The Role of Inter- and Intraspecific Variations in Grassland Plant Functional Traits along an Elevational Gradient in a Mediterranean Mountain Area
Abstract
:1. Introduction
2. Results
2.1. Maximum Height (H)
2.2. Specific Leaf Area (SLA)
2.3. Seed Mass (SM)
3. Discussion
3.1. Variations in CWM and CM Values
3.2. Community Resistance and Covariation
4. Materials and Methods
4.1. Study Area and Data Collection
4.2. Data Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lavorel, S.; Garnier, E. Predicting changes in community composition and ecosystem functioning from plant traits: Revisiting the Holy Grail. Funct. Ecol. 2002, 16, 545–556. [Google Scholar] [CrossRef]
- Mason, N.W.; De Bello, F.; Doležal, J.; Lepš, J. Niche overlap reveals the effects of competition, disturbance and contrasting assembly processes in experimental grassland communities. J. Ecol. 2011, 99, 788–796. [Google Scholar] [CrossRef]
- Chelli, S.; Marignani, M.; Barni, E.; Petraglia, A.; Puglielli, G.; Wellstein, C.; Acosta, A.T.R.; Bolpagni, R.; Bragazza, L.; Campetella, G.; et al. Plant–environment interactions through a functional traits perspective: A review of Italian studies. Plant Biosyst. Int. J. Deal. Asp. Plant Biol. 2019, 153, 853–869. [Google Scholar] [CrossRef]
- Thuiller, W.; Albert, C.H.; Dubuis, A.; Randin, C.; Guisan, A. Variation in habitat suitability does not always relate to variation in species’ plant functional traits. Biol. Lett. 2009, 6, 120–123. [Google Scholar] [CrossRef]
- Garnier, E.; Cortez, J.; Neill, C.; Toussaint, J.-P.; Billès, G.; Navas, M.-L.; Roumet, C.; Debussche, M.; Laurent, G.; Blanchard, A.; et al. Plant functional markers capture ecosystem properties during secondary succession. Ecology 2004, 85, 2630–2637. [Google Scholar] [CrossRef]
- Ricotta, C.; Moretti, M. CWM and Rao’s quadratic diversity: A unified framework for functional ecology. Oecologia 2011, 167, 181–188. [Google Scholar] [CrossRef]
- Anna, E.; Vojtkó, A.; Freitag, M.; Bricca, A.; Martello, F.; Compañ, J.M.; Küttim, M.; Kun, R.; De Bello, F.; Klimešová, J.; et al. Clonal vs leaf-height-seed (LHS) traits: Which are filtered more strongly across habitats? Folia Geobot. Phytotaxon. 2017, 52, 269–281. [Google Scholar] [CrossRef]
- Ackerly, D.; Knight, C.; Weiss, S.; Barton, K.; Starmer, K. Leaf size, specific leaf area and microhabitat distribution of chaparral woody plants: Contrasting patterns in species level and community level analyses. Oecologia 2002, 130, 449–457. [Google Scholar] [CrossRef] [PubMed]
- Cingolani, A.M.; Cabido, M.; Gurvich, D.E.; Renison, D.; Díaz, S. Filtering processes in the assembly of plant communities: Are species presence and abundance driven by the same traits? J. Veg. Sci. 2007, 18, 911–920. [Google Scholar] [CrossRef]
- Pakeman, R.; Reid, C.; Lennon, J.; Kent, M. Possible interactions between environmental factors in determining species optima. J. Veg. Sci. 2008, 19, 201–208. [Google Scholar] [CrossRef]
- Volf, M.; Redmond, C.A.; Ágnes, J.; Le Bagousse-Pinguet, Y.; Biella, P.; Götzenberger, L.; Hrázský, Z.; Janeček, Š.; Klimešová, J.; Lepš, J.; et al. Effects of long- and short-term management on the functional structure of meadows through species turnover and intraspecific trait variability. Oecologia 2016, 180, 941–950. [Google Scholar] [CrossRef] [PubMed]
- Violle, C.; Enquist, B.J.; McGill, B.J.; Jiang, L.; Albert, C.H.; Hulshof, C.; Jung, V.; Messier, J. The return of the variance: Intraspecific variability in community ecology. Trends Ecol. Evol. 2012, 27, 244–252. [Google Scholar] [CrossRef]
- Westoby, M.; Falster, D.S.; Moles, A.T.; Vesk, P.A.; Wright, I.J. Plant ecological strategies: Some leading dimensions of variation between species. Annu. Rev. Ecol. Syst. 2002, 33, 125–159. [Google Scholar] [CrossRef] [Green Version]
