.; et al. Antidiabetic potential of medicinal plants and their active components. Biomolecules 2019, 9, 551. [Google Scholar] [CrossRef] [Green Version]
- Dehaghi, N.K.; Etratkhah, Z.; Ebrahimi, S.E.S.; Seifalizadeh, Y. Antioxidant activity and phytochemical screening of Ficus benghalensis aerial roots fractions. J. Rep. Pharm. Sci. 2019, 8, 24. [Google Scholar] [CrossRef]
- Satish, A.; Kumar, R.P.; Rakshith, D.; Satish, S.; Ahmed, F. Antimutagenic and antioxidant activity of Ficus benghalensis stem bark and Moringa oleifera root extract. Int. J. Chem. Anal. Sci. 2013, 4, 45–48. [Google Scholar] [CrossRef]
- Yadav, Y.C.; Srivastava, D.N.; Saini, V.; Singhal, S.; Seth, A.K.; Kumar, S. In-Vitro antioxidant activity of methanolic extraction of Ficus benghalensis L. latex. Pharmacology 2011, 1, 140–148. [Google Scholar]
- Bhanwase, A.S.; Alagawadi, K.R. Antioxidant and immunomodulatory activity of hydroalcoholic extract and its fractions of leaves of Ficus benghalensis Linn. Pharmacogn. Res. 2016, 8, 50–55. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mehrnia, M.A.; Dehghan, N.; Heidari, M. Agricultural sciences and natural resources university of khuzestan effect of drying method and solvent type on antioxidant properties and chemical composition of sacred fig (Ficus religiosa). Food Sci. Technol. 2019, 16, 27–37. [Google Scholar] [CrossRef] [Green Version]
- Shahid, A. Antifungal and antioxidant activity of stem bark extracts of Ficus religiosa L. Pure Appl. Biol. 2016, 5, 1. [Google Scholar] [CrossRef]
- Ashraf, A.; Bhatti, I.; Sultana, B.; Jamil, A. Study of variations in the extraction yield, phenolic contents and antioxidant activities of the bark of F. religiosa as a function of extraction procedure. J. Basic Appl. Sci. 2016, 12, 8–13. [Google Scholar] [CrossRef] [Green Version]
- Pandey, P.; Seo, H.H.; Kim, H.-I.; Ryu, S.H.; Dingre, M.; Moh, S.H.; Kulkarni, A.; Parasharami, V.A. Enhanced anti-ageing and wound healing properties of Ficus religiosa L. bark, leaf and aerial root extract in human keratinocytes cell line (HaCaT). Vegetos 2020, 33, 158–165. [Google Scholar] [CrossRef]
- Kumaresan, S.; Ramasamy, R.; Jayachandran, P.R. Antioxidant and cytotoxic activity of combined extracts prepared using Ficus religiosa and Ficus benghalensis leaves against cervical cancer cell line (hela). Asian J. Pharm. Clin. Res. 2018, 11, 407–410. [Google Scholar] [CrossRef] [Green Version]
- Forbes, J.M.; Cooper, M.E. Mechanisms of diabetic complications. Physiol. Rev. 2013, 93, 137–188. [Google Scholar] [CrossRef] [PubMed]
- Papatheodorou, K.; Banach, M.; Bekiari, E.; Rizzo, M.; Edmonds, M. Complications of diabetes 2017. J. Diabetes Res. 2018, 2018, 1–4. [Google Scholar] [CrossRef]
- Deepa, P.; Sowndhararajan, K.; Kim, S.; Park, S.J. A role of Ficus species in the management of diabetes mellitus: A review. J. Ethnopharmacol. 2018, 215, 210–232. [Google Scholar] [CrossRef]
- Ahmed, F.; Chavan, S.; Satish, A.; Punith, K.R. Inhibitory activities of Ficus benghalensis bark against carbohydrate hydrolyzing enzymes—An In Vitro study. Pharmacogn. J. 2011, 3, 33–37. [Google Scholar] [CrossRef] [Green Version]
- Saraswathi, S.; Senthamarai, R.; Sundari, S. Antidiabetic activity of leaves extract of Ficus benghalensis linn on alloxan induced diabetic rats. Int. J. Pharm. Biol. Sci. 2013, 7, 47–51. [Google Scholar]
- Kasireddy, G.R.; Kumar, K.S.; Nadithe, L.R.; Chinnam, P. Experimental evaluation of hypoglycemic effect of bark extract of Ficus benghalensis in streptozotocin-induced diabetic rats. Natl. J. Physiol. Pharm. Pharmacol. 2021, 11, 320–325. [Google Scholar] [CrossRef]
- Khanal, P.; Patil, B. Gene set enrichment analysis of alpha-glucosidase inhibitors from Ficus benghalensis. Asian Pac. J. Trop. Biomed. 2019, 9, 263. [Google Scholar] [CrossRef]
