Bryo-Activities: A Review on How Bryophytes Are Contributing to the Arsenal of Natural Bioactive Compounds against Fungi
Abstract
:1. Introduction
2. The (un)Covered Association
3. Phytochemistry of Bryophyte’s Antifungal Metabolites
3.1. Terpenes
3.2. Phenolic Compounds
3.3. Other Compounds
4. Mining with the Omic-Technologies: New Generation Approaches That Contributed—and Still Do—to the Individuation of Antifungal Bryo-Actives
4.1. Genomics and Transcriptomics
4.2. Proteomics
4.3. Metabolomics
5. Most Common Techniques for the Validation of Antifungal Activity of Bryophyte Extracts/Compounds
5.1. In Vitro Methods
5.2. In Vivo Methods
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Kenrick, P.; Crane, P.R. The Origin and Early Evolution of Plants on Land. Nature 1997, 389, 33–39. [Google Scholar] [CrossRef]
- Veeresham, C. Natural Products Derived from Plants as a Source of Drugs. J. Adv. Pharm. Technol. Res. 2012, 3, 200–201. [Google Scholar] [CrossRef]
- Rimington, W.R.; Pressel, S.; Duckett, J.G.; Field, K.J.; Read, D.J.; Bidartondo, M.I. Ancient Plants with Ancient Fungi: Liverworts Associate with Early-Diverging Arbuscular Mycorrhizal Fungi. Proc. R. Soc. B: Biol. Sci. 2018, 285, 20181600. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dixon, R.A. Natural Products and Plant Disease Resistance. Nature 2001, 411, 843–847. [Google Scholar] [CrossRef]
- Chen, F.; Ludwiczuk, A.; Wei, G.; Chen, X.; Crandall-Stotler, B.; Bowman, J.L. Terpenoid Secondary Metabolites in Bryophytes: Chemical Diversity, Biosynthesis and Biological Functions. Crit. Rev. Plant Sci. 2018, 37, 210–231. [Google Scholar] [CrossRef]
- Asakawa, Y. ChemInform Abstract: Chemical Constituents of the Bryophytes. Chemin 2010, 27, 1–562. [Google Scholar] [CrossRef]
- Asakawa, Y. Recent Advances in Phytochemistry of Bryophytes-Acetogenins, Terpenoids and Bis(Bibenzyl)s from Selected Japanese, Taiwanese, New Zealand, Argentinean and European Liverworts. Phytochemistry 2001, 56, 297–312. [Google Scholar] [CrossRef]
- Xie, C.-F.; Lou, H.-X. Secondary Metabolites in Bryophytes: An Ecological Aspect. Chem. Biodivers. 2009, 6, 303–312. [Google Scholar] [CrossRef]
- Asakawa, Y. Terpenoids and Aromatic Compounds with Pharmacological Activity from Bryophytes. Bryophyt. Chem. Chem. Taxon. 1990, 369–410. [Google Scholar]
- Asakawa, Y. Biologically Active Compounds from Bryophytes. Pure Appl. Chem. 2007, 79, 557–580. [Google Scholar] [CrossRef]
- Deora, G.S.; Deepti, S.; Gunjan, V. Antifungal Potential of Philonotis Revoluta-a Moss against Certain Phytopathogenic Fungi. J. Pure Appl. Microbiol. 2010, 4, 425–428. [Google Scholar]
- Perry, N.B.; Foster, L.M.; Lorimer, S.D.; May, B.C.H.; Weavers, R.T.; Toyota, M.; Nakaishi, E.; Asakawa, Y. Isoprenyl Phenyl Ethers from Liverworts of the Genus Trichocolea: Cytotoxic Activity, Structural Corrections, and Synthesis. J. Nat. Prod. 1996, 59, 729–733. [Google Scholar] [CrossRef] [PubMed]
- Asakawa, Y.; Toyota, M.; Nagashima, F.; Hashimoto, T. Chemical Constituents of Selected Japanese and New Zealand Liverworts. Nat. Prod. Commun. 2008, 3, 1934578X0800300238. [Google Scholar] [CrossRef] [Green Version]
- Graham, L.E.; Wilcox, L.W.; Cook, M.E.; Gensel, P.G. Resistant Tissues of Modern Marchantioid Liverworts Resemble Enigmatic Early Paleozoic Microfossils. Proc. Natl. Acad. Sci. USA 2004, 101, 11025–11029. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Niu, C.; Qu, J.-B.; Lou, H.-X. Antifungal Bis[Bibenzyls] from the Chinese Liverwort Marchantia polymorpha L. Chem. Biodivers. 2006, 3, 34–40. [Google Scholar] [CrossRef]
- Guo, X.-L.; Leng, P.; Yang, Y.; Yu, L.-G.; Lou, H.-X. Plagiochin E, a Botanic-Derived Phenolic Compound, Reverses Fungal Resistance to Fluconazole Relating to the Efflux Pump. J. Appl. Microbiol. 2008, 104, 831–838. [Google Scholar] [CrossRef]
- Sun, S.; Lou, H.; Gao, Y.; Fan, P.; Ma, B.; Ge, W.; Wang, X. Liquid Chromatography–Tandem Mass Spectrometric Method for the Analysis of Fluconazole and Evaluation of the Impact of Phenolic Compounds on the Concentration of Fluconazole in Candida Albicans. J. Pharm. Biomed. Anal. 2004, 34, 1117–1124. [Google Scholar] [CrossRef]
- Sun, S.; Gao, Y.; Ling, X.; Lou, H. The Combination Effects of Phenolic Compounds and Fluconazole on the Formation of Ergosterol in Candida Albicans Determined by High-Performance Liquid Chromatography/Tandem Mass Spectrometry. Anal. Biochem. 2005, 336, 39–45. [Google Scholar] [CrossRef]
- Elibo, B.; Ezer, T.; Kara, R.; Çelik, G.Y.; Çolak, E. Antifungal and Antibacterial Effects of Some Acrocarpic Mosses. Afr. J. Biotechnol. 2011, 10, 986–989. [Google Scholar] [CrossRef]
- Deora, G.S.; Guhil, N. Phytochemical Analysis and Antifungal Activity of Moss Bryum Cellulare against some Phytopathogenic Fungi. Int. J. Pharm. Sci. Res. 2015, 6, 688. [Google Scholar]
- Deora, G.S.; Guhil, N. Antifungal Potential of Bryum Cellulare against Some Common Diseases of Maize. Int. J. Res. Appl. Nat. Soc. Sci. 2014, 2, 21–28. [Google Scholar]
- Deora, S.; Guhil, N. Studies on Antifungal Potential of Bryum Cellulare (a Moss) Crude Extracts against Spore Germination of Fungus Curvularia Lunata. Int. J. Pharm. Sci. Res. (IJPSR) 2016, 7, 353–357. [Google Scholar]
- Bodade, R.G.; Borkar, P.S.; Arfeen, S.; Khobragade, C.N. In Vitro Screening of Bryophytes for Antimicrobial Activity. J. Med. Plants 2008, 7, 6. [Google Scholar]
- Sabovljevic, M.S.; Sabovljević, A.D.; Ikram, N.K.K.; Peramuna, A.V.; Bae, H.; Simonsen, H.T. Bryophytes—An Emerging Source for Herbal Remedies and Chemical Production. Plant Genet. Resour. Characterisation Util. 2016, 14, 314–327. [Google Scholar] [CrossRef]
- Martínez-Abaigar, J.; Núñez-Olivera, E. Chapter 11—Novel biotechnological substances from bryophytes. In Natural Bioactive Compounds; Sinha, R.P., Häder, D.-P., Eds.; Academic Press: Cambridge, MA, USA, 2021; pp. 233–248. ISBN 978-0-12-820655-3. [Google Scholar]
- Wilson, J.W. Observations on Concentric “Fairy Rings” in Arctic Moss Mat. J. Ecol. 1951, 39, 407–416. [Google Scholar] [CrossRef]
- Racovitza, A. Étude Systématique et Biologique Des Champignons Bryophiles. [Hauptbd.]. Mem. Mus. Natl. Hist. Nat. Ser. B Bot. 1959, 10, 1288. [Google Scholar]
- Felix, H. Fungi on Bryophytes, a Review. Bot. Helv. 1988, 98, 239–269. [Google Scholar] [CrossRef]
- Kost, G. Moss inhabiting basidiomycetes. 3. interactions between basidiomycetes and bryophyta. Endocytobiosis Cell Res. 1988, 5, 287–308. [Google Scholar]
- Do¨bbeler, P. Biodiversity of Bryophilous Ascomycetes. Biodivers. Conserv. 1997, 6, 721–738. [Google Scholar] [CrossRef]
