Plantago media L.—Explored and Potential Applications of an Underutilized Plant
Abstract
:1. Introduction
2. Main Constituents and Applications
2.1. General Composition
2.2. Documented Applications
3. Plantago media L. Future Perspectives
3.1. Health Applications
3.2. Other Applications
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cheminal, A.; Kokkoris, I.P.; Strid, A.; Dimopoulos, P. Medicinal and aromatic Lamiaceae plants in Greece: Linking diversity and distribution patterns with ecosystem services. Forests 2020, 11, 661. [Google Scholar] [CrossRef]
- Singh, B.; Singh, B.; Kishor, A.; Singh, S.; Bhat, M.N.; Surmal, O.; Musarella, C.M. Exploring plant-based ethnomedicine and quantitative ethnopharmacology: Medicinal plants utilized by the population of Jasrota Hill in Western Himalaya. Sustainability 2020, 12, 7526. [Google Scholar] [CrossRef]
- Atanasov, A.G.; Waltenberger, B.; Pferschy-Wenzig, E.M.; Linder, T.; Wawrosch, C.; Uhrin, P.; Temml, V.; Wang, L.; Schwaiger, S.; Heiss, E.H.; et al. Discovery and resupply of pharmacologically active plant-derived natural products: A review. Biotechnol. Adv. 2015, 33, 1582–1614. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Süntar, I. Importance of ethnopharmacological studies in drug discovery: Role of medicinal plants. Phytochem. Rev. 2020, 19, 1199–1209. [Google Scholar] [CrossRef]
- Schillberg, S.; Raven, N.; Spiegel, H.; Rasche, S.; Buntru, M. Critical analysis of the commercial potential of plants for the production of recombinant proteins. Front. Plant Sci. 2019, 10, 720. [Google Scholar] [CrossRef] [PubMed]
- Fierascu, R.C.; Fierascu, I.; Ortan, A.; Georgiev, M.I.; Sieniawska, E. Innovative approaches for recovery of phytoconstituents from medicinal/aromatic plants and biotechnological production. Molecules 2020, 25, 309. [Google Scholar] [CrossRef] [Green Version]
- Schwarzbach, A.E. Plantaginaceae. In Flowering Plants Dicotyledons. The Families and Genera of Vascular Plants; Kadereit, J.W., Ed.; Springer: Berlin/Heidelberg, Germany, 2004; Volume 7, pp. 327–329. [Google Scholar]
- Taskova, R.; Evstatieva, L.; Handjieva, N.; Popov, S. Iridoid patterns of Genus Plantago L. and their systematic significance. Z Naturforsch. C 2002, 57, 42–50. [Google Scholar] [CrossRef] [Green Version]
- Hegnauer, R. Chemotaxonomie der Pflanzen; Birkhäuser: Basel, Switzerland, 1969; Volume 5, pp. 330–337. [Google Scholar]
- Van der Aart, P.J.M.; Vulto, J.C.; Soekarjo, R.; van Damme, J.M.M. General Biology of Plantago. In Plantago: A Multidisciplinary Study. Ecological Studies (Analysis and Synthesis); Kuiper, P.J.C., Bos, M., Eds.; Springer: Berlin/Heidelberg, Germany, 1992; Volume 89, pp. 4–19. [Google Scholar]
- Grose, D. The Flora of Wiltshire; Wiltshire Archaeological and Natural History Society: Devizes, UK, 1957. [Google Scholar]
- Bley, L.F. Einige Versuche über die Bestandtheile der Blüthen des Wegerichs (Plantago media). Archiv. Pharm. 1846, 96, 169–173. [Google Scholar] [CrossRef] [Green Version]
- Schier, W. Morphological and anatomical differentiation between Plantago lanceolata, P. major and P. media. Dtsch. Apoth. Ztg. 1990, 130, 1457–1458. [Google Scholar]
- Ianovici, N.; Ţărău, G.; Liviatodosi, A.; Iriza, E.; Danciu, A.; Ţolea, L.; Tudosie, D.; Munteanu, F.; Bogdan, D.; Ciobănică, V. Contributions to the characterization of Plantago species from Romania. Ann. West Univ. Timişoara Biol. 2010, 13, 37–76. [Google Scholar]
- Lukova, P.; Dimitrova-Dyulgerova, I.; Karcheva-Bahchevanska, D.; Mladenov, R.; Iliev, I.; Nikolova, M. Comparative morphological and qualitative phytochemical analysis of Plantago media L. leaves with P. major L. and P. lanceolata L. leaves. Int. J. Med. Res. Pharm. Sci. 2017, 4, 20–26. [Google Scholar]
- Cavers, P.B.; Bassett, L.J.; Crompton, C.W. The biology of Canadian weeds.: 47. Plantago lanceolata L. Can. J. Plant Sci. 1980, 60, 1269–1282. [Google Scholar] [CrossRef] [Green Version]
- Farcaș, A.D.; Moț, A.C.; Pârvu, A.E.; Toma, V.A.; Popa, M.A.; Mihai, M.C.; Sevastre, B.; Roman, I.; Vlase, L.; Pârvu, M. In Vivo pharmacological and anti-inflammatory evaluation of xerophyte Plantago sempervirens Crantz. Oxid. Med. Cell Longev. 2019, 2019, 5049643. [Google Scholar] [CrossRef] [PubMed]
- Miszalski, Z.; Skoczowski, A.; Silina, E.; Dymova, O.; Golovko, T.; Kornas, A.; Strzalka, K. Photosynthetic activity of vascular bundles in Plantago media leaves. J. Plant Physiol. 2016, 204, 36–43. [Google Scholar] [CrossRef]
- Abrahamczyk, S.; Dannenberg, L.S.; Weigend, M. Pollination modes and divergent flower traits in three species of Plantago subgenus Plantago (Plantaginaceae). Flora 2020, 267, 151601. [Google Scholar] [CrossRef]
- Min, J.; Tao, T. Characterization of the complete chloroplast genome of Plantago media, a Chinese herb from China. Mitochondrial DNA B 2020, 5, 1861–1862. [Google Scholar] [CrossRef]
- Blamey, M.; Fitter, R.; Fitter, A. Wild Flowers of Britain and Ireland: The Complete Guide to the British and Irish Flora; A & C Black: London, UK, 2003. [Google Scholar]