- Pochhi, M.; Muddeshwar, M. Hypoglycemic and antihyperlipidemic effect of aqueous leaves extract of Ficus religiosa in alloxan induced diabetic rats. Asian J. Med. Sci. 2017, 8, 50–55. [Google Scholar] [CrossRef] [Green Version]
- Pandey, P.; Patel, G.; Tripathi, I.P. Pharmacological evaluation of Ficus religiosa for their In Vitro hypoglycemic activity. Indian J. Appl. Res. 2020, 10, 39–40. [Google Scholar] [CrossRef]
- Tiwari, P.A.; Nathiya, R.; Mahalingam, G.A. Antidiabetic activity of endophytic fungi isolated from Ficus religiosa. Asian J. Pharm. Clin. Res. 2017, 10, 59. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.; Deng, H.; Cui, H.; Fang, J.; Zuo, Z.; Deng, J.; Li, Y.; Wang, X.; Zhao, L. Inflammatory responses and inflammation-associated diseases in organs. Oncotarget 2018, 9, 7204–7218. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dai, X.; Medzhitov, R. Memory beyond immunity. Nat. Cell Biol. 2017, 550, 460–461. [Google Scholar] [CrossRef] [Green Version]
- Sowjanya, R.; Shankar, M.; Sireesha, B.; Naik, A.E.; Yudharaj, P.; Priyadarshini, R.R. An overview on inflammation and plant having anti-inflammatory activity. Int. J. Phytopharm. Res. 2017, 7, 25–32. [Google Scholar]
- Kokkas, B. Tissue injury and inflammation. Ann. Gen. Psychiatry 2010, 9, S1–S237. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garg, V.K.; Paliwal, S.K. Wound-healing activity of ethanolic and aqueous extracts of Ficus benghalensis. J. Adv. Pharm. Technol. Res. 2011, 2, 110–114. [Google Scholar] [CrossRef]
- Raisagar, A.; Kaur, C.D.; Sawarkar, H.A.; Kumar, L.; Raisagar, A.; Karmakar, A.; Sahu, M. Comparative study of wound-healing effect of bark extracts of Ficus religiosa & Ficus benghalensis by mice model. J. Pharmacogn. Phytochem. 2019, 8, 1815–1821. [Google Scholar]
- Kumar, A.; Pujari, N.M.; Kumar, S.; Singh, N.; Kumar, H. Effect of Ficus benghalensis leaves extract on experimental chronic ulcers in rats. Int. J. Biol. Pharm. Res. 2016, 7, 142–149. [Google Scholar]
- Rajalakshmi, G.; Tamilarasi, T. A study on phytochemical screening and anti-arthritics activity of Ficus benghalensis bark extract. World J. Sci. Res. 2019, 4, 01–06. [Google Scholar]
- Panday, D.R.; Rauniar, G.P. Effect of root-extracts of Ficus benghalensis (banyan) in pain in animal models. J. Neurosci. Rural Pract. 2016, 7, 210–215. [Google Scholar] [CrossRef] [PubMed]
- Yadav, Y.C.; Srivastava, D.N. Nephroprotective and curative effects of Ficus religiosa latex extract against cisplatin-induced acute renal failure. Pharm. Biol. 2013, 51, 1480–1485. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Verma, M.; Kumar, A. Burn wound healing study of Ficus religiosa’s bark ash and extraction. Ann. Romanian Soc. Cell Biol. 2021, 25, 19262–19276. Available online: https://www.annalsofrscb.ro/index.php/journal/article/view/8499 (accessed on 28 May 2021).
- Gonzalez, H.; Hagerling, C.; Werb, Z. Roles of the immune system in cancer: From tumor initiation to metastatic progression. Genes Dev. 2018, 32, 1267–1284. [Google Scholar] [CrossRef] [Green Version]
- Raheel, R.; Saddiqe, Z.; Iram, M.; Afzal, S. In Vitro antimitotic, antiproliferative and antioxidant activity of stem bark extracts of Ficus benghalensis L. S. Afr. J. Bot. 2017, 111, 248–257. [Google Scholar] [CrossRef]
- Tulasi, C.D.S.L.N.; Lakshmi, N.M.; Saida, L. Cell viability assay of Ficus benghalensis latex solvent extracts on different cell lines. Asian J. Pharm. Clin. Res. 2018, 11, 335–339. [Google Scholar] [CrossRef]
- Tulasi, C.; Narasu, M.L.; Saida, L. Cytotoxic effect of Ficus religiosa and Ficus benghalensis latex extracts on MCF-7 cell line. Int. J. Sci. Res. Biol. Sci. 2019, 5, 96–100. [Google Scholar] [CrossRef] [Green Version]
- Saloni, J.; Sakthivel, J. Evaluation of antioxidant and anticancer potential of flavonoids from aerial roots of Ficus benghalensis Linn. Int. J. Pharm. Sci. Res. 2019, 11, 12–20. [Google Scholar]