- Thormann, M.N.; Currah, R.S.; Bayley, S.E. Microfungi Isolated from Sphagnum Fuscum from a Southern Boreal Bog in Alberta, Canada. Bryologist 2001, 104, 548–559. [Google Scholar] [CrossRef]
- Davey, M.L.D.L.; Currah, R.S.C.S. Interactions between Mosses (Bryophyta) and Fungi. Botany 2006. [Google Scholar] [CrossRef]
- Redhead, S.A.; Spicer, K.W. Discinella Schimperi, a Circumpolar Parasite of Sphagnum Squarrosum, and Notes on Bryophytomyces Sphagni. Mycologia 1981, 73, 904–913. [Google Scholar] [CrossRef]
- During, H.J.; van Tooren, B.F. Bryophyte Interactions with Other Plants. Bot. J. Linn. Soc. 1990, 104, 79–98. [Google Scholar] [CrossRef]
- Tsuneda, A.; Chen, M.H.; Currah, R.S. Characteristics of a Disease of Sphagnum Fuscum Caused by Scleroconidioma Sphagnicola. Can. J. Bot. 2011. [Google Scholar] [CrossRef]
- Pressel, S.; Bidartondo, M.I.; Ligrone, R.; Duckett, J.G. Fungal Symbioses in Bryophytes: New Insights in the Twenty First Century. Phytotaxa 2014, 9, 238–253. [Google Scholar] [CrossRef]
- Rimington, W.R.; Duckett, J.G.; Field, K.J.; Bidartondo, M.I.; Pressel, S. The Distribution and Evolution of Fungal Symbioses in Ancient Lineages of Land Plants. Mycorrhiza 2020, 30, 23–49. [Google Scholar] [CrossRef] [Green Version]
- Kowal, J.; Pressel, S.; Duckett, J.G.; Bidartondo, M.I.; Field, K.J. From Rhizoids to Roots? Experimental Evidence of Mutualism between Liverworts and Ascomycete Fungi. Ann. Bot. 2018, 121, 221–227. [Google Scholar] [CrossRef] [Green Version]
- Akita, M.; Valkonen, J.P.T. A Novel Gene Family in Moss (Physcomitrella Patens) Shows Sequence Homology and a Phylogenetic Relationship with the TIR-NBS Class of Plant Disease Resistance Genes. J. Mol. Evol. 2002, 55, 595–605. [Google Scholar] [CrossRef]
- Mayaba, N.; Minibayeva, F.; Beckett, R.P. An Oxidative Burst of Hydrogen Peroxide during Rehydration Following Desiccation in the Moss Atrichum Androgynum. New Phytol. 2002, 155, 275–283. [Google Scholar] [CrossRef]
- Carella, P.; Gogleva, A.; Hoey, D.J.; Bridgen, A.J.; Stolze, S.C.; Nakagami, H.; Schornack, S. Conserved Biochemical Defenses Underpin Host Responses to Oomycete Infection in an Early-Divergent Land Plant Lineage. Curr. Biol. 2019, 29, 2282–2294.e5. [Google Scholar] [CrossRef]
- Asakawa, Y.; Ludwiczuk, A.; Nagashima, F. Phytochemical and Biological Studies of Bryophytes. Phytochemistry 2013, 91, 52–80. [Google Scholar] [CrossRef] [PubMed]
- Asakawa, Y.; Ludwiczuk, A. Chemical Constituents of Bryophytes: Structures and Biological Activity. J. Nat. Prod. 2018, 81, 641–660. [Google Scholar] [CrossRef] [PubMed]
- Ludwiczuk, A.; Asakawa, Y. Bryophytes as a Source of Bioactive Volatile Terpenoids—A Review. Food Chem. Toxicol. 2019, 132, 110649. [Google Scholar] [CrossRef] [PubMed]
- Peters, K.; Gorzolka, K.; Bruelheide, H.; Neumann, S. Seasonal Variation of Secondary Metabolites in Nine Different Bryophytes. Ecol. Evol. 2018, 8, 9105–9117. [Google Scholar] [CrossRef] [PubMed]
- Opelt, K.; Berg, G. Diversity and Antagonistic Potential of Bacteria Associated with Bryophytes from Nutrient-Poor Habitats of the Baltic Sea Coast. Appl. Environ. Microbiol. 2004, 70, 6569–6579. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Opelt, K.; Berg, C.; Berg, G. The Bryophyte Genus Sphagnum Is a Reservoir for Powerful and Extraordinary Antagonists and Potentially Facultative Human Pathogens. FEMS Microbiol. Ecol. 2007, 61, 38–53. [Google Scholar] [CrossRef]
- Asakawa, Y.; Nagashima, F.; Ludwiczuk, A. Distribution of Bibenzyls, Prenyl Bibenzyls, Bis-Bibenzyls, and Terpenoids in the Liverwort Genus Radula. J. Nat. Prod. 2020, 83, 756–769. [Google Scholar] [CrossRef]
- Hajji, A.; Bnejdi, F.; Saadoun, M.; Ben Salem, I.; Nehdi, I.; Sbihi, H.; Alharthi, F.A.; El Bok, S.; Boughalleb-M’Hamdi, N. High Reserve in δ-Tocopherol of Peganum Harmala Seeds Oil and Antifungal Activity of Oil against Ten Plant Pathogenic Fungi. Molecules 2020, 25, 4569. [Google Scholar] [CrossRef]
- Lange, B.M.; Rujan, T.; Martin, W.; Croteau, R. Isoprenoid Biosynthesis: The Evolution of Two Ancient and Distinct Pathways across Genomes. Proc. Natl. Acad. Sci. USA 2000, 97, 13172–13177. [Google Scholar] [CrossRef] [Green Version]
- Rao, S.A. Structural information of natural product metabolites in bryophytes. In Evolutionary Diversity as a Source for Anticancer Molecules. Elsevier BV: San Diego, CA, USA, 2021; pp. 209–231. [Google Scholar]
- He, X.; Sun, Y.; Zhu, R.-L. The Oil Bodies of Liverworts: Unique and Important Organelles in Land Plants. Crit. Rev. Plant Sci. 2013, 32, 293–302. [Google Scholar] [CrossRef]
- Tanaka, M.; Esaki, T.; Kenmoku, H.; Koeduka, T.; Kiyoyama, Y.; Masujima, T.; Asakawa, Y.; Matsui, K. Direct Evidence of Specific Localization of Sesquiterpenes and Marchantin A in Oil Body Cells of Marchantia polymorpha L. Phytochemistry 2016, 130, 77–84. [Google Scholar] [CrossRef] [PubMed]
- Boncan, D.A.T.; Tsang, S.S.K.; Li, C.; Lee, I.H.T.; Lam, H.-M.; Chan, T.-F.; Hui, J.H.L. Terpenes and Terpenoids in Plants: Interactions with Environment and Insects. Int. J. Mol. Sci. 2020, 21, 7382. [Google Scholar] [CrossRef] [PubMed]
- Ludwiczuk, A.; Asakawa, Y. Chemotaxonomic Value of Essential Oil Components in Liverwort Species. A Review. Flavour Fragr. J. 2015, 30, 189–196. [Google Scholar] [CrossRef]
- Hammer, K.A.; Carson, C.F.; Riley, T.V. Antifungal Activity of the Components of Melaleuca Alternifolia (Tea Tree) Oil. J. Appl. Microbiol. 2003, 95, 853–860. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sonwa, M.M.; König, W.A. Chemical Constituents of the Essential Oil of the Hornwort Anthoceros Caucasicus. Flavour Fragr. J. 2003, 18, 286–289. [Google Scholar] [CrossRef]
- Melching, S.; Bülow, N.; Wihstutz, K.; Jung, S.; König, W.A. Natural Occurrence of Both Enantiomers of Cadina-3,5-Diene and δ-Amorphene. Phytochemistry 1997, 44, 1291–1296. [Google Scholar] [CrossRef]
- Knoche, H.; Ourisson, G.; Perold, G.W.; Foussereau, J.; Maleville, J. Allergenic Component of a Liverwort: A Sesquiterpene Lactone. Science 1969, 166, 239–240. [Google Scholar] [CrossRef]
- Asakawa, Y. Chemical Constituents of the Hepaticae. In Fortschritte der Chemie organischer Naturstoffe/Progress in the Chemistry of Organic Natural Products; Asakawa, Y., Heidelberger, M., Herz, W., Grisebach, H., Kirby, G.W., Eds.; Springer: Vienna, Austria, 1982; pp. 1–285. [Google Scholar]
- Fricke, C.; Rieck, A.; Hardt, I.H.; König, W.A.; Muhle, H. Identification of (+)-β-Caryophyllene in Essential Oils of Liverworts by Enantioselective Gas Chromatography. Phytochemistry 1995, 39, 1119–1121. [Google Scholar] [CrossRef]