- Parnell, J.; Curtis, T. Webb’s an Irish Flora; Cork University Press: Cork, Ireland, 2012. [Google Scholar]
- Mohsenzadeh, S.; Sheidai, M.; Ghahremaninejad, F.; Koohdar, F. A palynological study of the genus Plantago (Plantaginaceae). Grana 2020, 2020, 1–12. [Google Scholar] [CrossRef]
- Bojor, O. Guide of Medicinal and Aromatic Plants from A to Z. Ghidul Plantelor Medicinale şi Aromatice de la A la Z; Fiat Lux: Bucharest, Romania, 2003; pp. 94–95. (In Romanian) [Google Scholar]
- Mayer, J.G. Plantain (Plantago lanceolata)—Medicinal plant of the year 2014. Z. Phytother. 2013, 34, 242–243. [Google Scholar] [CrossRef]
- Adom, M.B.; Taher, M.; Mutalabisin, M.F.; Amri, M.S.; Abdul Kudos, M.B.; Wan Sulaiman, M.W.A.; Sengupta, P.; Susanti, D. Chemical constituents and medical benefits of Plantago major. Biomed. Pharmacother. 2017, 96, 348–360. [Google Scholar] [CrossRef]
- Franco, E.A.N.; Sanches-Silva, A.; Ribeiro-Santos, R.; de Melo, N.R. Psyllium (Plantago ovata Forsk): From evidence of health benefits to its food application. Trends Food Sci. Technol. 2020, 96, 166–175. [Google Scholar] [CrossRef]
- Belorio, M.; Gómez, M. Psyllium: A useful functional ingredient in food systems. Crit. Rev. Food Sci. Nutr. 2020. [Google Scholar] [CrossRef] [PubMed]
- Ji, X.; Hou, C.; Guo, X. Physicochemical properties, structures, bioactivities and future prospective for polysaccharides from Plantago L. (Plantaginaceae): A review. Int. J. Biol. Macromol. 2019, 135, 637–646. [Google Scholar] [CrossRef] [PubMed]
- Olennikov, D.N.; Tankhaeva, L.M.; Stolbikova, A.V.; Petrov, E.V. Phenylpropanoids and polysaccharides from Plantago depressa and P. media growing in Buryatia. Chem. Nat. Comp. 2011, 47, 165–169. [Google Scholar] [CrossRef]
- Lukova, P.; Karcheva-Bahchevanska, D.; Dimitrova-Dyulgerova, I.; Katsarov, P.; Mladenov, R.; Iliev, I.; Nikolova, M. A comparative pharmacognostic study and assesment of antioxidant capacity of three species from Plantago genus. Farmacia 2018, 66, 609–614. [Google Scholar] [CrossRef]
- Kuiper, D.; Kuiper, P.J.C. Lipid Composition of the roots of Plantago species: Response to alteration of the level of mineral nutrition and ecological significance. Physiol. Plant. 1978, 44, 81–86. [Google Scholar] [CrossRef]
- Guil-Guerrero, J.L. Nutritional composition of Plantago species (P. major L., P. lanceolata L., and P. media L.). Ecol. Food Nutrit. 2001, 40, 481–495. [Google Scholar] [CrossRef]
- Samuelsen, A.B. The traditional uses, chemical constituents and biological activities of Plantago major L. A review. J Ethnopharmacol 2000, 71, 1–21. [Google Scholar] [CrossRef]
- Patel, M.K.; Mishra, A.; Jaiswar, S.; Jha, B. Metabolic profiling and scavenging activities of developing circumscissile fruit of psyllium (Plantago ovata Forssk.) reveal variation in primary and secondary metabolites. BMC Plant Biol. 2020, 20, 116. [Google Scholar] [CrossRef]
- Golovko, T.; Dymova, O.; Zakhozhiy, I.; Dalke, I.; Tabalenkova, G. Photoprotection by carotenoids of Plantago media photosynthetic apparatus in natural conditions. Acta Biochim. Pol. 2012, 59, 145–147. [Google Scholar] [CrossRef]
- Volodymirivna, K.T.; Pavlyvna, S.H.; Kostyantynivna, Y.O.; Vladylenovych, M.O.; Oleksandrivna, M.O. Mycostatic activity of extracts from leaves of Plantago media L. and Plantago altissima L. Ann. Trop Med. Public Health 2020, 3, 299–303. [Google Scholar]
- Saadi, H.; Handjieva, N.; Popov, S.; Evstatievat, L. Iridoids from Plantago media. Phytochemistry 1990, 29, 3938–3939. [Google Scholar] [CrossRef]
- Long, C.; Moulis, C.; Stanislas, E.; Fouraste, I. L’aucuboside et le catalpol dans les feuilles de Plantago lanceolata L., Plantago major L. et Plantago media L. J. Pharm. Belg. 1995, 50, 484–488. [Google Scholar]
- Golovko, T.K.; Dalke, I.V.; Zakhozhiy, I.G.; Dymova, O.V.; Tabalenkova, G.N. Functional plasticity of photosynthetic apparatus and its resistance to photoinhibition in Plantago media. Russ. J. Plant Physiol. 2011, 58, 549–559. [Google Scholar] [CrossRef]
- Kunvári, M.; Páska, C.; László, M.; Orfi, L.; Kövesdi, I.; Eros, D.; Bökönyi, G.; Kéri, G.; Gyurján, I. Biological activity and structure of antitumor compounds from Plantago media L. Acta Pharm. Hung. 1999, 69, 232–239. [Google Scholar] [PubMed]
- Budzianowska, A.; Kikowska, M.; Małkiewicz, M.; Karolak, I.; Budzianowski, J. Phenylethanoid glycosides in Plantago media L. organs obtained in In Vitro cultures. Acta Biol. Cracov. Bot. 2019, 61, 75–86. [Google Scholar]
- Majkić, T.; Bekvalac, K.; Beara, I. Plantain (Plantago L.) species as modulators of prostaglandin E2 and thromboxane A2 production in inflammation. J. Ethnopharmacol. 2020, 262, 113140. [Google Scholar] [CrossRef]
- Rozentsvet, O.; Grebenkina, T.; Nesterov, V.; Bogdanova, E. Seasonal dynamic of morpho-physiological properties and the lipid composition of Plantago media (Plantaginaceae) in the Middle Volga region. Plant Physiol. Biochem. 2016, 104, 92–98. [Google Scholar] [CrossRef]