- Choudhari, A.S.; Suryavanshi, S.A.; Kaul-Ghanekar, R. The aqueous extract of Ficus religiosa induces cell cycle arrest in human cervical cancer cell lines SiHa (HPV-16 positive) and apoptosis in HeLa (HPV-18 positive). PLoS ONE 2013, 8, e70127. [Google Scholar] [CrossRef] [PubMed]
- El-Hawary, S.S.; Wassel, G.M.; El-Menshawi, B.S.; Ibrahim, N.A.; Mahmoud, K.; Ayoub, M.M. Antitumor and antioxidant activity of Ficus elastica roxb and Ficus bengalensis Linn. family Moraceae. World Appl. Sci. J. 2012, 19, 1532–1539. [Google Scholar] [CrossRef]
- Gulecha, V.; Sivakuma, T. Anticancer activity of Tephrosia purpurea and Ficus religiosa using MCF 7 cell lines. Asian Pac. J. Trop. Med. 2011, 4, 526–529. [Google Scholar] [CrossRef] [Green Version]
- Saida, L.; Tulasi, C.D.S.L.N.; Narasu, M.L. Evaluation of chemo-preventive efficacy of Ficus religiosa latex extract by flow cytometry analysis and gene expression studies performed by RT-PCR in various cell lines. Futur. J. Pharm. Sci. 2021, 7, 1–21. [Google Scholar] [CrossRef]
- Shankar, P.; Kuppuru, M.M.; Kini, R.K.; Sekhar, S. Ficus religiosa (Linn.) bark extract secondary metabolites bestow antioxidant property inducing cell cytotoxicity to human breast cancer cells, MDAMB-231 by apoptosis involving apoptosis-related proteins, Bax, Bcl-2 and PARP. Res. Sq. 2021, 1–26. [Google Scholar] [CrossRef]
- Słoczyńska, K.; Powroźnik, B.; Pękala, E.; Waszkielewicz, A. Antimutagenic compounds and their possible mechanisms of action. J. Appl. Genet. 2014, 55, 273–285. [Google Scholar] [CrossRef] [Green Version]
- Kaur, R.; Goyal, A.K.; Kaushik, D.; Sharma, R.K. In Vitro studies on antibiotic activity of Ficus religiosa fruits extract against human pathogenic bacteria. J. Chem. Pharm. Res. 2014, 6, 80–84. [Google Scholar]
- Afzal, T.; Ali, Q.; Malik, A. Phenolic compounds proliferation by HPLC: To find out antibacterial activities in Ficus benghalensis plant extract. Int. J. Botany Stud. 2020, 5, 140–144. [Google Scholar]
- Palshetkar, A.; Pathare, N.; Jadhav, N.; Pawar, M.; Wadhwani, A.; Kulkarni, S.; Singh, K.K. In Vitro anti-HIV activity of some Indian medicinal plant extracts. BMC Complement. Med. Ther. 2020, 20, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Dube, A.N.; Shahbazker, S.N.; Nasim, M. Evaluation of anti-microbial activity of Ziziphus mauritiana (Ber), Ocimum sanctum (Tulsi) and Ficus religiosa (Peepal) on Staphylococcus aureus strains isolated from environment of various ICUs. Int. J. Health Sci. Res. 2019, 9, 28–35. [Google Scholar]
- Sharma, H.; Yunus, G.; Agrawal, R.; Kalra, M.; Verma, S.; Bhattar, S. Antifungal efficacy of three medicinal plants Glycyrrhiza glabra, Ficus religiosa, and Plantago major against oral Candida albicans: A comparative analysis. Indian J. Dent. Res. 2016, 27, 433–436. [Google Scholar] [CrossRef]
- Ghosh, A.; Das, S.; Dey, M. Determination of anthelmintic activity of the leaf and bark extract of Tamarindus Indica Linn. Indian J. Pharm. Sci. 2011, 73, 104–107. [Google Scholar] [CrossRef] [Green Version]
- Spiegler, V.; Liebau, E.; Hensel, A. Medicinal plant extracts and plant-derived polyphenols with anthelmintic activity against intestinal nematodes. Nat. Prod. Rep. 2017, 34, 627–643. [Google Scholar] [CrossRef]
- Tuse, T.; Bidkar, A.; Bhale, S.; Patankar, R. In-Vitro anthelmintic activity of aerial roots of Ficus benghalensis. Int. J. Pharmacol. Res. 2011, 1, 10–13. [Google Scholar] [CrossRef]
- Bhardwaj, L.K.; Anand, L.; Chandrul, K.K.; Patil, K.S. In-Vitro anthelmintic activity of Ficus benghalensis Linn. leaves extracts. Asian J. Pharm. Clin. Res. 2012, 5, 118–120. [Google Scholar]
- Sawarkar, B.H.A.; Singh, M.K.; Pandey, A.K.; Biswas, D. In Vitro anthelmintic activity of Ficus benghalensis, Ficus carica & Ficus religiosa: A comparative study. Int. J. Pharm. Pharm. Sci. 2011, 3, 152–153. [Google Scholar]