- Von Reuß, S.H.; Wu, C.L.; Muhle, H.; König, W.A. Sesquiterpene Constituents from the Essential Oils of the Liverworts Mylia Taylorii and Mylia Nuda. Phytochemistry 2004, 65, 2277–2291. [Google Scholar] [CrossRef]
- Ludwiczuk, A.; Asakawa, Y. Fingerprinting of Secondary Metabolites of Liverworts: Chemosystematic Approach. J. Aoac Int. 2014, 97, 1234–1243. [Google Scholar] [CrossRef] [Green Version]
- Neves, M.; Morais, R.; Gafner, S.; Stoeckli-Evans, H.; Hostettmann, K. New Sesquiterpene Lactones from the Portuguese Liverwort Targionia Lorbeeriana. Phytochemistry 1999, 50, 967–972. [Google Scholar] [CrossRef]
- Scher, J.M.; Speakman, J.-B.; Zapp, J.; Becker, H. Bioactivity Guided Isolation of Antifungal Compounds from the Liverwort Bazzania trilobata (L.) S.F. Gray. Phytochemistry 2004, 65, 2583–2588. [Google Scholar] [CrossRef] [PubMed]
- Nozaki, H.; Hayashi, K.; Nishimura, N.; Kawaide, H.; Matsuo, A.; Takaoka, D. Momilactone A and B as Allelochemicals from Moss Hypnum Plumaeforme: First Occurrence in Bryophytes. Biosci. Biotechnol. Biochem. 2007, 71, 3127–3130. [Google Scholar] [CrossRef] [PubMed]
- Li, J.-L.; Wie, L.-L.; Chen, C.; Liu, D.; Gu, Y.-Q.; Duan-Mu, J.-X.; Chen, G.-T.; Song, Y. Bioactive Constituents from the Bryophyta Hypnum Plumaeforme. Chem. Biodivers. 2020, 17, e2000552. [Google Scholar] [CrossRef]
- Zhao, M.; Cheng, J.; Guo, B.; Duan, J.; Che, C.-T. Momilactone and Related Diterpenoids as Potential Agricultural Chemicals. J. Agric. Food Chem. 2018, 66, 7859–7872. [Google Scholar] [CrossRef]
- Fukuta, M.; Xuan, T.D.; Deba, F.; Tawata, P.S.; Khanh, T.D.; Chung, I.M. Comparative Efficacies in Vitro of Antibacterial, Fungicidal, Antioxidant, and Herbicidal Activities of Momilatones A and B. J. Plant Interact. 2007, 2, 245–251. [Google Scholar] [CrossRef] [Green Version]
- Ziaullah, H.P.; Rupasinghe, V. Chapter 1—Application of NMR Spectroscopy in Plant Polyphenols Associated with Human Health. In Applications of NMR Spectroscopy; ur-Rahman, A., Choudhary, M.I., Eds.; Bentham Science Publishers: Sharjah, UAE, 2015; pp. 3–92. ISBN 978-1-60805-999-7. [Google Scholar]
- Daurade-Le Vagueresse, M.H.; Romiti, C.; Grosclaude, C.; Bounias, M. Coevolutionary Toxicity as Suggested by Differential Coniferyl Alcohol Inhibition of Ceratocystis Species Growth. Toxicon 2001, 39, 203–208. [Google Scholar] [CrossRef]
- Silber, M.V.; Meimberg, H.; Ebel, J. Identification of a 4-Coumarate: CoA Ligase Gene Family in the Moss, Physcomitrella Patens. Phytochemistry 2008, 69, 2449–2456. [Google Scholar] [CrossRef]
- Weng, J.-K.; Li, X.; Stout, J.; Chapple, C. Independent Origins of Syringyl Lignin in Vascular Plants. Proc. Natl. Acad. Sci. USA 2008, 105, 7887–7892. [Google Scholar] [CrossRef] [Green Version]
- Xu, Z.; Zhang, D.; Hu, J.; Zhou, X.; Ye, X.; Reichel, K.L.; Stewart, N.R.; Syrenne, R.D.; Yang, X.; Gao, P.; et al. Comparative Genome Analysis of Lignin Biosynthesis Gene Families across the Plant Kingdom. BMC Bioinform. 2009, 10, S3. [Google Scholar] [CrossRef] [Green Version]
- Basile, A.; Giordano, S.; López-Sáez, J.A.; Cobianchi, R.C. Antibacterial Activity of Pure Flavonoids Isolated from Mosses. Phytochemistry 1999, 52, 1479–1482. [Google Scholar] [CrossRef]
- Umezawa, T. Diversity in Lignan Biosynthesis. Phytochem. Rev. 2003, 2, 371–390. [Google Scholar] [CrossRef]
- Jocković, N.; Andrade, P.B.; Valentão, P.; Sabovljević, M. HPLC-DAD of Phenolics in Bryophytes Lunularia Cruciata, Brachytheciastrum Velutinum and Kindbergia Praelonga. J. Serb. Chem. Soc. 2008, 73, 1161–1167. [Google Scholar] [CrossRef]
- Petersen, M. Rosmarinic Acid: New Aspects. Phytochem. Rev. 2013, 12, 207–227. [Google Scholar] [CrossRef]
- Vogt, T. Phenylpropanoid Biosynthesis. Mol. Plant 2010, 3, 2–20. [Google Scholar] [CrossRef] [Green Version]
- Arróniz-Crespo, M.; Núñez-Olivera, E.; Martínez-Abaigar, J.; Becker, H.; Scher, J.; Zapp, J.; Tomás, R.; Beaucourt, N. Physiological Changes and UV Protection in the Aquatic Liverwort Jungermannia Exsertifolia Subsp. Cordifolia along an Altitudinal Gradient of UV-B Radiation. Funct. Plant Biol. 2006, 33, 1025–1036. [Google Scholar] [CrossRef]
- Ludwiczuk, A.; Asakawa, Y. Terpenoids and Aromatic Compounds from Bryophytes and Their Central Nervous System Activity. Curr. Org. Chem. 2020, 24, 113–128. [Google Scholar] [CrossRef]
- Mendez, J.; Sanz-Cabanilles, F. Cinnamic Acid Esters in Anthoceros Species. Phytochemistry 1979, 18, 1409. [Google Scholar] [CrossRef]
- Vogelsang, K.; Schneider, B.; Petersen, M. Production of Rosmarinic Acid and a New Rosmarinic Acid 3′-O-β-D-Glucoside in Suspension Cultures of the Hornwort Anthoceros Agrestis Paton. Planta 2006, 223, 369–373. [Google Scholar] [CrossRef]
- Provenzano, F.; Sánchez, J.L.; Rao, E.; Santonocito, R.; Ditta, L.A.; Borrás Linares, I.; Passantino, R.; Campisi, P.; Dia, M.G.; Costa, M.A.; et al. Water Extract of Cryphaea Heteromalla (Hedw.) D. Mohr Bryophyte as a Natural Powerful Source of Biologically Active Compounds. Int. J. Mol. Sci. 2019, 20, 5560. [Google Scholar] [CrossRef] [Green Version]
- Speicher, A.; Schoeneborn, R. 3,4-Dihydroxy-3′-Methoxystilbene, the First Monomeric Stilbene Derivative from Bryophytes. Phytochemistry 1997, 45, 1613–1615. [Google Scholar] [CrossRef]
- Jung, M.; Zinsmeister, H.D.; Geiger, H. New Three- and Tetraoxygenated Coumarin Glucosides from the Mosses Atrichum Undulatum and Polytrichum Formosum. Z. Nat. C 1994, 49, 697–702. [Google Scholar] [CrossRef]
- Chobot, V.; Kubicová, L.; Nabbout, S.; Jahodář, L.; Hadacek, F. Evaluation of Antioxidant Activity of Some Common Mosses. Z. Nat. C 2008, 63, 476–482. [Google Scholar] [CrossRef] [PubMed]
- Anhut, S.; Dietmar Zinsmeister, H.; Mues, R.; Barz, W.; Mackenbrock, K.; Köster, J.; Markham, K.R. The First Identification of Isoflavones from a Bryophyte. Phytochemistry 1984, 23, 1073–1075. [Google Scholar] [CrossRef]
- Sievers, H.; Burkhardt, G.; Becker, H.; Zinsmeister, H.D. Hypnogenols and Other Dihydroflavonols from the Moss Hypnum Cupressiforme. Phytochemistry 1992, 31, 3233–3237. [Google Scholar] [CrossRef]
- Weitz, S.; Ikan, R. Bracteatin from the Moss Funaria hygrometrica. Phytochemistry 1977, 16, 1108–1109. [Google Scholar] [CrossRef]
- Boucherle, B.; Peuchmaur, M.; Boumendjel, A.; Haudecoeur, R. Occurrences, Biosynthesis and Properties of Aurones as High-End Evolutionary Products. Phytochemistry 2017, 142, 92–111. [Google Scholar] [CrossRef]