- Hediye Sekmen, A.; Türkan, İ.; Takio, S. Differential responses of antioxidative enzymes and lipid peroxidation to salt stress in salt-tolerant Plantago maritima and salt-sensitive Plantago media. Physiol. Plant 2007, 131, 399–411. [Google Scholar] [CrossRef]
- Gonçalves, S.; Grevenstuk, T.; Martins, N.; Romano, A. Antioxidant activity and verbascoside content in extracts from two uninvestigated endemic Plantago spp. Ind. Crop. Prod. 2015, 65, 198–202. [Google Scholar] [CrossRef]
- Fuchs, A.; Bowers, M.D. Patterns of iridoid glycoside production and induction in Plantago lanceolata and the importance of plant age. J. Chem. Ecol. 2004, 30, 1723–1741. [Google Scholar] [CrossRef]
- Pankoke, H.; Gehring, R.; Müller, C. Impact of the dual defence system of Plantago lanceolata (Plantaginaceae) on performance, nutrient utilisation and feeding choice behaviour of Amata mogadorensis larvae (Lepidoptera, Erebidae). J. Insect Physiol. 2015, 82, 99–108. [Google Scholar] [CrossRef] [PubMed]
- De Smet, E.; Mensink, R.P.; Plat, J. Effects of plant sterols and stanols on intestinal cholesterol metabolism: Suggested mechanisms from past to present. Mol. Nutr. Food Res. 2012, 56, 1058–1072. [Google Scholar] [CrossRef] [PubMed]
- De Bruyne, L.; Höfte, M.; De Vleesschauwer, D. Connecting growth and defense: The emerging roles of brassinosteroids and gibberellins in plant innate immunity. Mol. Plant 2014, 7, 943–959. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Samuelsen, A.B. Structural features of biologically active polysaccharide fractions from the leaves and seeds of Plantago major L. In Bioactive Carbohydrate Polymers, Proceedings of the Phythochemical Society of Europe, Sundøya, Norway, 13–16 September 1998; Paulsen, B.S., Ed.; Springer: Dordrecht, Germany, 2000; Volume 44, pp. 37–46. [Google Scholar]
- Kreitschitz, A.; Haase, E.; Gorb, S.N. The role of mucilage envelope in the endozoochory of selected plant taxa. Die Nat. 2020, 108, 2. [Google Scholar] [CrossRef] [PubMed]
- Gutiérrez-Grijalva, E.P.; Picos-Salas, M.A.; Leyva-López, N.; Criollo-Mendoza, M.S.; Vazquez-Olivo, G.; Heredia, J.B. Flavonoids and phenolic acids from oregano: Occurrence, biological activity and health benefits. Plants 2018, 7, 2. [Google Scholar] [CrossRef] [Green Version]
- Fatiha, A.I.D. Plant lipid metabolism. In Advances in Lipid Metabolism; Baez, R.V., Ed.; IntechOpen: London, UK, 2020; pp. 1–16. [Google Scholar]
- Paciolla, C.; Fortunato, S.; Dipierro, N.; Paradiso, A.; De Leonardis, S.; Mastropasqua, L.; de Pinto, M.C. Vitamin C in plants: From functions to biofortification. Antioxidants 2019, 8, 519. [Google Scholar] [CrossRef] [Green Version]
- Fierascu, R.C.; Ortan, A.; Fierascu, I.C.; Fierascu, I. In Vitro and In Vivo evaluation of antioxidant properties of wild-growing plants. A short review. Curr. Opin. Food Sci. 2018, 24, 1–8. [Google Scholar] [CrossRef]
- Loizzo, M.R.; Tundis, R. Plant Antioxidant for Application in Food and Nutraceutical Industries. Antioxidants 2019, 8, 453. [Google Scholar] [CrossRef] [Green Version]
- Petruk, G.; Del Giudice, R.; Rigano, M.M.; Monti, D.M. Antioxidants from Plants Protect against Skin Photoaging. Oxid. Med. Cell Longev. 2018, 2018, 1454936. [Google Scholar] [CrossRef] [Green Version]
- Beara, I.N.; Lesjak, M.M.; Jovin, E.D.; Balog, K.J.; Anačkov, G.T.; Orčić, D.Z.; Mimica-Dukić, N.M. Plantain (Plantago L.) species as novel sources of flavonoid antioxidants. J. Agricult. Food Chem. 2009, 57, 9268–9273. [Google Scholar] [CrossRef]
- Gonda, S.; Tóth, L.; Parizsa, P.; Nyitrai, M.; Vasas, G. Screening of common Plantago species in Hungary for bioactive molecules and antioxidant activity. Acta Biol. Hung. 2010, 61, 25–34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grigore, M.N.; Ivan, M.; Verdes, A.; Oprica, L. Enzymatic activity and non-enzymatic antioxidants content in several Plantago species (from Valea Ilenei nature reserve), during different phenophases. Rev. Chim. 2017, 68, 1539–1543. [Google Scholar] [CrossRef]
- Lukova, P.; Karcheva-Bahchevanska, D.; Mollova, D.; Nikolova, M.; Mladenov, R.; Iliev, I. Study of prebiotic potential and antioxidant activity in Plantago spp. leaves after enzymatic hydrolysis with hemicellulase and xylanase. Eng. Life Sci. 2018, 18, 831–839. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Papp, N.; Sali, N.; Csepregi, R.; Tóth, M.; Gyergyák, K.; Dénes, T.; Bartha, S.G.; Varga, E.; Kaszás, A.; Kőszegi, T. Antioxidant potential of some plants used in folk medicine in Romania. Farmacia 2019, 67, 323–330. [Google Scholar] [CrossRef]
- Farcaș, A.D.; Zăgrean-Tuza, C.; Vlase, L.; Gheldiu, A.M.; Pârvu, M.; Moț, A.C. EPR fingerprinting and antioxidant response of four selected plantago species. Stud. Univ. Babes-Bolyai Chem. 2020, 65, 209–220. [Google Scholar] [CrossRef]
- Bahadori, M.B.; Sarikurkcu, C.; Kocak, M.S.; Calapoglu, M.; Uren, M.C.; Ceylan, O. Plantago lanceolata as a source of health-beneficial phytochemicals: Phenolics profile and antioxidant capacity. Food Biosci. 2020, 34, 100536. [Google Scholar] [CrossRef]