- Albert, C.H.; Thuiller, W.; Yoccoz, N.G.; Douzet, R.; Aubert, S.; Lavorel, S. A multi-trait approach reveals the structure and the relative importance of intra- vs. interspecific variability in plant traits. Funct. Ecol. 2010, 24, 1192–1201. [Google Scholar] [CrossRef]
- Albert, C.H.; Thuiller, W.; Yoccoz, N.G.; Soudant, A.; Boucher, F.; Saccone, P.; Lavorel, S. Intraspecific functional variability: Extent, structure and sources of variation. J. Ecol. 2010, 98, 604–613. [Google Scholar] [CrossRef]
- Jung, V.; Violle, C.; Mondy, C.P.; Hoffmann, L.; Muller, S.D. Intraspecific variability and trait-based community assembly. J. Ecol. 2010, 98, 1134–1140. [Google Scholar] [CrossRef]
- Messier, J.; McGill, B.J.; Lechowicz, M.J. How do traits vary across ecological scales? A case for trait-based ecology. Ecol. Lett. 2010, 13, 838–848. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Ramos, I.M.; Roumet, C.; Cruz, P.; Blanchard, A.; Autran, P.; Garnier, E. Evidence for a ‘plant community economics spectrum’ driven by nutrient and water limitations in a Mediterranean rangeland of southern France. J. Ecol. 2012, 100, 1315–1327. [Google Scholar] [CrossRef] [Green Version]
- Booth, R.E.; Grime, J.P. Effects of genetic impoverishment on plant community diversity. J. Ecol. 2003, 91, 721–730. [Google Scholar] [CrossRef] [Green Version]
- Courbaud, B.; Vieilledent, G.; Kunstler, G. Intra-specific variability and the competition–colonisation trade-off: Coexistence, abundance and stability patterns. Theor. Ecol. 2010, 5, 61–71. [Google Scholar] [CrossRef]
- Khalil, M.I.; Gibson, D.J.; Baer, S.G. Functional response of subordinate species to intraspecific trait variability within dominant species. J. Ecol. 2019, 107, 2040–2053. [Google Scholar] [CrossRef]
- Lepš, J.; De Bello, F.; Šmilauer, P.; Doležal, J. Community trait response to environment: Disentangling species turnover vs intraspecific trait variability effects. Ecography 2011, 34, 856–863. [Google Scholar] [CrossRef]
- Kichenin, E.; Wardle, D.A.; Peltzer, D.A.; Morse, C.W.; Freschet, G.T. Contrasting effects of plant inter- and intraspecific variation on community-level trait measures along an environmental gradient. Funct. Ecol. 2013, 27, 1254–1261. [Google Scholar] [CrossRef]
- Pescador, D.S.; De Bello, F.; Valladares, F.; Escudero, A. Plant trait variation along an altitudinal gradient in Mediterranean high mountain grasslands: Controlling the species turnover effect. PLoS ONE 2015, 10, e0118876. [Google Scholar] [CrossRef] [Green Version]
- Körner, C. Plant adaptation to cold climates. F1000Research 2016, 5, 2769. [Google Scholar] [CrossRef]
- Fattorini, S.; Di Biase, L.; Chiarucci, A. Recognizing and interpreting vegetational belts: New wine in the old bottles of a von Humboldt’s legacy. J. Biogeogr. 2019, 46, 1643–1651. [Google Scholar] [CrossRef]
- Stanisci, A.; Bricca, A.; Calabrese, V.; Cutini, M.; Pauli, H.; Steinbauer, K.; Carranza, M.L. Functional composition and diversity of leaf traits in subalpine versus alpine vegetation in the Apennines. AoB PLANTS 2020, 12, plaa004. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fattorini, S.; Mantoni, C.; Di Biase, L.; Pace, L. Mountain biodiversity and sustainable development. In Encyclopedia of the UN Sustainable Development Goals. Life on Land; Leal Filho, W., Azul, A., Brandli, L., Özuyar, P., Wall, T., Eds.; Springer International Publishing: New York, NY, USA, 2020; pp. 1–31. [Google Scholar]
- Bricca, A.; Conti, L.; Tardella, M.F.; Catorci, A.; Iocchi, M.; Theurillat, J.-P.; Cutini, M. Community assembly processes along a sub-Mediterranean elevation gradient: Analyzing the interdependence of trait community weighted mean and functional diversity. Plant Ecol. 2019, 220, 1139–1151. [Google Scholar] [CrossRef]
- Olano, J.M.; Almería, I.; Eugenio, M.; Von Arx, G. Under pressure: How a Mediterranean high-mountain forb coordinates growth and hydraulic xylem anatomy in response to temperature and water constraints. Funct. Ecol. 2013, 27, 1295–1303. [Google Scholar] [CrossRef]