- Tohge, T.; Watanabe, M.; Hoefgen, R.; Fernie, A.R. The Evolution of Phenylpropanoid Metabolism in the Green Lineage. Crit. Rev. Biochem. Mol. Biol. 2013, 48, 123–152. [Google Scholar] [CrossRef]
- König, S.; Feussner, K.; Kaever, A.; Landesfeind, M.; Thurow, C.; Karlovsky, P.; Gatz, C.; Polle, A.; Feussner, I. Soluble Phenylpropanoids Are Involved in the Defense Response of Arabidopsis against Verticillium longisporum. New Phytol. 2014, 202, 823–837. [Google Scholar] [CrossRef]
- Ponce de León, I.; Oliver, J.P.; Castro, A.; Gaggero, C.; Bentancor, M.; Vidal, S. Erwinia Carotovora Elicitors and Botrytis Cinerea Activate Defense Responses in Physcomitrella Patens. BMC Plant Biol. 2007, 7, 52. [Google Scholar] [CrossRef] [Green Version]
- León, I.P.D.; Schmelz, E.A.; Gaggero, C.; Castro, A.; Álvarez, A.; Montesano, M. Physcomitrella Patens Activates Reinforcement of the Cell Wall, Programmed Cell Death and Accumulation of Evolutionary Conserved Defence Signals, Such as Salicylic Acid and 12-Oxo-Phytodienoic Acid, but Not Jasmonic Acid, upon Botrytis Cinerea Infection. Mol. Plant Pathol. 2012, 13, 960–974. [Google Scholar] [CrossRef] [PubMed]
- Reboledo, G.; Del Campo, R.; Alvarez, A.; Montesano, M.; Mara, H.; Ponce de León, I. Physcomitrella Patens Activates Defense Responses against the Pathogen Colletotrichum Gloeosporioides. Int. J. Mol. Sci. 2015, 16, 22280–22298. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Labbé, C.; Faini, F.; Villagrán, C.; Coll, J.; Rycroft, D.S. Bioactive Polychlorinated Bibenzyls from the Liverwort Riccardia Polyclada. J. Nat. Prod. 2007, 70, 2019–2021. [Google Scholar] [CrossRef] [PubMed]
- Gaweł-Bęben, K.; Osika, P.; Asakawa, Y.; Antosiewicz, B.; Głowniak, K.; Ludwiczuk, A. Evaluation of Anti-Melanoma and Tyrosinase Inhibitory Properties of Marchantin A, a Natural Macrocyclic Bisbibenzyl Isolated from Marchantia Species. Phytochem. Lett. 2019, 31, 192–195. [Google Scholar] [CrossRef]
- Asakawa, Y.; Ludwiczuk, A. Distribution of cyclic and acyclic bis-bibenzyls in the marchantiophyta (liverworts), ferns and higher plants and their biological activities, biosynthesis, and total synthesis (Dedicated to Professor Dr. Ei-Ichi Negishi on the Occasion of His 77th Birthday). Heterocycles: Int. J. Rev. Commun. Heterocycl. Chem. 2012, 86, 891–917. [Google Scholar]
- Asakawa, Y. Biologically Active Substances Found in Hepaticase. Stud. Nat. Prod. Chem. 1988, 2, 277–292. [Google Scholar]
- Friederich, S.; Maier, U.H.; Deus-Neumann, B.; Asakawa, Y.; Zenk, M.H. Biosynthesis of Cyclic Bis(Bibenzyls) in Marchantia Polymorpha. Phytochemistry 1999, 50, 589–598. [Google Scholar] [CrossRef]
- Asakawa, Y.; Toyota, M.; Tori, M.; Hashimoto, T. Chemical Structures of Macrocyclic Bis(Bibenzyls) Isolated from Liverworts (Hepaticae). Spectroscopy 2000, 14, 149–175. [Google Scholar] [CrossRef] [Green Version]
- Scher, J.M.; Burgess, E.J.; Lorimer, S.D.; Perry, N.B. A Cytotoxic Sesquiterpene and Unprecedented Sesquiterpene-Bisbibenzyl Compounds from the Liverwort Schistochila Glaucescens. Tetrahedron 2002, 58, 7875–7882. [Google Scholar] [CrossRef]
- Asakawa, Y.; Toyota, M.; Taira, Z.; Takemoto, T.; Kido, M. Riccardin A and Riccardin B, Two Novel Cyclic Bis(Bibenzyls) Possessing Cytotoxicity from the Liverwort Riccardia multifida (L.) S. Gray. J. Org. Chem. 1983, 48, 2164–2167. [Google Scholar] [CrossRef]
- Toyota, M.; Tori, M.; Takikawa, K.; Shiobara, Y.; Kodama, M.; Asakawa, Y. Perrottetins E, F, and G from Radula Perrottetii (Liverwort)--Isolation, Structure Determination, and Synthesis of Perrottetine. Tetrahedron Lett. 1985, 26, 6097–6100. [Google Scholar] [CrossRef]
- Hashimoto, T.; Tori, M.; Asakawa, Y.; Fukazawa, Y. Plagiochins A, B, C, and D, New Type of Macrocyclic Bis(Bibenzyls) Having a Biphenyl Linkage between the Ortho Positions to the Benzyl Methylenes, from the Liverwort Plagiochila Acanthophylla Subsp. Japonica. Tetrahedron Lett. 1987, 28, 6295–6298. [Google Scholar] [CrossRef]
- Qu, J.; Xie, C.; Guo, H.; Yu, W.; Lou, H. Antifungal Dibenzofuran Bis(Bibenzyl)s from the Liverwort Asterella Angusta. Phytochemistry 2007, 68, 1767–1774. [Google Scholar] [CrossRef] [PubMed]
- Xie, C.-F.; Qu, J.-B.; Wu, X.-Z.; Liu, N.; Ji, M.; Lou, H.-X. Antifungal Macrocyclic Bis(Bibenzyls) from the Chinese Liverwort Ptagiochasm Intermedlum L. Nat. Prod. Res. 2010, 24, 515–520. [Google Scholar] [CrossRef]
- Wu, X.; Cheng, A.; Sun, L.; Lou, H. Effect of Plagiochin E, an Antifungal Macrocyclic Bis(Bibenzyl), on Cell Wall Chitin Synthesis in Candida Albicansacta. Pharmacol. Sin. 2008, 29, 1478–1485. [Google Scholar] [CrossRef] [Green Version]
- Hashimoto, T.; Yoshida, T.; Kan, Y.; Takaoka, S.; Tori, M.; Asakawa, Y. Structures of Four Novel Macrocyclic Bis(Bibenzyl) Dimers, Pusilatins A–D from the Liverwort Blasia Pusilla. Tetrahedron Lett. 1994, 35, 909–910. [Google Scholar] [CrossRef]
- Valio, I.F.M.; Burdon, R.S.; Schwabe, W.W. New Natural Growth Inhibitor in the Liverwort Lunularia cruciata (L) Dum. Nature 1969, 223, 1176–1178. [Google Scholar] [CrossRef]
- Geiger, H.; Markham, K.R. Campylopusaurone, an Auronoflavanone Biflavonoid from the Mosses Campylopus Clavatus and Campylopus Holomitrium. Phytochemistry 1992, 31, 4325–4328. [Google Scholar] [CrossRef]
- Dulger, B.; Yayintas, O.T.; Gonuz, A. Antimicrobial Activity of Some Mosses from Turkey. Fitoterapia 2005, 76, 730–732. [Google Scholar] [CrossRef]
- Veljić, M.; Tarbuk, M.; Marin, P.D.; Ćirić, A.; Soković, M.; Marin, M. Antimicrobial Activity of Methanol Extracts of Mosses from Serbia. Pharm. Biol. 2008, 46, 871–875. [Google Scholar] [CrossRef]
- Savaroglu, F.; Ilhan, S.; Filik-Iscen, C. An Evaluation of the Antimicrobial Activity of Some Turkish Mosses. JMPR 2011, 5, 3286–3292. [Google Scholar] [CrossRef]
- Markham, K.R.; Porter, L.J. Flavonoids of the Primitive Liverwort Takakia and Their Taxonomic and Phylogenetic Significance. Phytochemistry 1979, 18, 611–615. [Google Scholar] [CrossRef]
- Clayton, W.A.; Albert, N.W.; Thrimawithana, A.H.; McGhie, T.K.; Deroles, S.C.; Schwinn, K.E.; Warren, B.A.; McLachlan, A.R.G.; Bowman, J.L.; Jordan, B.R.; et al. UVR8-Mediated Induction of Flavonoid Biosynthesis for UVB Tolerance Is Conserved between the Liverwort Marchantia Polymorpha and Flowering Plants. Plant J. 2018, 96, 503–517. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Soriano, G.; Del-Castillo-Alonso, M.-Á.; Monforte, L.; Núñez-Olivera, E.; Martínez-Abaigar, J. First Data on the Effects of Ultraviolet Radiation on Phenolic Compounds in the Model Hornwort Anthoceros Agrestis. Cryptogam. Bryol. 2018, 39, 201–211. [Google Scholar] [CrossRef]