- Sarfraz, R.M.; Khan, H.; Maheen, S.; Afzal, S.; Akram, M.R.; Mahmood, A.; Afzal, K.; Abrar, M.A.; Akram, M.A.; Andaleeb, M.; et al. Plantago ovata: A comprehensive review on cultivation, bio-chemical, pharmaceutical and pharmacological aspects. Acta Pol. Pharm. Drug Res. 2017, 74, 739–746. [Google Scholar]
- Omer, E.; Elshamy, A.I.; Nassar, M.; Shalom, J.; White, A.; Cock, I.E. Plantago squarrosa Murray extracts inhibit the growth of some bacterial triggers of autoimmune diseases: GC–MS analysis of an inhibitory extract. Inflammopharmacology 2019, 27, 373–385. [Google Scholar] [CrossRef]
- Urziya, A.; Gulbaram, U.; Kaldanay, K.; Yulia, Y.; Oksana, S.; Leonid, S. Study of antimicrobial activity of Plantago major and Acorus calamus carbon dioxide extracts. Res. J. Pharm. Biol. Chem. Sci. 2016, 7, 2081–2085. [Google Scholar]
- Chathuranga, K.; Kim, M.S.; Lee, H.C.; Kim, T.H.; Kim, J.H.; Gayan Chathuranga, W.A.; Ekanayaka, P.; Wijerathne, H.M.S.M.; Cho, W.K.; Kim, H.I.; et al. Anti-respiratory syncytial virus activity of Plantago asiatica and Clerodendrum trichotomum extracts In Vitro and In Vivo. Viruses 2019, 11, 604. [Google Scholar] [CrossRef] [Green Version]
- Eldesoky, A.H.; Abdel-Rahman, R.F.; Ahmed, O.K.; Soliman, G.A.; Saeedan, A.S.; Elzorba, H.Y.; Elansary, A.A.; Hattori, M. Antioxidant and hepatoprotective potential of Plantago major growing in Egypt and its major phenylethanoid glycoside, acteoside. J. Food Biochem. 2018, 42, e12567. [Google Scholar] [CrossRef]
- Fakhrudin, N.; Astuti, E.D.; Sulistyawati, R.; Santosa, D.; Susandarini, R.; Nurrochmad, A.; Wahyuono, S. n-hexane insoluble fraction of Plantago lanceolata exerts anti-inflammatory activity in mice by inhibiting cyclooxygenase-2 and reducing chemokines levels. Sci. Pharm. 2017, 85, 12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vandana, J.; Gupta, A.K.; Mukerjee, A. Phytochemical screening and evaluation of anti-inflammatory activity of aerial part extracts of Plantago major L. Asian J. Pharm. Clin. Res. 2017, 10, 307–311. [Google Scholar] [CrossRef] [Green Version]
- Zubair, M.; Widén, C.; Renvert, S.; Rumpunen, K. Water and ethanol extracts of Plantago major leaves show anti-inflammatory activity on oral epithelial cells. J. Tradit. Complement. Med. 2019, 9, 169–171. [Google Scholar] [CrossRef]
- Alsaraf, K.M.; Mohammad, M.H.; Al-Shammari, A.M.; Abbas, I.S. Selective cytotoxic effect of Plantago lanceolata L. against breast cancer cells. J. Egypt Nat. Cancer Inst. 2019, 31, 10. [Google Scholar] [CrossRef] [Green Version]
- Kartini Piyaviriyakul, S.; Thongpraditchote, S.; Siripong, P.; Vallisuta, O. Effects of Plantago major extracts and its chemical compounds on proliferation of cancer cells and cytokines production of lipopolysaccharide-activated THP-1 macrophages. Pharmacog. Mag. 2017, 13, 393–399. [Google Scholar] [CrossRef] [Green Version]
- Ždralović, A.; Mesic, A.; Eminović, I.; Parić, A. Cytotoxic and genotoxic activity of Plantago major L. extracts. Caryologia 2019, 72, 35–40. [Google Scholar]
- Patel, M.K.; Tanna, B.; Gupta, H.; Mishra, A.; Jha, B. Physicochemical, scavenging and anti-proliferative analyses of polysaccharides extracted from psyllium (Plantago ovata Forssk) husk and seeds. Int. J. Biol. Macromol. 2019, 133, 190–201. [Google Scholar] [CrossRef]
- Wahid, A.; Mahmoud, S.M.N.; Attia, E.Z.; Yousef, A.E.S.A.; Okasha, A.M.M.; Soliman, H.A. Dietary fiber of psyllium husk (Plantago ovata) as a potential antioxidant and hepatoprotective agent against CCl4-induced hepatic damage in rats. S. Afr. J. Bot. 2020, 130, 208–214. [Google Scholar] [CrossRef]
- Bagheri, S.M.; Zare-Mohazabieh, F.; Momeni-Asl, H.; Yadegari, M.; Mirjalili, A.; Anvari, M. Antiulcer and hepatoprotective effects of aqueous extract of Plantago ovata seed on indomethacin-ulcerated rats. Biomed. J. 2018, 41, 41–45. [Google Scholar] [CrossRef]
- Li, F.; Huang, D.; Nie, S.; Xie, M. Polysaccharide from the seeds of Plantago asiatica L. protect against lipopolysaccharide-induced liver injury. J. Med. Food 2019, 22, 1058–1066. [Google Scholar] [CrossRef] [PubMed]
- Abouzied, M.M.; Mahmoud, S.M.; Wahid, A.; Ahmed, A.E.; Okasha, A.M.; Soliman, H.A.; Thagfan, S.S.A.; Attia, E.Z. A study of the hepatoprotective effect of Plantago psyllium L. seed extract against Carbon tetrachloride induced hepatic injury in rats. J. Appl. Biomed. 2020, 18, 80–86. [Google Scholar] [CrossRef]
- Barkaoui, T.; Hamimed, S.; Bellamine, H.; Bankaji, I.; Sleimi, N.; Landoulsi, A. Alleviated actions of Plantago albicans extract on lead acetate-produced hepatic damage in rats through antioxidant and free radical scavenging capacities. J. Med. Food 2020, 23, 1201–1215. [Google Scholar] [CrossRef] [PubMed]
- Parhizgar, S.; Hosseinian, S.; Hadjzadeh, M.A.R.; Soukhtanloo, M.; Ebrahimzadeh, A.; Mohebbati, R.; Yazd, Z.N.E.; Khajavi Rad, A. Renoprotective effect of Plantago major against nephrotoxicity and oxidative stress induced by cisplatin. Iran J. Kidney Dis. 2016, 10, 182–188. [Google Scholar]