- Hari, B.V.; Kumar, P.S.; Devi, D.R. Comparative In-Vitro anthelmintic activity of the latex of Ficus religiosa, Ficus elastica and Ficus bengalensis. J. Phytol. 2011, 3, 26–30. [Google Scholar]
- Kumar, Y.; Gautam, G.; Mishra, P.K. Protective role of Carica papaya and Ficus bengalensis latex against CCl4 induced liver toxicity in experimental rats. J. Drug Deliv. Ther. 2019, 9, 465–469. [Google Scholar] [CrossRef]
- Chandrasekaran, C.; Dethe, S.; Mundkinajeddu, D.; Pandre, M.K.; Balachandran, J.; Agarwal, A.; Hiraganahalli, B.D.; Chinampudur, V.C. Hepatoprotective and antioxidant activity of standardized herbal extracts. Pharmacogn. Mag. 2012, 8, 116–123. [Google Scholar] [CrossRef] [Green Version]
- Karmakar, S.; Paul, S.; Biswas, N.M.; Khanam, J.; Kar, S.K.; Mukherjee, H.; Poddar, S. A pharmacological audit and advancement on the recent trend of research on Ficus benghalensis L. including its In Vitro hepatoprotective activity. Clin. Phytoscience 2020, 6, 1–13. [Google Scholar] [CrossRef]
- Ahad, H.A.; Haranath, C.; Varam, N.J.; Ksheerasagare, T.; Krishna, J.V.; Teja, S.T. Liver shielding activity of Ficus benghalensis fruit extracts contrary to perchloromethane prompted toxic hepatitis in New Zealand albino rats. Res. J. Pharm. Technol. 2021, 14, 3739–3743. [Google Scholar] [CrossRef]
- Parameswari, S.A.; Chetty, C.M.; Chandrasekhar, K.B. Hepatoprotective activity of Ficus religiosa leaves against isoniazid + rifampicin and paracetamol induced hepatotoxicity. Pharmacogn. Res. 2013, 5, 271–276. [Google Scholar] [CrossRef] [Green Version]
- Han, G.; Ceilley, R. Chronic wound healing: A review of current management and treatments. Adv. Ther. 2017, 34, 599–610. [Google Scholar] [CrossRef] [Green Version]
- Murti, K.; Kumar, U.; Panchal, M. Healing promoting potentials of roots of Ficus benghalensis L. in albino rats. Asian Pac. J. Trop. Med. 2011, 4, 921–924. [Google Scholar] [CrossRef] [Green Version]
- Gonzalez, A.C.D.O.; Andrade, Z.D.A.; Costa, T.F.; Medrado, A.R.A.P. Wound healing—A literature review. An. Bras. Dermatol. 2016, 91, 614–620. [Google Scholar] [CrossRef] [Green Version]
- Ambreen, S.; Tariq, M.; Masoud, M.S.; Ali, I.; Qasim, M.; Mushtaq, A.; Ahmed, M.; Asghar, R. Anticoagulant potential and total phenolic content of six species of the genus Ficus from Azad Kashmir, Pakistan. Trop. J. Pharm. Res. 2021, 18, 1245–1251. [Google Scholar] [CrossRef]
- Bascones-Martinez, A.; Mattila, R.; Gomez-Font, R.; Meurman, J. Immunomodulatory drugs: Oral and systemic adverse effects. Med. Oral Patol. Oral Cir. Bucal 2014, 19, e24–e31. [Google Scholar] [CrossRef]
- Anarthe, S.J.; Pravalika, A.; Malavika, E.; Ganga Raju, M. Assessment of immunomodulatory activity of Ficus benghalensis Linn. aerial roots. Int. J. Pharmtech Res. 2016, 9, 153–163. [Google Scholar]
- Jahagirdar, A.Q.F.; Hugar, S.; Patil, V.; Nanjappaiah, A.K.H. Screening of antistress activity of Ficus benghalensis fruit extract. Res. J. Pharm. Technol. 2020, 13, 191. [Google Scholar] [CrossRef]
- Vignesh, M.; Priya, V.V.; Gayathri, R. Antistress activity of methanolic extract of Ficus benghalensis. Drug Invent. Today 2019, 12, 1281–1283. [Google Scholar]
- Suriyakalaa, U.; Ramachandran, R.; Doulathunnisa, J.A.; Aseervatham, S.B.; Sankarganesh, D.; Kamalakkannan, S.; Kadalmani, B.; Angayarkanni, J.; Akbarsha, M.A.; Achiraman, S. Upregulation of Cyp19a1 and PPAR-γ in ovarian steroidogenic pathway by Ficus religiosa: A potential cure for polycystic ovary syndrome. J. Ethnopharmacol. 2021, 267, 113540. [Google Scholar] [CrossRef]
- Renata-Maria, V. Determination of acute and subacute toxicity of six plant extracts. Med. Res. Chron. 2019, 6, 64–67. Available online: https://medrech.com/index.php/medrech/article/view/370 (accessed on 20 September 2020).