- Davies, K.M.; Jibran, R.; Zhou, Y.; Albert, N.W.; Brummell, D.A.; Jordan, B.R.; Bowman, J.L.; Schwinn, K.E. The Evolution of Flavonoid Biosynthesis: A Bryophyte Perspective. Front. Plant Sci. 2020, 11, 7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berland, H.; Albert, N.W.; Stavland, A.; Jordheim, M.; McGhie, T.K.; Zhou, Y.; Zhang, H.; Deroles, S.C.; Schwinn, K.E.; Jordan, B.R.; et al. Auronidins are a Previously Unreported Class of Flavonoid Pigments That Challenges When Anthocyanin Biosynthesis Evolved in Plants. Proc. Natl. Acad. Sci. USA 2019, 116, 20232–20239. [Google Scholar] [CrossRef] [Green Version]
- Tutschek, R. An Evaluation of Phenylpropanoid Metabolism during Cold-Induced Sphagnorubin Synthesis in Sphagnum Magellanicum BRID. Planta 1982, 155, 301–306. [Google Scholar] [CrossRef]
- Kunz, S.; Burkhardt, G.; Becker, H. Riccionidins a and b, Anthocyanidins from the Cell Walls of the Liverwort Ricciocarpos Natans. Phytochemistry 1993, 35, 233–235. [Google Scholar] [CrossRef]
- Pejin, B.; Iodice, C.; Tommonaro, G.; Sabovljevic, M.; Bianco, A.; Tesevic, V.; Vajs, V.; Rosa, S.D. Sugar Composition of the Moss Rhodobryum Ontariense (Kindb.) Kindb. Nat. Prod. Res. 2012, 26, 209–215. [Google Scholar] [CrossRef]
- Marschall, M.; Proctor, M.C.F.; Smirnoff, N. Carbohydrate Composition and Invertase Activity of the Leafy Liverwort Porella Platyphylla. New Phytol. 1998, 138, 343–353. [Google Scholar] [CrossRef]
- Resemann, H.C.; Lewandowska, M.; Gömann, J.; Feussner, I. Membrane Lipids, Waxes and Oxylipins in the Moss Model Organism Physcomitrella Patens. Plant Cell Physiol. 2019, 60, 1166–1175. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miyazawa, M.; Asakawa, Y. Special Issue: Symposium on the Chemistry of Terpenes, Essential Oils and Aromatics (TEAC). J. Oleo Sci. 2018, 67, 1177. [Google Scholar] [CrossRef] [Green Version]
- Von Reuß, S.H.; König, W.A. Olefinic Isothiocyanates and Iminodithiocarbonates from the Liverwort Corsinia Coriandrina. Eur. J. Org. Chem. 2005, 2005, 1184–1188. [Google Scholar] [CrossRef]
- Han, J.-J.; Zhang, J.-Z.; Zhu, R.-X.; Li, Y.; Qiao, Y.-N.; Gao, Y.; Jin, X.-Y.; Chen, W.; Zhou, J.-C.; Lou, H.-X. Plagiochianins A and B, Two Ent-2,3-Seco-Aromadendrane Derivatives from the Liverwort Plagiochila Duthiana. Org. Lett. 2018, 20, 6550–6553. [Google Scholar] [CrossRef] [PubMed]
- Asakawa, Y.; Nagashima, F.; Hashimoto, T.; Toyota, M.; Ludwiczuk, A.; Komala, I.; Ito, T.; Yagi, Y. Pungent and Bitter, Cytotoxic and Antiviral Terpenoids from Some Bryophytes and Inedible Fungi. Nat. Prod. Comm. 2014, 9, 409–417. [Google Scholar] [CrossRef] [Green Version]
- Olmedo, G.M.; Cerioni, L.; González, M.M.; Cabrerizo, F.M.; Volentini, S.I.; Rapisarda, V.A. UVA Photoactivation of Harmol Enhances Its Antifungal Activity against the Phytopathogens Penicillium Digitatum and Botrytis Cinerea. Front. Microbiol. 2017, 8, 347. [Google Scholar] [CrossRef] [PubMed]
- Salm, R.F.; Zinsmeister, H.D.; Eicher, T. Nitrogen-Containing Compounds from the Moss Fontinalis Squamosa. Phytochemistry 1998, 49, 887–892. [Google Scholar] [CrossRef]
- Trennheuser, F.; Burkhard, G.; Becker, H. Anthocerodiazonin an Alkaloid from Anthoceros Agrestis. Phytochemistry 1994, 37, 899–903. [Google Scholar] [CrossRef]
- Teodoro, G.R.; Ellepola, K.; Seneviratne, C.J.; Koga-Ito, C.Y. Potential Use of Phenolic Acids as Anti-Candida Agents: A Review. Front. Microbiol. 2015, 6. [Google Scholar] [CrossRef] [Green Version]
- Romero-Cortes, T.; España, V.H.P.; Pérez, P.A.L.; Rodríguez-Jimenes, G.D.C.; Robles-Olvera, V.J.; Burgos, J.E.A.; Cuervo-Parra, J.A. Antifungal Activity of Vanilla Juice and Vanillin against Alternaria Alternata. Cyta J. Food 2019, 17, 375–383. [Google Scholar] [CrossRef] [Green Version]
- Cho, J.-Y.; Moon, J.-H.; Park, K.-H. Isolation and Identification of 3-Methoxy-4-hydroxybenzoic acid and 3-Methoxy-4-hydroxycinnamic acid from Hot Water Extracts of Hovenia dulcis Thunb and Confirmation of Their Antioxidative and Antimicrobial Activity. Korean J. Food Sci. Technol. 2000, 32, 1403–1408. [Google Scholar]
- Willaert, R.G. Micro- and Nanoscale Approaches in Antifungal Drug Discovery. Fermentation 2018, 4, 43. [Google Scholar] [CrossRef] [Green Version]
- Asakawa, Y.; Ludwiczuk, A.; Nagashima, F. Chemical Constituents of Bryophytes: Bio- and Chemical Diversity, Biological Activity, and Chemosystematics; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012; ISBN 978-3-7091-1084-3. [Google Scholar]
- Hussain, T.; Plunkett, B.; Ejaz, M.; Espley, R.V.; Kayser, O. Identification of Putative Precursor Genes for the Biosynthesis of Cannabinoid-Like Compound in Radula Marginata. Front. Plant Sci. 2018, 9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schulte, J.; Reski, R. High Throughput Cryopreservation of 140 000 Physcomitrella Patens Mutants. Plant Biology 2004, 6, 119–127. [Google Scholar] [CrossRef] [PubMed]
- Lang, D.; Zimmer, A.D.; Rensing, S.A.; Reski, R. Exploring Plant Biodiversity: The Physcomitrella Genome and Beyond. Trends Plant Sci. 2008, 13, 542–549. [Google Scholar] [CrossRef] [PubMed]
- Bowman, J.L.; Kohchi, T.; Yamato, K.T.; Jenkins, J.; Shu, S.; Ishizaki, K.; Yamaoka, S.; Nishihama, R.; Nakamura, Y.; Berger, F.; et al. Insights into Land Plant Evolution Garnered from the Marchantia Polymorpha Genome. Cell 2017, 171, 287–304.e15. [Google Scholar] [CrossRef] [PubMed]
- Goodstein, D.M.; Shu, S.; Howson, R.; Neupane, R.; Hayes, R.D.; Fazo, J.; Mitros, T.; Dirks, W.; Hellsten, U.; Putnam, N.; et al. Phytozome: A Comparative Platform for Green Plant Genomics. Nucleic Acids Res 2012, 40, D1178–D1186. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Fu, X.-X.; Li, R.-Q.; Zhao, X.; Liu, Y.; Li, M.-H.; Zwaenepoel, A.; Ma, H.; Goffinet, B.; Guan, Y.-L.; et al. The Hornwort Genome and Early Land Plant Evolution. Nat. Plants 2020, 6, 107–118. [Google Scholar] [CrossRef] [Green Version]
- Radhakrishnan, G.V.; Keller, J.; Rich, M.K.; Vernié, T.; Mbadinga Mbadinga, D.L.; Vigneron, N.; Cottret, L.; Clemente, H.S.; Libourel, C.; Cheema, J.; et al. An Ancestral Signalling Pathway Is Conserved in Intracellular Symbioses-Forming Plant Lineages. Nat. Plants 2020, 6, 280–289. [Google Scholar] [CrossRef]
- Sugiura, C.; Kobayashi, Y.; Aoki, S.; Sugita, C.; Sugita, M. Complete Chloroplast DNA Sequence of the Moss Physcomitrella Patens: Evidence for the Loss and Relocation of RpoA from the Chloroplast to the Nucleus. Nucleic Acids Res. 2003, 31, 5324–5331. [Google Scholar] [CrossRef]