- Parhizgar, S.; Hosseinian, S.; Soukhtanloo, M.; Bideskan, A.E.; Hadjzadeh, M.A.R.; Shahraki, S.; Noshahr, Z.S.; Heravi, N.E.; Haghshenas, M.; Rad, A.K. Plantago major protects against cisplatin-induced renal dysfunction and tissue damage in rats. Saudi J. Kidney Dis. Transpl. 2018, 29, 1057–1064. [Google Scholar]
- Yazd, Z.N.E.; Noshahr, Z.S.; Hosseinian, S.; Shafei, M.N.; Bideskan, A.E.; Mohebbati, R.; Heravi, N.E.; Shahraki, S.; Mahzari, S.; Rad, A.K. Renoprotective effect of Plantago major against proteinuria and apoptosis induced by adriamycin in rat. J. Pharmacopunct. 2019, 22, 35–40. [Google Scholar]
- Samout, N.; Ettaya, A.; Bouzenna, H.; Ncib, S.; Elfeki, A.; Hfaiedh, N. Beneficial effects of Plantago albicans on high-fat diet-induced obesity in rats. Biomed. Pharmacother. 2016, 84, 1768–1775. [Google Scholar] [CrossRef]
- Yang, Q.; Qi, M.; Tong, R.; Wang, D.; Ding, L.; Li, Z.; Huang, C.; Wang, Z.; Yang, L. Plantago asiatica L. seed extract improves lipid accumulation and hyperglycemia in high-fat diet-induced obese mice. Int. J. Molec. Sci. 2017, 18, 1393. [Google Scholar] [CrossRef] [Green Version]
- Ji-Ping, L.; Ren-Chao, T.; Xiao-Meng, S.; Hao-Yue, Z.; Shuai, S.; Ai-Zhen, X.; Zheng-Tao, W.; Li, Y. Comparison of main chemical composition of Plantago asiatica L. and P. depressa Willd. seed extracts and their anti-obesity effects in high-fat diet-induced obese mice. Phytomedicine 2021, 81, 153362. [Google Scholar] [CrossRef]
- Khushmatov, S.S.; Makhmudov, R.R. Antiarrhythmic activity of the flavonoid fraction of Plantago major L. extract. Pharm. Chem. J. 2019, 52, 992–995. [Google Scholar] [CrossRef]
- Mojtahedin, A. Study of anxiolytic effect of hydro-alcoholic leaf extract of Plantago major L. in rats and interaction with epinephrine: Role of Adrenergic system. Der Pharm. Lett. 2016, 8, 202–206. [Google Scholar]
- Nie, Q.; Chen, H.; Hu, J.; Gao, H.; Fan, L.; Long, Z.; Nie, S. Arabinoxylan attenuates type 2 diabetes by improvement of carbohydrate, lipid, and amino acid metabolism. Molec. Nutr. Food Res. 2018, 62, 1800222. [Google Scholar] [CrossRef] [PubMed]
- Pandey, A.; Koruri, S.S.; Chowdhury, R.; Bhattacharya, P. Prebiotic influence of Plantago ovata on free and microencapsulated L. casei—Growth kinetics, antimicrobial activity and microcapsules stability. Int. J. Pharm. Pharm. Sci. 2016, 8, 89–97. [Google Scholar]
- Tong, R.C.; Qi, M.; Yang, Q.M.; Li, P.F.; Wang, D.D.; Lan, J.P.; Wang, Z.T.; Yang, L. Extract of Plantago asiatica L. seeds ameliorates hypertension in spontaneously hypertensive rats by inhibition of angiotensin converting enzyme. Front. Pharmacol. 2019, 10, 403. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Huang, D.; Yang, W.; Liu, X.; Nie, S.; Xie, M. Polysaccharide from the seeds of Plantago asiatica L. alleviates nonylphenol induced reproductive system injury of male rats via PI3K/Akt/mTOR pathway. J. Funct. Foods 2020, 66, 103828. [Google Scholar] [CrossRef]
- Ogbiko, C.; Eboka, J.C.; Igbe, I.; Usman, D.M. Anti-ulcer activity of methanol extract of Plantago rugelii Decne. (Plantaginaceae). Trop. J. Nat. Prod. Res. 2017, 1, 84–88. [Google Scholar] [CrossRef] [Green Version]
- Basiri, S.; Shekarforoush, S.S.; Mazkour, S.; Modabber, P.; Kordshouli, F.Z. Evaluating the potential of mucilaginous seed of psyllium (Plantago ovata) as a new lead biosorbent. Bioact. Carbohydr. Diet Fibre 2020, 24, 100242. [Google Scholar] [CrossRef]
- Elbesthi, R.T.A.; Özdemir, K.Y.; Taştan, Y.; Bilen, S.; Sönmez, A.Y. Effects of ribwort plantain (Plantago lanceolata) extract on blood parameters, immune response, antioxidant enzyme activities, and growth performance in rainbow trout (Oncorhynchus mykiss). Fish Physiol. Biochem. 2020, 46, 1295–1307. [Google Scholar] [CrossRef]
- Navarrete, S.; Kemp, P.D.; Pain, S.J.; Back, P.J. Bioactive compounds, aucubin and acteoside, in plantain (Plantago lanceolata L.) and their effect on In Vitro rumen fermentation. Anim. Feed Sci. Technol. 2016, 222, 158–167. [Google Scholar] [CrossRef]
- Nizioł-Łukaszewska, Z.; Gaweł-Bęben, K.; Rybczyńska-Tkaczyk, K.; Jakubczyk, A.; Karaś, M.; Bujak, T. Biochemical properties, UV-protecting and fibroblast growth-stimulating activity of Plantago lanceolata L. extracts. Ind. Crops Prod. 2019, 138, 111453. [Google Scholar] [CrossRef]
- Niknam, R.; Ghanbarzadeh, B.; Ayaseh, A.; Rezagholi, F. The hydrocolloid extracted from Plantago major seed: Effects on emulsifying and foaming properties. J. Disp. Sci. Technol. 2020, 41, 667–673. [Google Scholar] [CrossRef]
- Behbahani, B.A.; Shahidi, F.; Yazdi, F.T.; Mortazavi, S.A.; Mohebbi, M. Use of Plantago major seed mucilage as a novel edible coating incorporated with Anethum graveolens essential oil on shelf life extension of beef in refrigerated storage. Int. J. Biol. Macromol. 2017, 94, 515–526. [Google Scholar] [CrossRef] [PubMed]
- Niknam, R.; Ghanbarzadeh, B.; Ayaseh, A.; Hamishehkar, H. Plantago major seed gum based biodegradable films: Effects of various plant oils on microstructure and physicochemical properties of emulsified films. Polym. Test. 2019, 77, 105868. [Google Scholar] [CrossRef]