- Bhardwaj, L.K.; Chandrul, K.K.; Sharma, U. Evaluation of anti-arthritic activity of Ficus benghalensis Linn. root extracts on freund’s adjuvant induced arthritis in rats. J. Phytopharm. 2016, 5, 10–14. [Google Scholar] [CrossRef]
- Bhangale, J.O.; Acharya, S.R. Anti-parkinson activity of petroleum ether extract of Ficus religiosa (L.) leaves. Adv. Pharmacol. Sci. 2016, 2016, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Lee, N.-Y.; Ko, W.-C.; Hsueh, P.-R. Nanoparticles in the treatment of infections caused by multidrug-resistant organisms. Front. Pharmacol. 2019, 10, 1153. [Google Scholar] [CrossRef] [Green Version]
- Tripathi, R.M.; Rao, R.P.; Tsuzuki, T. Green synthesis of sulfur nanoparticles and evaluation of their catalytic detoxification of hexavalent chromium in water. RSC Adv. 2018, 8, 36345–36352. [Google Scholar] [CrossRef] [Green Version]
- Ismail, H.H.; Hasoon, S.A.; Saheb, E.J. The anti-Leishmaniasis activity of green synthesis silver oxide nanoparticles. Afr. Health Res. Organ. 2019, 22, 28–38. [Google Scholar] [CrossRef]
- Manikandan, V.; Velmurugan, P.; Park, J.-H.; Chang, W.-S.; Park, Y.-J.; Jayanthi, P.; Cho, M.; Oh, B.-T. Green synthesis of silver oxide nanoparticles and its antibacterial activity against dental pathogens. 3 Biotech 2017, 7, 72. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Soni, N.; Dhiman, R.C. Larvicidal and antibacterial activity of aqueous leaf extract of Peepal (Ficus religiosa) synthesized nanoparticles. Parasite Epidemiol. Control. 2020, 11, e00166. [Google Scholar] [CrossRef]
- Deepa, J.; Gokulakrishnan, J.; Baranitharan, M.; Dhanasekaran, S. Larvicidal activity of Indian medicinal plants on the dengue fever mosquito, Aedes aegypti Linnaeus. Int. J. Pure Appl. Zool. 2015, 3, 130–136. [Google Scholar]
- Pavela, R.; Maggi, F.; Iannarelli, R.; Benelli, G. Plant extracts for developing mosquito larvicides: From laboratory to the field, with insights on the modes of action. Acta Trop. 2019, 193, 236–271. [Google Scholar] [CrossRef]
- Subash, B.; Vijayan, P.; Baranitharan, M. Laboratory efficacy of Ficus religiosa extracts against mosquito-borne disease. Indian J. Appl. Res. 2019, 9, 1–2. [Google Scholar]
Plant Parts | Compound Class | Compounds Identified | References |
---|---|---|---|
Ficus benghalensis | |||
Leaf | Phenolics | Gallic acid, theaflavin-3,3′-digallate, rutin, quercetin-3-galactoside, leucodelphinidin, gallocatechin, kaempferol, apigenin | [2,17] |
Terpenoids/Terpenes | Friedelin, lupeol, β-amyrin, 3-friedelanol, betulinic acid, 20-traxasten-3-ol | ||
Miscellaneous | Rhein, anthraquinone, taraxosterol, β-sitosterol, bengalenoside, leucocyanidin, psoralen, bergapten | ||
Bark | Phenolics | Tannins, leucocyanidin-3-O-β-D-glucopyrancoside, leucopelargonidin-3-O-β-D-glucopyranoside, leucopelargonidin-3-O-α-L-rhamnopyranoside, 5,7-dimethylether-leucopelargonidin-3-0-alpha-L-rhamnoside | [7,18,19,20] |
Terpenoids/Terpenes | Lupeol, lupeol acetate, α-amyrin acetate, gluanol acetate, lanostadienylglucosyl cetoleate | ||
Miscellaneous | 20-tetratriaconthene-2-one, pentatriacontan-5-one, β-sitosterol, meso-inositol, alpha-D-glucose, beta glucoside, saponin, leucoanthocyanidin, leucoanthocyanin, meso-inositol, bengalensisteroic acid acetate, heneicosanyl oleate, 6-heptatriacontene-10-one, 5,3-dimethyl ether-leucocyanidin-3-0-alpha-D-galactosyl cellobioside | ||
Aerial root | Terpenoids/Terpenes | Phytol, globulol, lanosterol, lupeol, amyrin acetate, lupenyl acetate, friedelanol, cyclolaudenol, epifriedelanol | [21] |
Miscellaneous | Quinic acid, myristic acid, beta-progesterone, palmitic acid, methyl ester palmitic acid, heptadecanoic acid, linoleic acid, linoleoyl chloride, eicosadienoic acid, methyl ester stearic acid, alpha-monostearin, phthalic acid, dioctyl ester, triacontanol, cycloartanyl acetate, dihydrobrassicasterol, stigmasterol, sitosterol, ergosterol acetate, furostano, 4,22-stigmastadiene-3-one, 1-heptatriacotanol, protodioscin | ||