- Oliver, M.J.; Murdock, A.G.; Mishler, B.D.; Kuehl, J.V.; Boore, J.L.; Mandoli, D.F.; Everett, K.D.; Wolf, P.G.; Duffy, A.M.; Karol, K.G. Chloroplast Genome Sequence of the Moss Tortula Ruralis: Gene Content, Polymorphism, and Structural Arrangement Relative to Other Green Plant Chloroplast Genomes. BMC Genom. 2010, 11, 143. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bell, N.E.; Boore, J.L.; Mishler, B.D.; Hyvönen, J. Organellar Genomes of the Four-Toothed Moss, Tetraphis Pellucida. BMC Genom. 2014, 15, 383. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lewis, L.R.; Liu, Y.; Rozzi, R.; Goffinet, B. Infraspecific Variation within and across Complete Organellar Genomes and Nuclear Ribosomal Repeats in a Moss. Mol. Phylogenetics Evol. 2016, 96, 195–199. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, G.; Bai, S.; Guan, Y.; Wang, S.; Wang, Q.; Liu, Y.; Liu, H.; Goffinet, B.; Zhou, Y.; Paoletti, M.; et al. Are Fungi-Derived Genomic Regions Related to Antagonism towards Fungi in Mosses? New Phytol. 2020, 228, 1169–1175. [Google Scholar] [CrossRef] [PubMed]
- Porembski, S. Evolution, Diversity, and Habitats of Poikilohydrous Vascular Plants. In Plant Desiccation Tolerance; Ecological Studies; Lüttge, U., Beck, E., Bartels, D., Eds.; Springer: Berlin/Heidelberg, Germany, 2011; pp. 139–156. ISBN 978-3-642-19106-0. [Google Scholar]
- Challabathula, D.; Bartels, D. Desiccation Tolerance in Resurrection Plants: New Insights from Transcriptome, Proteome and Metabolome Analysis. Front. Plant Sci. 2013, 4. [Google Scholar] [CrossRef] [Green Version]
- Zonneveld, B.J.M.; Leitch, I.J.; Bennett, M.D. First Nuclear DNA Amounts in More than 300 Angiosperms. Ann. Bot. 2005, 96, 229–244. [Google Scholar] [CrossRef] [Green Version]
- Gechev, T.S.; Hille, J.; Woerdenbag, H.J.; Benina, M.; Mehterov, N.; Toneva, V.; Fernie, A.R.; Mueller-Roeber, B. Natural Products from Resurrection Plants: Potential for Medical Applications. Biotechnol. Adv. 2014, 32, 1091–1101. [Google Scholar] [CrossRef] [Green Version]
- Rodriguez, M.C.S.; Edsgärd, D.; Hussain, S.S.; Alquezar, D.; Rasmussen, M.; Gilbert, T.; Nielsen, B.H.; Bartels, D.; Mundy, J. Transcriptomes of the Desiccation-Tolerant Resurrection Plant Craterostigma Plantagineum. Plant J. 2010, 63, 212–228. [Google Scholar] [CrossRef]
- Yobi, A.; Wone, B.W.M.; Xu, W.; Alexander, D.C.; Guo, L.; Ryals, J.A.; Oliver, M.J.; Cushman, J.C. Metabolomic Profiling in Selaginella Lepidophylla at Various Hydration States Provides New Insights into the Mechanistic Basis of Desiccation Tolerance. Mol. Plant 2013, 6, 369–385. [Google Scholar] [CrossRef] [Green Version]
- Yobi, A.; Wone, B.W.M.; Xu, W.; Alexander, D.C.; Guo, L.; Ryals, J.A.; Oliver, M.J.; Cushman, J.C. Comparative Metabolic Profiling between Desiccation-Sensitive and Desiccation-Tolerant Species of Selaginella Reveals Insights into the Resurrection Trait. Plant J. 2012, 72, 983–999. [Google Scholar] [CrossRef]
- Cheng, X.-L.; Ma, S.-C.; Yu, J.-D.; Yang, S.-Y.; Xiao, X.-Y.; Hu, J.-Y.; Lu, Y.; Shaw, P.-C.; But, P.P.-H.; Lin, R.-C. Selaginellin A and B, Two Novel Natural Pigments Isolated from Selaginella Tamariscina. Chem. Pharm. Bull. 2008, 56, 982–984. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gao, L.; Yin, S.; Li, Z.-L.; Sha, Y.; Pei, Y.; Shi, G.; Jing, Y.; Hua, H.-M. Three Novel Sterols Isolated from Selaginella Tamariscina with Antiproliferative Activity in Leukemia Cells. Planta Med. 2007, 73, 1112–1115. [Google Scholar] [CrossRef] [PubMed]
- Woo, E.R.; Lee, J.Y.; Cho, I.J.; Kim, S.G.; Kang, K.W. Amentoflavone Inhibits the Induction of Nitric Oxide Synthase by Inhibiting NF-ΚB Activation in Macrophages. Pharmacol. Res. 2005, 51, 539–546. [Google Scholar] [CrossRef] [PubMed]
- Boguski, M.S. The Turning Point in Genome Re-Search. Trends Biochem. Sci. 1995, 20, 295–296. [Google Scholar] [CrossRef]
- Machuka, J.; Bashiardes, S.; Ruben, E.; Spooner, K.; Cuming, A.; Knight, C.; Cove, D. Sequence Analysis of Expressed Sequence Tags from an ABA-Treated CDNA Library Identifies Stress Response Genes in the Moss Physcomitrella Patens. Plant Cell Physiol. 1999, 40, 378–387. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reski, R. Physcomitrella and Arabidopsis: The David and Goliath of Reverse Genetics. Trends Plant Sci. (UK) 1998, 3, 209–210. [Google Scholar] [CrossRef]
- Wood, A.; Oliver, M. Translational Control in Plant Stress: The Formation of Messenger Ribonucleoprotein Particles (MRNPs) in Response to Desiccation of Tortula Ruralis Gametophytes. Plant J. 1999, 18, 359–370. [Google Scholar] [CrossRef] [Green Version]
- Leebens-Mack, J.H.; Barker, M.S.; Carpenter, E.J.; Deyholos, M.K.; Gitzendanner, M.A.; Graham, S.W.; Grosse, I.; Li, Z.; Melkonian, M.; Mirarab, S.; et al. One Thousand Plant Transcriptomes and the Phylogenomics of Green Plants. Nature 2019, 574, 679–685. [Google Scholar] [CrossRef] [Green Version]
- Carpenter, E.J.; Matasci, N.; Ayyampalayam, S.; Wu, S.; Sun, J.; Yu, J.; Jimenez Vieira, F.R.; Bowler, C.; Dorrell, R.G.; Gitzendanner, M.A.; et al. Access to RNA-Sequencing Data from 1,173 Plant Species: The 1000 Plant Transcriptomes Initiative (1KP). GigaScience 2019, 8. [Google Scholar] [CrossRef]
- Singh, H.; Rai, K.M.; Upadhyay, S.K.; Pant, P.; Verma, P.C.; Singh, A.P.; Singh, P.K. Transcriptome Sequencing of a Thalloid Bryophyte; Dumortiera Hirsuta (Sw) Nees: Assembly, Annotation and Marker Discovery. Sci. Rep. 2015, 5, 15350. [Google Scholar] [CrossRef]
- Altermann, E.; Russell, W.M.; Azcarate-Peril, M.A.; Barrangou, R.; Buck, B.L.; McAuliffe, O.; Souther, N.; Dobson, A.; Duong, T.; Callanan, M.; et al. Complete Genome Sequence of the Probiotic Lactic Acid Bacterium Lactobacillus Acidophilus NCFM. Proc. Natl. Acad. Sci. USA 2005, 102, 3906–3912. [Google Scholar] [CrossRef] [Green Version]
- Takahashi, H.; Asakawa, Y. Transcriptome Analysis of Marchantin Biosynthesis from the Liverwort Marchantia Polymorpha. Nat. Prod. Commun. 2017, 12, 1934578X1701200831. [Google Scholar] [CrossRef] [Green Version]
- Hillig, K.W.; Mahlberg, P.G. A Chemotaxonomic Analysis of Cannabinoid Variation in Cannabis (Cannabaceae). Am. J. Bot. 2004, 91, 966–975. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Overdijk, E.J.R.; Keijzer, J.D.; Groot, D.D.; Schoina, C.; Bouwmeester, K.; Ketelaar, T.; Govers, F. Interaction between the moss Physcomitrella patens and Phytophthora: A novel pathosystem for live-cell imaging of subcellular defence. J. Microsc. 2016, 263, 171–180. [Google Scholar] [CrossRef] [PubMed]