- Allafchian, A.R.; Kalani, S.; Golkar, P.; Mohammadi, H.; Jalali, S.A.H. A comprehensive study on Plantago ovata/PVA biocompatible nanofibers: Fabrication, characterization, and biological assessment. J. Appl. Polym. Sci. 2020, 137, 49560. [Google Scholar] [CrossRef]
- Salas-Luévano, M.A.; Mauricio-Castillo, J.A.; González-Rivera, M.L.; Vega-Carrillo, H.R.; Salas-Muñoz, S. Accumulation and phytostabilization of As, Pb and Cd in plants growing inside mine tailings reforested in Zacatecas, Mexico. Environ. Earth Sci. 2017, 76, 806. [Google Scholar] [CrossRef]
- Romeh, A.A.; Khamis, M.A.; Metwally, S.M. Potential of Plantago major L. for phytoremediation of lead-contaminated soil and water. Water Air Soil Pollut. 2016, 227, 9. [Google Scholar] [CrossRef]
- Aioub, A.A.A.; Zuo, Y.; Li, Y.; Qie, X.; Zhang, X.; Essmat, N.; Wu, W.; Hu, Z. Transcriptome analysis of Plantago major as a phytoremediator to identify some genes related to cypermethrin detoxification. Environ. Sci. Pollut. Res. 2020. [Google Scholar] [CrossRef]
- Darch, T.; McGrath, S.P.; Lee, M.R.F.; Beaumont, D.A.; Blackwell, M.S.A.; Horrocks, C.A.; Evans, J.; Storkey, J. The mineral composition of wild-type and cultivated varieties of pasture species. Agronomy 2020, 10, 1463. [Google Scholar] [CrossRef]
- Vaculík, M.; Jurkovič, Ľ.; Matejkovič, P.; Molnárová, M.; Lux, A. Potential risk of Arsenic and Antimony accumulation by medicinal plants naturally growing on old mining sites. Water Air Soil Pollut. 2013, 224, 1546. [Google Scholar] [CrossRef]
- Simon, P.L.; de Klein, C.A.M.; Worth, W.; Rutherford, A.J.; Dieckow, J. The efficacy of Plantago lanceolata for mitigating nitrous oxide emissions from cattle urine patches. Sci. Total Environ. 2019, 691, 430–441. [Google Scholar] [CrossRef]
- Somasiri, S.C.; Kenyon, P.R.; Kemp, P.D.; Morel, P.C.H.; Morris, S. Growth performance and carcass characteristics of lambs grazing forage mixes inclusive of plantain (Plantago lanceolata L.) and chicory (Cichorium intybus L.). Small Rumin. Res. 2015, 127, 20–27. [Google Scholar] [CrossRef]
- Mirzaei, S.; Javanbakht, V. Dye removal from aqueous solution by a novel dual cross-linked biocomposite obtained from mucilage of Plantago Psyllium and eggshell membrane. Int. J. Biol. Macromol. 2019, 134, 1204. [Google Scholar] [CrossRef] [PubMed]
- Mobin, M.; Rizvi, M. Polysaccharide from Plantago as a green corrosion inhibitor for carbon steel in 1 M HCl solution. Carbohydr. Polym. 2017, 160, 172–183. [Google Scholar] [CrossRef] [PubMed]
- Fierascu, I.; Fierascu, I.C.; Dinu-Pirvu, C.E.; Fierascu, R.C.; Anuta, V.; Velescu, B.S.; Jinga, M.; Jinga, V. A short overview of recent developments on antimicrobial coatings based on phytosynthesized metal nanoparticles. Coatings 2019, 9, 787. [Google Scholar] [CrossRef] [Green Version]
- Fierascu, I.; Fierascu, I.C.; Brazdis, R.I.; Baroi, A.M.; Fistos, T.; Fierascu, R.C. Phytosynthesized metallic nanoparticles-between nanomedicine and toxicology. A brief review of 2019′s findings. Materials 2020, 13, 574. [Google Scholar] [CrossRef] [Green Version]
- Fierascu, R.C.; Ortan, A.; Avramescu, S.M.; Fierascu, I. Phyto-nanocatalysts: Green synthesis, characterization, and applications. Molecules 2019, 24, 3418. [Google Scholar] [CrossRef] [Green Version]
- Fierascu, R.C.; Fierascu, I.; Lungulescu, E.M.; Nicula, N.; Somoghi, R.; Diţu, L.M.; Ungureanu, C.; Sutan, A.N.; Drăghiceanu, O.A.; Paunescu, A.; et al. Phytosynthesis and radiation-assisted methods for obtaining metal nanoparticles. J. Mat. Sci. 2020, 55, 1915–1932. [Google Scholar] [CrossRef]
- Romeh, A.A.A. Green silver nanoparticles for enhancing the phytoremediation of soil and water contaminated by fipronil and degradation products. Water Air Soil Pollut. 2018, 229, 147. [Google Scholar] [CrossRef]
- Lohrasbi, S.; Kouhbanani, M.A.J.; Beheshtkhoo, N.; Ghasemi, Y.; Amani, A.M.; Taghizadeh, S. Green synthesis of iron nanoparticles using Plantago major leaf extract and their application as a catalyst for the decolorization of azo dye. BioNanoScience 2019, 9, 317–322. [Google Scholar] [CrossRef]
- Pereira, C.G.; Custódio, L.; Rodrigues, M.J.; Neng, N.R.; Nogueira, J.M.F.; Carlier, J.; Costa, M.C.; Varela, J.; Barreira, L. Profiling of antioxidant potential and phytoconstituents of Plantago coronopus. Brazil. J. Biol. 2017, 77, 632–641. [Google Scholar] [CrossRef]
Identified Compounds | Reference | Identified Compounds | Reference |
---|---|---|---|
Polysaccharides | Flavonoids | ||
Galactose | [30] | Luteolin | [37] |
Arabinose | [30] | Apigenin | [37] |
Xylose | [30] | Kaempferol | [37] |
Mannose | [30] | Phytosterols | |
Glucose | [30] | Campesterol | [32] |
Rhamnose | [30] | Stigmasterol | [32] |
Fucose | [30] | Sitosterol | [32] |
Iridoids | Fatty acids | ||
Aucubin | [38] | Linolenic acid | [32] |
Melittoside | [38] | Linoleic acid | [32] |
Monomelittoside | [38] | Hexadecatrienoic acid | [33] |