Fruit | Miscellaneous | hexadecanoic acid, 5-decenedioic acid and methyl esters of 14,17-octadecadienoic acid, undecanoic acid, 5,6-dimethyl, dimethyl ester, hexadecanoic acid, 14-methyl, hexadecanoic acid,14-methyl, heptadecanoic acid, 16 methyl, oxiraneoctanoic acid, 3 octyl | [22] |
Ficus religiosa | |||
Leaf | Phenolics | Eugenol, tannic acid | [23,24] |
Terpenoids/Terpenes | Lupeol, phytol, linalool, α-cadinol, α-eudesmol, β-eudesmol, epi-α-cadinol, γ-eudesmol, epi-γ-eudesmol, α-amyrin | ||
Miscellaneous | Campestrol, isofucosterol, n-hexadecanoic acid, 12,15-octadecatrienoic acid, octadecanoic acid, butyl-9,12,15-octadecatrienoatet, stigmasterol, n-hexanol, adipoin 3-methylcyclopenetane-1,2-dione, phenylacetaldehyde, n-nonanal, palmitic acid, pentadecanal, n-nonacosane, n-hentricontanen, hexa-cosanol, n-octacosan | ||
Bark | Phenolics | Tannin, ceryl behenate, lupeol acetate, α-amyrin acetate, leucopelargonidin-3-O-β-D-glucopyranoside, leucopelargonidin-3-O-α-L-rhamnopyranoside | [8,25] |
Terpenoids/Terpenes | Lanosterol, lupen-3-one | ||
Miscellaneous | β-sitosterol, stigmasterol, β-sitosterol-d-glucoside, leucoanthocyanidin, leucoanthocyanin, bergapten, bergaptol | ||
Stem | Phenolics | 2,6-Dimethoxyphenol | [26] |
Miscellaneous | n-hexadecanoic acid, octadecanoic acid, stigmasterol, lanosta-8,24-dien-3-ol, acetate(3 beta), ergost-5-en-3-ol(3beta), 4H-Pyran-4-one,2,3-dihydro-3,5-dihydroxy-6-methyl, 2,4-bis(1,1-dimethylethyl) | ||
Root | Phenolics | Ceryl behenate, lupeol acetate, α-amyrin acetate, leucocyanidin-3-0-β-D-glucopyrancoside, leucopelargonidin-3-0-β-D-glucopyranoside | [27] |
Terpenoids/Terpenes | Lupeol | ||
Miscellaneous | Saponin, β-sitosterol, leucoanthocyanidin, leucoanthocyanin | ||
Fruit | Terpenoids/Terpenes | β-caryophyllene, α-terpinene, dendrolasine, α-trans bergamotene, (e)-β-ocimene, α-pinene, limonene, dendrolasine, α-ylangene, α- thujene, α-copaene, β-bourbonene, aromadendrene, δ-cadinene, α-humulene, β-pinene, alloaromadendrene, germacrene, γ-cadinene, bicyclogermacrene | [28,29] |
Miscellaneous | Stigmasterol, lupeol, undecane, tridecane, tetradecane |
Ficus Species | Microbial Species | Compound Isolated | Bioactivity/Uses | References |
---|---|---|---|---|
Ficus religiosa | Curvularia lunata | 1-Eicosane | Antimicrobial Cytotoxic properties | [32] |
Aspergillus sp. | Naphthaquinone- antibiotic herbarin Herbaridine A | Antidiabetic Anti-inflammatory | [34,35] | |
Ficus benghalensis | Bacillus subtilis | Surfactins Iturins | Anti-fungal | [33] |
Species | Bioactivity | Plant Parts | Solvent | Mechanism | Dosage/Concentration/* IC50 | References |
---|---|---|---|---|---|---|
Ficus benghalensis | Antioxidants | Seed | Ethanol | DPPH scavenging Nitric oxide Lipid peroxidation FRAP activity | IC50 = 446.9 µg/mL IC50 = 596.0 µg/mL IC50 = 557.0 µg/mL 418.34 µg in 1000 µg AAE | [10] |
Aerial root | Methanol (M) Ethanol (E) | DPPH scavenging FRAP activity | M-IC50 = 80.1 µg/mL E- IC50 = 38.7 µg/mL M = 982.9 mM Fe2+/mg extract E = 261.2 mM Fe2+/mg extract | [21] | ||
Latex | Methanol | DPPH scavenging FRAP activity Phosphomolybdenum activity | IC50 = 28.6 µg/mL IC50 = 49.8 µg/mL IC50 = 31.8 µg/mL | [41] | ||
Leaves | Hydroethanolic crude (HEC) Hexane fraction (HF) | DPPH scavenging ABTS scavenging | HEC- IC50 = 32.3 µg/mL HF- IC50 = 28.2 µg/mL HEC- IC50 = 52.0 µg/mL HF- IC50 = 58.2 µg/mL | [42] | ||
Antidiabetic | Bark powder | Aqueous | α-glucosidase inhibition Sucrose inhibition | IC50 = 77.0 µg/mL IC50 = 141.0 µg/mL | [51] | |
Leaves | Ethanol | Model: alloxan-induced diabetic albino rats Duration: 14 days Route: Oral administration Action:
| 200 mg/kg (BW) ** 400 mg/kg (BW) | [52] | ||
Bark | Ethanol | Model: STZ-induced diabetic rats Route: Oral administration Duration: 15 days Action:
| 150 mg/kg (BW) 300 mg/kg (BW) 500 mg/kg (BW) | [53] | ||