- Alvarez, A.; Montesano, M.; Schmelz, E.; Ponce de León, I. Activation of Shikimate, Phenylpropanoid, Oxylipins, and Auxin Pathways in Pectobacterium Carotovorum Elicitors-Treated Moss. Front. Plant Sci. 2016, 7. [Google Scholar] [CrossRef] [Green Version]
- Bressendorff, S.; Azevedo, R.; Kenchappa, C.S.; de León, I.P.; Olsen, J.V.; Rasmussen, M.W.; Erbs, G.; Newman, M.-A.; Petersen, M.; Mundy, J. An Innate Immunity Pathway in the Moss Physcomitrella Patens. Plant Cell 2016, 28, 1328–1342. [Google Scholar] [CrossRef] [Green Version]
- Oliver, J.P.; Castro, A.; Gaggero, C.; Cascón, T.; Schmelz, E.A.; Castresana, C.; Ponce de León, I. Pythium Infection Activates Conserved Plant Defense Responses in Mosses. Planta 2009, 230, 569–579. [Google Scholar] [CrossRef]
- Beike, A.K.; Decker, E.L.; Frank, W.; Lang, D.; Vervliet-Scheebaum, M.; Zimmer, A.D.; Reski, R. Applied Bryology—Bryotechnology. Trop. Bryol. 2010, 31, 22–32. [Google Scholar] [CrossRef]
- Reski, R.; Bae, H.; Simonsen, H.T. Physcomitrella Patens, a Versatile Synthetic Biology Chassis. Plant Cell Rep. 2018, 37, 1409–1417. [Google Scholar] [CrossRef]
- Lehtonen, M.T.; Takikawa, Y.; Rönnholm, G.; Akita, M.; Kalkkinen, N.; Ahola-Iivarinen, E.; Somervuo, P.; Varjosalo, M.; Valkonen, J.P.T. Protein Secretome of Moss Plants (Physcomitrella Patens) with Emphasis on Changes Induced by a Fungal Elicitor. J. Proteome Res. 2014, 13, 447–459. [Google Scholar] [CrossRef]
- Lehtonen, M.T.; Akita, M.; Kalkkinen, N.; Ahola-Iivarinen, E.; Rönnholm, G.; Somervuo, P.; Thelander, M.; Valkonen, J.P.T. Quickly-Released Peroxidase of Moss in Defense against Fungal Invaders. New Phytol. 2009, 183, 432–443. [Google Scholar] [CrossRef] [PubMed]
- Lehtonen, M.T.; Akita, M.; Frank, W.; Reski, R.; Valkonen, J.P.T. Involvement of a Class III Peroxidase and the Mitochondrial Protein TSPO in Oxidative Burst upon Treatment of Moss Plants with a Fungal Elicitor. MPMI 2011, 25, 363–371. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cox, J.; Mann, M. MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat. Biotechnol. 2008, 26, 1367–1372. [Google Scholar] [CrossRef] [PubMed]
- Smith, C.A.; Want, E.J.; O’Maille, G.; Abagyan, R.; Siuzdak, G. XCMS: Processing Mass Spectrometry Data for Metabolite Profiling Using Nonlinear Peak Alignment, Matching, and Identification. Anal. Chem. 2006, 78, 779–787. [Google Scholar] [CrossRef] [PubMed]
- Lommen, A. MetAlign: Interface-Driven, Versatile Metabolomics Tool for Hyphenated Full-Scan Mass Spectrometry Data Preprocessing. Anal. Chem. 2009, 81, 3079–3086. [Google Scholar] [CrossRef] [PubMed]
- Pluskal, T.; Castillo, S.; Villar-Briones, A.; Orešič, M. MZmine 2: Modular Framework for Processing, Visualizing, and Analyzing Mass Spectrometry-Based Molecular Profile Data. BMC Bioinform. 2010, 11, 395. [Google Scholar] [CrossRef] [Green Version]
- Treviño, V.; Yañez-Garza, I.L.; Rodriguez-López, C.E.; Urrea-López, R.; Garza-Rodriguez, M.L.; Barrera-Saldaña, H.A.; Tamez-Peña, J.G.; Winkler, R.; De-La-Garza, R.I.D. GridMass: A Fast Two-Dimensional Feature Detection Method for LC/MS. J. Mass Spectrom. JMS 2015, 165–174. [Google Scholar] [CrossRef]
- Arbona, V.; Gómez Cadenas, A. Metabolomics of Disease Resistance in Crops. Curr. Issues Mol. Biol. (U. K.) 2016, 19, 13–30. [Google Scholar]
- Erxleben, A.; Gessler, A.; Vervliet-Scheebaum, M.; Reski, R. Metabolite Profiling of the Moss Physcomitrella Patens Reveals Evolutionary Conservation of Osmoprotective Substances. Plant Cell Rep. 2012, 31, 427–436. [Google Scholar] [CrossRef]
- Klavina, L. A Study on Bryophyte Chemical Composition–Search for New Applications. Agron. Res. 2015, 13, 969–978. [Google Scholar]
- Pejin, B.; Vujisić, L.V.; Sabovljevic, M.; Sabovljevic, A.; Tešević, V.; Vajs, V. Preliminary Analysis of Fatty Acid Chemistry of Kindbergia Praelonga and Kindbergia Stokesii (Brachytheciaceae). J. Serb. Chem. Soc. 2010, 75, 1637–1640. [Google Scholar] [CrossRef]
- Rycroft, D.S.; Heinrichs, J.; Cole, W.J.; Anton, H. A Phytochemical and Morphological Study of the Liverwort Plagiochila Retrorsa Gottsche, New to Europe. J. Bryol. 2001, 23, 23–34. [Google Scholar] [CrossRef] [Green Version]
- Thakur, S.; Kapila, S. Seasonal Changes in Antioxidant Enzymes, Polyphenol Oxidase Enzyme, Flavonoids and Phenolic Content in Three Leafy Liverworts. Lindbergia 2017, 40, 39–44. [Google Scholar] [CrossRef] [Green Version]
- Peters, K.; Treutler, H.; Döll, S.; Kindt, A.S.D.; Hankemeier, T.; Neumann, S. Chemical Diversity and Classification of Secondary Metabolites in Nine Bryophyte Species. Metabolites 2019, 9, 222. [Google Scholar] [CrossRef] [Green Version]
- Christie, W.W.; Han, X. Lipids: Their structures and occurrence. In Lipid Analysis; Elsevier: Amsterdam, The Netherlands, 2012; pp. 3–19. [Google Scholar]
- Harris, E.S.J. Ethnobryology: Traditional Uses and Folk Classification of Bryophytes. Bryologist 2008, 111, 169–217. [Google Scholar] [CrossRef]
- Chandra, S.; Chandra, D.; Barh, A.; Pandey, R.K.; Sharma, I.P. Bryophytes: Hoard of Remedies, an Ethno-Medicinal Review. J. Tradit. Complement. Med. 2017, 7, 94–98. [Google Scholar] [CrossRef] [Green Version]
- Gachet, M.S.; Schubert, A.; Calarco, S.; Boccard, J.; Gertsch, J. Targeted Metabolomics Shows Plasticity in the Evolution of Signaling Lipids and Uncovers Old and New Endocannabinoids in the Plant Kingdom. Sci. Rep. 2017, 7, 41177. [Google Scholar] [CrossRef]
- Croisier, E.; Rempt, M.; Pohnert, G. Survey of Volatile Oxylipins and Their Biosynthetic Precursors in Bryophytes. Phytochemistry 2010, 71, 574–580. [Google Scholar] [CrossRef]
- Orsoni, N.; Degola, F.; Nerva, L.; Bisceglie, F.; Spadola, G.; Chitarra, W.; Terzi, V.; Delbono, S.; Ghizzoni, R.; Morcia, C.; et al. Double Gamers—Can Modified Natural Regulators of Higher Plants Act as Antagonists against Phytopathogens? The Case of Jasmonic Acid Derivatives. Int. J. Mol. Sci. 2020, 21, 8681. [Google Scholar] [CrossRef]
- Madsen, G.C.; Pates, A.L. Occurrence of Antimicrobial Substances in Chlorophyllose Plants Growing in Florida. Bot. Gaz. 1952, 113, 293–300. [Google Scholar] [CrossRef]
- McCleary, J.A.; Sypherd, P.S.; Walkington, D.L. Mosses as Possible Sources of Antibiotics. Science 1960, 131, 108. [Google Scholar] [CrossRef] [PubMed]
- Banerjee, R.D.; Sen, S.P. Antibiotic Activity of Bryophytes. Bryologist 1979, 82, 141–153. [Google Scholar] [CrossRef]
- Belcik, F.P.; Wiegner, N. Antimicrobial Activities or Antibiosis of Certain Eastern US Liverwort, Lichen and Moss Extracts. J. Elisha Mitchell Sci. Soc 1980, 96, 94. [Google Scholar]
- Asakawa, Y. Biologically Active Substances Obtained from Bryophytes. J. Hattori Bot. Lab. Bryol. Lichenol. 1981, 50, 123–142. [Google Scholar]