10-acetylmonomelittoside | [38] | Palmitic acid | [33] |
10-acetylaucubin | [8] | Myristic acid | [33] |
Catalpol | [39] | Palmitoleic acid | [33] |
Hydroxycinnamic acids | Behenic acid | [33] | |
Caffeic acid | [30] | Erucic acid | [33] |
Chlorogenic acid | [30] | Carotenoids | |
Ferulic acid | [37] | β-carotene | [40] |
Gallic acid | [37] | Violaxanthin | [36] |
Neochlorogenic acid | [37] | Lutein | [40] |
Isochlorogenic acid | [37] | Neoxanthin | [40] |
Glycosides | Zeaxanthin | [36] | |
Verbascoside | [30] | Other compounds | |
Plantamajoside | [30] | Oxalic acid | [33] |
Homoplantaginin | [41] | Vitamin C | [33] |
Martynoside | [42] | Ursolic acid | [43] |
Plant Parts Used | Plant Treatment/Applied as | Application | Results | Reference |
---|---|---|---|---|
Aerial parts | Maceration (80% methanol, 72 h, room temperature), filtration, evaporation; extract redissolved in water (1 g/mL), nonpolar compounds removed with and concentrated—17.6% yield. Redissolved in 80% aqueous methanol for application (20% (w/v)) | Antioxidant | DDPH assay: IC50 = 5.77 mg/L; HRS assay: IC50 = 271.08 mg/L; SASC assay: IC50 = 56.20 mg/L; NOSC assay: IC50 = 1.48 mg/L; FRAP assay: IC50 = 120.02 mg AAE/g d.w.; LP assay: IC50 = 31.95 mg/L; | [59] |
Leaves | 50% EtOH extract (100 °C, 60 min) | Antioxidant | CUPRAC assay: 0.2368 μmol AAE/g d.w. | [60] |
Leaves | Methanol extract (no details provided) | Antioxidant | SOD assay: 9/17/17 activity unites/mg protein (vegetative/flowering/fruiting phase) POD assay: 1.9/2.5/0.8 activity unites/mg protein (vegetative/flowering/fruiting phase) | [61] |
Leaves | Ethanol extract (no details provided) | Antioxidant | DPPH assay: 75.48% CUPRAC assay: 69.10 μM TE/g d.w. FRAP assay: 159.48 μM TE/g d.w. | [31] |
Leaves | Hydrolyzed in the presence of hemicellulase enzymes (hemicellulose-H/xylanase-X, 4 h, 45 °C), filtered, coagulated (95% ethanol) | Antioxidant | DPPH assay: 84.49(H)/82.64(X)% CUPRAC assay: 64.32(H)/68.91(X) μM TE/g d.w. FRAP assay: 118.29(H)/135.69(X) μM TE/g d.w. | [62] |
Leaves | Ethanol (50%) extract (solid: liquid ratio 1:20), 30 min., room temperature | Antioxidant | DPPH assay: 155 μM TE/g d.w. CH assay: 161.40 μM TE/g d.w. ORAC assay: 1274 μM TE/g d.w. | [63] |
Leaves | Percolation (70% ethanol, 72 h.) | Antioxidant | DPPH assay: ~2.2 mg QE/g plant ABTS assay: ~275 μg TE/g plant | [64] |
Isolated compounds | Individual compounds (verbascoside, homoplantaginin) evaluation | Antitumoral, tyrosine kinase inhibitor | Significant inhibition of isolated EGF-R tyrosine kinases, variable in vitro antiproliferative activity | [40] |
Leaves | From the biomass without alcohol-soluble components: extraction with water (1:25, followed by extraction with oxalic acid/ammonium oxalate solutions (0.5%, 1:20); extract was concentrated and dialyzed; undialyzed residue precipitation by HCl (1%) in EtOH (95%) (1:5). Precipitates were centrifuged, washed (EtOH), and dried to result pectinic substances (PS) phase. Purified PS phase—raw material without alcohol-soluble components was concentrated, dialyzed, precipitated, washed, dried followed by low-molecular-weight glucans removal and precipitation with acetone | Anti-atherogenic activity | Precent binding of ALP relative to the control = 42.77/35.2% (at 20 mg/mL) | [30] |
Leaves | Repeated alcohol extraction (1:5) from dried material (60% ethanol, 60 °C) followed by lyophilization (alcoholic/lyophilic extract) | Mycostatic activity | Disc-diffusion assay against Candida albicans, C. utilis, Malas-sezia sp., Rhodotorula rubra, Aspergillus oryzae, A. niger, Microsporum canis, Trichophyton rubrum, Epidermophyton Kaufmann-Wolf. IZ (alcoholic, mm) = 10/6/13/3/18/0.8/4.4/1.1/4.2; IZ (lyophilic, mm) = 9.2/6/2.8/2.5/17.4/0.6/4.4/1/3.2 | [37] |
Leaves | Methanol extraction (80%, solid: liquid ratio 1:10, 72 h., room temperature) | Anti- inflammatory activity | LPS-stimulated monocytes (U937 cell line). Evaluation of PGE2, TXA2 = 70/70% (compared with control); qPCR examination of PLA2, COX-1, COX-2, mPGES-1, mPGES-2, cPGES, TXAS: upregulation of COX-1, mPGES-1, TXAS; downregulated COX-2, mPEG-2, cPGES, did not influenced PLA2; | [43] |
Leaves | Methanol extraction (80%, solid: liquid ratio 1:10, 72 h., room temperature) | Cytotoxic potential | Trypan blue exclusion test on monocytes: no impact on cell viability at up to 0.5 mg/mL | [43] |
Species | Product | Application | Reference |
---|---|---|---|
Plantago albicans L. | Leaves extract, (dichloromethane) | Antioxidant, anti-obesity | [85] |
Plantago coronopus L. | Leaves and flowers, organic and water extracts | Antioxidant | [119] |
Plantago lanceolata L. | Leaves, aqueous, ethanolic, aqueous-glycerine, and aqueous-glycol extracts | Antioxidant | [99] |
Plantago major L. | Aerial parts, defatted aqueous methanolic extract | Antioxidant, anti-inflammatory, and hepatoprotective | [70] |
Plantago ovata Forssk | Husk and seeds polysaccharide fraction | Antioxidant and anti-carcinogenic | [77] |