Anti-inflammatory | Root | Ethanol | Model: Excision and incision wound Route: Topical administration Duration: 10 days Action:
| 200 mg/kg (BW) | [63] | |
Bark | Aqueous Ethanol | Model: Freund’s complete adjuvant-induced arthritis rat Route: Oral administration Duration: 21 days Action:
| 200–400 mg/kg (BW) | [24] | ||
Bark | Aqueous (A) Ethanol (E) | Model: Incision wound Route: Oral administration Duration: 10 days Action:
| 200 mg/kg (BW) Wound breaking strength: A = 447.7 g; E = 466.7 g | [62] | ||
Bark | Ethanol Aqueous | Model: Excision wound Route: Topical administration Duration: 20 days Action:
| 10% ointment formulation | [62] | ||
Leaves | 50% Ethanol | Model 1: Pylorus ligation + aspirin-induced gastric ulcer Route: Oral administration Duration: 3 days Action:
| 100 mg/kg (BW) (29.2 mm2/35.8%) 200 mg/kg (BW) (22.2 mm2/56.2%) 400 mg/kg (BW) (12.2 mm2/77.7%) | [64] | ||
Model 2: Acetic acid-induced gastric ulcer Route: Oral administration Duration: 10 days Action:
| 100 mg/kg (BW) (10.7 mm2/31.6%) 200 mg/kg (BW) (6.3 mm2/12.0%) 400 mg/kg (BW) (2.2 mm2/6.7%) | |||||
Model 3: Ethanol-hydrochloric acid-induced gastric ulcer Route: Oral administration Duration: 8 days Action:
| 100 mg/kg (BW) (14.7 mm2/41.6%) 200 mg/kg (BW) (12.3 mm2/62.0%) 400 mg/kg (BW) (8.2 mm2/80.7%) | |||||
Analgesic | Root | Aqueous | Model: Swiss albino mice Hot-plate reaction time (13.6 s; 10.3 s) Tail-flick reaction time (13.6 s; 10.3 s) Writhing test (36.0 in 10 min) | 100 mg/kg (BW) 200 mg/kg (BW) | [66] | |
Antiproliferative | Stem bark | Butanol fraction | Cell: Yeast cells Assay:
| Cell viability = 8% at 4 mg/mL Mitotic index = 96% at 4 mg/mL | [70] | |
Anticancer | Aerial roots | Ethyl acetate | Cell lines: Lung cancer (A549) Breast cancer (MDA-MB-231) Cervical cancer (Hela) | Cell viability: IC50 = 17.8 µg/mL IC50 = 97.9 µg/mL IC50 = 49.3 µg/mL | [73] | |
Leaves (L) Branch (B) | Methanol | Cell lines: Hepatocellular carcinoma (HepG2) Breast cancer (MCF-7) | Cell viability at 100 ppm HepG2: L = 22.1% B = 8.3% MCF-7: L = 16.4% B = 14.8% | [75] | ||
Antimutagenic | Stem bark | Aqueous | Bacteria strain: Salmonella typhimurium TA100 | IC50 = 70.24 mg/mL | [40] | |
Antimicrobial | Root | Ethanol | Bacteria strains/ Inhibition zone: Staphylococcus aureus Inhibition zone: 20 mm, 25 mm, 30 mm Escherichia coli Inhibition zone: 15 mm, 20 mm, 24 mm Klebsiella pneumonia Inhibition zone: 12 mm, 18 mm, 22 mm | 25 mg/mL 50 mg/mL 75 mg/mL | [19] | |
Aerial root | Methanol Ethanol | Bacteria strains/ Inhibition zone: Vibrio anguillarum and Enterococcus faecalis Inhibition zone > 20 mm | 200, 100, 50, 25, 12.5, and 6.25 μg per disc | [21] | ||
Aerial root (AR) Leaves (L) Fruit (F) | Ethanol | Bacteria strains/Inhibition zone (AR/L/F): Staphylococcus aureus: 0.4, 0.6, 0.7 mm/0.6, 0.7, 0.9 mm/0.6, 0.7, 0.9 mm Escherichia coli: 0.6, 0.7, 0.8 mm/0.6, 0.8, 0.9 mm/0.6, 0.8, 0.9 mm Pseudomonas protobacteria: 0.3, 0.4, 0.5 mm/0.3, 0.4, 0.5 mm/0.3, 0.4, 0.5 mm Bacillus cereus: 0.4, 0.6, 0.7 mm/0.5, 0.6, 0.7 mm/0.5, 0.6, 0.7 mm Action:
| 50 µL 100 µL 150 µL | [81] | ||
Leaves | Aqueous | Viral strains: HIV-1UG070 and HIV-1VB59 in TZM-bl and PM1 cells Action:
| HIV-1UG070: IC80 = 6 μg/mL; 6 μg/mL HIV-1VB59: IC80 = 5.2 μg/mL; 2.25 μg/mL | [82] | ||
Antihelminth | Fruit | Aqueous | Earthworm: Pheretima Posthuma Duration: 3 h Action:
| 37.5 mg/mL | [87] | |
Latex | - | Earthworm: Pheretima Posthuma Duration: 1 h Action:
| 250 μL 500 μL | [87] | ||
Hepatoprotective | Latex | Methanol | Model: CCl4-induced hepatotoxicity in albino rats Route: Oral administration Duration: 21 days Action:
| 300 mg/kg (BW) | [92] | |
Anticoagulant | Leaves | Methanol |
| [99] | ||
Immunomodulatory | Leaves | Butanol fraction | Action: Induced phagocytosis in Candida albicans | 1000 mg/mL | [42] | |
Ficus religiosa | Antioxidant | Stem bark | Crude methanol, n-hexane, dichloromethane, ethyl acetate fractions | DPPH scavenging | >90% inhibition | [44] |