- Dikshit, A.D.; Pandey, D.K.; Nath, S. Antifungal activity of some bryophytes against human pathogens. J. Indian Bot. Soc. 1982, 61, 447–448. [Google Scholar]
- Asakawa, Y. Some Biologically Active Substances Isolated from Hepaticae: Terpenoids and Lipophilic Aromatic Compounds. J. Hattori Bot. Lab. 1984, 56, 215–219. [Google Scholar]
- Castaldo-Cobianchi, R.; Giordano, S.; Basile, A.; Violante, U. Occurrence of Antibiotic Activity in Conocephalum Conicum, Mnium Undulatum and Leptodictyum Riparium (Bryophytes). G. Bot. Ital. 1988, 122, 303–311. [Google Scholar] [CrossRef]
- Lorimer, S.D.; Perry, N.B.; Tangney, R.S. An Antifungal Bibenzyl from the New Zealand Liverwort, Plagiochila Stephensoniana. Bioactivity-Directed Isolation, Synthesis, and Analysis. J. Nat. Prod. 1993, 56, 1444–1450. [Google Scholar] [CrossRef]
- Lorimer, S.D.; Perry, N.B. Antifungal Hydroxy-Acetophenones from the New Zealand Liverwort, Plagiochila Fasciculata. Planta Med. 1994, 60, 386–387. [Google Scholar] [CrossRef]
- Tadesse, M. Characterisation and Mode of Action of Natural Plant Products against Leaf Fungal Pathogens. Ph.D. Thesis, Wilhelms University, (Diss. Universitat zu Bonn), Bonn, Germany, 2002. [Google Scholar]
- Dey, A.; De, J.N. Antifungal Bryophytes: A Possible Role against Human Pathogens and in Plant Protection. Res. J. Bot. 2011, 6, 129–140. [Google Scholar] [CrossRef] [Green Version]
- Krishnan, R.; Kannan, K.V.; Murugan, K. Antifungal Activity of the Ethanolic Extracts of Marchantia Linearis Lehm and Lindenb. Against Some Pathogenic Fungi. J. Aquat. Biol. Fish. 2014, 2, 556–563. [Google Scholar]
- Greeshma, G.M.; Murugan, K. Comparison of Antimicrobial Potentiality of the Purified Terpenoids from Two Moss Species Thuidium Tamariscellum (C. Muell.) Bosch. & Sande-Lac and Brachythecium Buchananii (Hook.) A. Jaeger. J. Anal. Pharm. Res. 2018, 7, 530–538. [Google Scholar]
- Shockman, G.D.; Lampen, J.O. Inhibition by Antibiotics of the Growth of Bacterial and Yeast Protoplasts. J. Bacteriol. 1962, 84, 508–512. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Surender, P.; Janaiah, C.; Krishna Reddy, V.; Reddy, S.M. Antifungal Activity of Secretions of Scent Glands from Heteropteran Bugs. Indian J. Exp. Biol 1987, 25, 233–234. [Google Scholar]
- Deora, G.S.; Suhalka, D. Evaluation of Bryophyte for Green Fungicides as Alternative Treatment to Control Plant Pathogen. Int. J. Pharm. Phytochem. Res. 2017, 9. [Google Scholar] [CrossRef] [Green Version]
- Grover, R.K.; Moore, J.D. Toxicometric Studies of Fungicides against Brown Rot Organisms Sclerotinia Fructicola and S. Laxa. Phytopathology 1962, 52, 876–880. [Google Scholar]
- Singh, J.; Tripathi, N.N. Inhibition of Storage Fungi of Blackgram (Vigna mungo L.) by Some Essential Oils. Flavour Fragr. J. 1999, 14, 1–4. [Google Scholar] [CrossRef]
- Pandey, D.K.; Tripathi, N.N.; Tripathi, R.D.; Dixit, S.N. Fungitoxic and Phytotoxic Properties of the Essential Oil of Hyptis Suaveolens/Fungitoxische Und Phytotoxische Eigenschaften Des Ätherischen Öis von Hyptis Suaveolens. Z. Pflanzenkrankh. Pflanzenschutz J. Plant Dis. Prot. 1982, 89, 344–349. [Google Scholar]
- Heatley, N.G. A Method for the Assay of Penicillin. Biochem. J. 1944, 38, 61–65. [Google Scholar] [CrossRef] [Green Version]
- Aruna, K.B.; Krishnappa, M. Phytochemistry and Antimicrobial Activities of Pogonatum Microstomum (R. Br. Ex Schwägr.) Brid.(Bryophyta; Musci: Polytrichaceae). Phytochemistry 2018, 3, 120–215. [Google Scholar]
- Mishra, R.; Verma, D.L. Antifungal Activity of Some Rare Himalayan Bryophytes. Res. J. Pharm. Technol. 2011, 4, 474–475. [Google Scholar]
- Schmourlo, G.; Mendonça-Filho, R.R.; Alviano, C.S.; Costa, S.S. Screening of Antifungal Agents Using Ethanol Precipitation and Bioautography of Medicinal and Food Plants. J. Ethnopharmacol. 2005, 96, 563–568. [Google Scholar] [CrossRef] [PubMed]
- Runyoro, D.K.; Matee, M.I.; Ngassapa, O.D.; Joseph, C.C.; Mbwambo, Z.H. Screening of Tanzanian Medicinal Plants for Anti-Candida Activity. BMC Complementary Altern. Med. 2006, 6, 11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Veljić, M.; Ćirić, A.; Soković, M.; Janaćković, P.; Marin, P.D. Antibacterial and Antifungal Activity of the Liverwort (Ptilidium Pulcherrimum) Methanol Extract. Arch. Biol. Sci. 2010, 62, 381–385. [Google Scholar] [CrossRef]
- Das, K.; Tiwari, R.K.S.; Shrivastava, D.K. Techniques for Evaluation of Medicinal Plant Products as Antimicrobial Agents: Current Methods and Future Trends. JMPR 2010, 4, 104–111. [Google Scholar] [CrossRef]
- Green, L.; Petersen, B.; Steimel, L.; Haeber, P.; Current, W. Rapid Determination of Antifungal Activity by Flow Cytometry. J. Clin. Microbiol. 1994, 32, 1088–1091. [Google Scholar] [CrossRef] [Green Version]
- García-Varela, R.; García-García, R.M.; Barba-Dávila, B.A.; Fajardo-Ramírez, O.R.; Serna-Saldívar, S.O.; Cardineau, G.A. Antimicrobial Activity of Rhoeo Discolor Phenolic Rich Extracts Determined by Flow Cytometry. Molecules 2015, 20, 18685–18703. [Google Scholar] [CrossRef] [Green Version]
- Subhisha, S.; Subramoniam, A. In Vivo Efficacy of an Antifungal Fraction from Pallavicinia Lyellii, a Liverwort. Indian J. Pharmacol. 2006, 38, 211. [Google Scholar] [CrossRef]
- Tadesse, M.; Steiner, U.; Hindorf, H.; Dehne, H.-W. Bryophyte Extracts with Activity against Plant Pathogenic Fungi. Sinet: Ethiop. J. Sci. 2003, 26, 55–62. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Commisso, M.; Guarino, F.; Marchi, L.; Muto, A.; Piro, A.; Degola, F. Bryo-Activities: A Review on How Bryophytes Are Contributing to the Arsenal of Natural Bioactive Compounds against Fungi. Plants 2021, 10, 203. https://doi.org/10.3390/plants10020203
Commisso M, Guarino F, Marchi L, Muto A, Piro A, Degola F. Bryo-Activities: A Review on How Bryophytes Are Contributing to the Arsenal of Natural Bioactive Compounds against Fungi. Plants. 2021; 10(2):203. https://doi.org/10.3390/plants10020203
Chicago/Turabian StyleCommisso, Mauro, Francesco Guarino, Laura Marchi, Antonella Muto, Amalia Piro, and Francesca Degola. 2021. "Bryo-Activities: A Review on How Bryophytes Are Contributing to the Arsenal of Natural Bioactive Compounds against Fungi" Plants 10, no. 2: 203. https://doi.org/10.3390/plants10020203
APA StyleCommisso, M., Guarino, F., Marchi, L., Muto, A., Piro, A., & Degola, F. (2021). Bryo-Activities: A Review on How Bryophytes Are Contributing to the Arsenal of Natural Bioactive Compounds against Fungi. Plants, 10(2), 203. https://doi.org/10.3390/plants10020203