Plantago ovata Forssk | Husk mucilage | Antioxidant and hepatoprotective (CCl4-induced) | [78] |
Plantago squarrosa Murray | Whole plant, macerated in methanol (70%) | Antioxidant, antimicrobial | [67] |
Plantago major L. | CO2 extract | Antimicrobial | [68] |
Plantago asiatica L. | Whole plant aqueous extract | Anti-viral (respiratory syncytial virus) | [69] |
Plantago lanceolata L. | Leaves, n-hexane insoluble fraction of dichloromethane extract | Anti-inflammatory | [71] |
Plantago major L. | Aerial parts, Soxhlet extraction (benzene, chloroform, ethanol, methanol) | Anti-inflammatory | [72] |
Plantago major L. | Leaves, aqueous and ethanol extract | Anti-inflammatory | [73] |
Plantago lanceolata L. | Leaves, methanolic extract | Cytotoxic (tumoral cell lines) | [74] |
Plantago major L. | Whole plant, aqueous and alcoholic extract | Antiproliferative activity (tumoral cell lines) | [75] |
Plantago major L. | Whole plant, 80% methanol extract | Cytotoxic and genotoxic activity (A. cepa assay) | [76] |
Plantago ovata Forssk | Seeds, aqueous extract | Antiulcer and hepatoprotective | [79] |
Plantago asiatica L. | Seeds, polysaccharide fraction | Hepatoprotective | [80] |
Plantago psyllium L. | Seeds, ethanolic extract | Hepatoprotective | [81] |
Plantago albicans L. | Leaves, aqueous extract | Hepatoprotective | [82] |
Plantago major L. | Whole plant, Soxhlet ethanol (70%) extraction | Renoprotective (Cisplatin induced) | [83] |
Plantago major L. | Whole plant, Soxhlet ethanol (70%) extraction | Renoprotective (Cisplatin induced) | [84] |
Plantago major L. | Soxhlet ethanol (70%) extraction | Renoprotective (Adriamycin induced) | [85] |
Plantago asiatica L. | Seeds, reflux extractions | Anti-obesity | [87] |
Plantago asiatica L. | Seeds, reflux extraction | Anti-obesity | [88] |
Plantago depressa Willd. | Seeds, reflux extraction | Anti-obesity | [88] |
Plantago major L. | Flavonoid fraction | Antiarrhythmic | [89] |
Plantago major L. | Leaves extract, 70% ethanol, percolation | Anxiolytic | [90] |
Plantago asiatica L. | Arabinoxylan (polysaccharide) isolated from the seeds | Anti-diabetic | [91] |
Plantago sp. | Arabinoxylan (polysaccharide) extracted from seed husk | Prebiotic | [92] |
Plantago asiatica L. | Seeds, reflux extraction | Antihypertensive | [93] |
Plantago asiatica L. | Seeds, polysaccharide fraction | Reproductive system injury alleviation | [94] |
Plantago rugelii Decne | Whole plant, methanol maceration (72 h.) | Anti-ulcer | [95] |
Plantago ovata Forssk | Seeds mucilage | Lead biosorbent | [96] |
Plantago lanceolata L. | Leaves, 40% methanol percolation, 72 h. | Pisciculture applications | [97] |
Plantago lanceolata L. | Whole plant, acteoside and aucubin | Livestock feed | [98] |
Plantago lanceolata L. | Leaves, aqueous, ethanolic, aqueous-glycerin, and aqueous-glycol extracts | Development of natural cosmetics | [99] |
Plantago major L. | Seeds, gum fraction | Emulsifying and foaming properties | [100] |
Plantago major L. | Seeds mucilage, hot water extraction | Edible coating | [101] |
Plantago major L. | Seeds mucilage, ultrasound assisted extraction | Biodegradable films | [102] |
Plantago ovata Forssk | Seeds mucilage, hot water extraction | Biocompatible nanofibers | [103] |
Plantago lanceolata L. | Whole plant | Phytoremediation (Pb, As, Cd) | [104] |
Plantago major L. | Whole plant | Phytoremediation (Pb) | [105] |
Plantago major L. | Whole plant | Phytoremediation (Cypermethrin) | [106] |
Plantago lanceolata L. | Whole plant | Livestock diet (improvement of mineral concentrations levels) | [107] |
Plantago lanceolata L. | Whole plant | Livestock diet (reduction of N2O emissions) | [109] |
Plantago lanceolata L. | Whole plant | Livestock diet (improvement of growth performance and carcass characteristics) | [110] |
Plantago psyllium L. | Seeds mucilage | Dye removal | [111] |
Plantago ovata Forssk | Polysaccharide fraction | Corrosion inhibitor | [112] |
Plantago major L. | Leaves aqueous extract (100 °C, 60 min) | Phytosynthesis of AgNPs | [117] |
Plantago major L. | Leaves aqueous extract (100 °C, 15 min) | Phytosynthesis of iron oxide NPs | [118] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fierascu, R.C.; Fierascu, I.; Ortan, A.; Paunescu, A. Plantago media L.—Explored and Potential Applications of an Underutilized Plant. Plants 2021, 10, 265. https://doi.org/10.3390/plants10020265
Fierascu RC, Fierascu I, Ortan A, Paunescu A. Plantago media L.—Explored and Potential Applications of an Underutilized Plant. Plants. 2021; 10(2):265. https://doi.org/10.3390/plants10020265
Chicago/Turabian StyleFierascu, Radu Claudiu, Irina Fierascu, Alina Ortan, and Alina Paunescu. 2021. "Plantago media L.—Explored and Potential Applications of an Underutilized Plant" Plants 10, no. 2: 265. https://doi.org/10.3390/plants10020265
APA StyleFierascu, R. C., Fierascu, I., Ortan, A., & Paunescu, A. (2021). Plantago media L.—Explored and Potential Applications of an Underutilized Plant. Plants, 10(2), 265. https://doi.org/10.3390/plants10020265