Bark | Ethanol (E) Methanol (M) | DPPH scavenging | E = 70.5% M = 69.0% | [45] | ||
Methanol | DPPH scavenging | IC50 = 48 μg/mL | [46] | |||
Leaves | Methanol | H2O2 scavenging | IC50 = 49.85 µg/mL | [47] | ||
Antidiabetic | Bark | Aqueous | Model: STZ-induced diabetic Route: Oral administration Duration: 21 days Action:
| 250 mg/kg (BW) | [55] | |
Methanol | α-glucosidase inhibition | IC50 = 83.72 μg/mL | [56] | |||
Anti-inflammatory | Latex | Methanol | Model: Cisplatin-induced liver injury Route: Oral administration Duration: 16 days Action:
| 200 mg/kg (BW) 300 mg/kg (BW) | [67] | |
Bark Leaves aerial roots | Aqueous |
| 0.02, 0.05, 0.1, and 0.5 mg/mL | [46] | ||
Bark | Extract and ash-methanolic chloroform | Model: Burned wound Sprague Dawley Route: Topical application Duration: 15 days Action:
| 10% extract Formulation | [68] | ||
Leaves | Methanol | Model: Ethanol-induced gastric lesions Route: Oral administration Duration: 2 h Action:
| 250 mg/kg (BW) 500 mg/kg (BW) | [14] | ||
Model: Aspirin-induced gastric ulcer Route: Oral administration Duration: 10 days Action:
| 250 mg/kg (BW) 500 mg/kg (BW) | |||||
Model: Pylorus ligated rats Route: Oral administration Duration: 7 days Action:
| 250 mg/kg (BW) 500 mg/kg (BW) | |||||
Anticancer | Bark | Aqueous | Anti-neoplastic activity Cells: cervical cancer cell lines (SiHa-HPV16-positive and HeLa-HPV18-positive) Action:
| 0–80 µg/mL | [74] | |
Leaves | Benzene (B) Acetone (A) | Cell: breast cancer cells (MCF-7) MTT assay Action:
| Cell viability (IC50) B = 160.3 μM A = 222.7 μM | [76] | ||
Latex | Ethanol | Model: human neuroblastoma IMR 32 (cell inhibition: 4.8 μg/mL), human colorectal HCT 116, and human breast adenocarcinoma MDA MB 231 Action:
| [77] | |||
Bark | Methanol | Model: human breast adenocarcinoma Action:
| 91 µg/mL | [78] | ||
Antimicrobial | Fruit | Ethanol | Bacteria strains/ Inhibition zone: K. pneumonia: 21 mm S. epidermidis: 19 mm | 15 mg/mL | [80] | |
Stem | Ethanol | Fungal strain: Candida albicans: 10.6 mm | 5 mL extract solution | [85] | ||
Antihelminthic | Latex | - | Earthworm: Pheretima posthuma Duration: 3 h Action:
| 250 µL 500 µL | [90] | |
Hepatoprotective | Stem bark | Ethanol | Model: CCl4-induced hepatotoxicity in albino rats and paracetamol-induced hepatic damage in rats Route: Oral administration Duration: 36 h Action:
| 200 mg/kg (BW) | [95] | |
Anticoagulant | Leaves | Methanol |
| 1 μg/μL | [99] | |
Fertility | Leaves (fresh and dry) | Aqueous | Model: Letrozole-induced PCOS Route: Oral administration Duration: 21 days Action:
| 1 mg/kg (BW) | [104] | |
Ficus benghalensis & Ficus religiosa | Antioxidant | Leaves | Methanol | DPPH scavenging H2O2 scavenging | Inhibition percentage > 80% at 100 µg/mL IC50 = 49.85 µg/mL | [47] |
Cell proliferation activity | Leaves | Methanol | Cell line: Human cervical cancer cell line (HeLa) Assay: Mitochondrial reduction assay | Cell viability: 50% at 100 µg/mL | [47] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Murugesu, S.; Selamat, J.; Perumal, V. Phytochemistry, Pharmacological Properties, and Recent Applications of Ficus benghalensis and Ficus religiosa. Plants 2021, 10, 2749. https://doi.org/10.3390/plants10122749
Murugesu S, Selamat J, Perumal V. Phytochemistry, Pharmacological Properties, and Recent Applications of Ficus benghalensis and Ficus religiosa. Plants. 2021; 10(12):2749. https://doi.org/10.3390/plants10122749
Chicago/Turabian StyleMurugesu, Suganya, Jinap Selamat, and Vikneswari Perumal. 2021. "Phytochemistry, Pharmacological Properties, and Recent Applications of Ficus benghalensis and Ficus religiosa" Plants 10, no. 12: 2749. https://doi.org/10.3390/plants10122749
APA StyleMurugesu, S., Selamat, J., & Perumal, V. (2021). Phytochemistry, Pharmacological Properties, and Recent Applications of Ficus benghalensis and Ficus religiosa. Plants, 10(12), 2749. https://doi.org/10.3390/plants10122749