- Westoby, M.; Wright, I.J. Land-plant ecology on the basis of functional traits. Trends Ecol. Evol. 2006, 21, 261–268. [Google Scholar] [CrossRef]
- Albert, C.H.; Grassein, F.; Schurr, F.M.; Vieilledent, G.; Violle, C. When and how should intraspecific variability be considered in trait-based plant ecology? Perspect. Plant Ecol. Evol. Syst. 2011, 13, 217–225. [Google Scholar] [CrossRef]
- Mason, N.W.H.; Richardson, S.J.; Peltzer, D.A.; De Bello, F.; Wardle, D.A.; Allen, R.B. Changes in coexistence mechanisms along a long-term soil chronosequence revealed by functional trait diversity. J. Ecol. 2012, 100, 678–689. [Google Scholar] [CrossRef] [Green Version]
- Westoby, M. A leaf-height-seed (LHS) plant ecology strategy scheme. Plant Soil 1998, 199, 213–227. [Google Scholar] [CrossRef]
- Díaz, S.; Kattge, J.; Cornelissen, J.H.C.; Wright, I.J.; Lavorel, S.; Dray, S.; Reu, B.; Kleyer, M.; Wirth, C.; Prentice, I.C.; et al. The global spectrum of plant form and function. Nat. Cell Biol. 2016, 529, 167–171. [Google Scholar] [CrossRef] [PubMed]
- Moles, A.T.; Warton, D.I.; Warman, L.; Swenson, N.G.; Laffan, S.W.; Zanne, A.E.; Pitman, A.; Hemmings, F.A.; Leishman, M.R. Global patterns in plant height. J. Ecol. 2009, 97, 923–932. [Google Scholar] [CrossRef]
- Körner, C. Alpine Plant Life: Functional Plant Ecology of High Mountain Ecosystems; Springer: Berlin, Germany, 2003. [Google Scholar]
- Wright, I.J.; Reich, P.B.; Cornelissen, J.H.C.; Falster, D.S.; Garnier, E.; Hikosaka, K.; Lamont, B.B.; Lee, W.; Oleksyn, J.; Osada, N.; et al. Assessing the generality of global leaf trait relationships. New Phytol. 2005, 166, 485–496. [Google Scholar] [CrossRef] [PubMed]
- Grime, J.P. Plant Strategies, Vegetation Processes, and Ecosystem Properties, 2nd ed; John Wiley & Sons: Chichester, UK, 2006. [Google Scholar]
- Cornelissen, J.H.C.; Lavorel, S.; Garnier, E.; Díaz, S.; Buchmann, N.; Gurvich, D.E.; Reich, P.B.; Ter Steege, H.; Morgan, H.D.; Van Der Heijden, M.G.A.; et al. A handbook of protocols for standardised and easy measurement of plant functional traits worldwide. Aust. J. Bot. 2003, 51, 335–380. [Google Scholar] [CrossRef] [Green Version]
- Greenwood, S.; Jump, A.S. Consequences of treeline shifts for the diversity and function of high altitude ecosystems. Arctic Antarct. Alp. Res. 2014, 46, 829–840. [Google Scholar] [CrossRef] [Green Version]
- De Bello, F.; Lavorel, S.; Lavergne, S.; Albert, C.H.; Boulangeat, I.; Mazel, F.; Thuiller, W. Hierarchical effects of environmental filters on the functional structure of plant communities: A case study in the French Alps. Ecography 2013, 36, 393–402. [Google Scholar] [CrossRef]
- Lee, C.; Chun, J.; Cho, H. Elevational patterns and determinants of plant diversity in the Baekdudaegan Mountains, South Korea: Species vs. functional diversity. Chin. Sci. Bull. 2013, 58, 3747–3759. [Google Scholar] [CrossRef] [Green Version]
- Luo, Y.-H.; Liu, J.; Tan, S.-L.; Cadotte, M.W.; Wang, Y.-H.; Xu, K.; Li, D.-Z.; Gao, L.-M. Trait-based community assembly along an elevational gradient in subalpine forests: Quantifying the roles of environmental factors in inter- and intraspecific variability. PLoS ONE 2016, 11, e0155749. [Google Scholar] [CrossRef]
- Luo, Y.; Liu, J.; Tan, S.; Cadotte, M.W.; Xu, K.; Gao, L.; Li, D. Trait variation and functional diversity maintenance of understory herbaceous species coexisting along an elevational gradient in Yulong Mountain, Southwest China. Plant Divers. 2016, 38, 303–311. [Google Scholar] [CrossRef]
- Schöb, C.; Armas, C.; Guler, M.; Prieto, I.; Pugnaire, F.I. Variability in functional traits mediates plant interactions along stress gradients. J. Ecol. 2013, 101, 753–762. [Google Scholar] [CrossRef]
- Gazol, A.; Moiseev, P.; Camarero, J.J. Changes in plant taxonomic and functional diversity patterns following treeline advances in the South Urals. Plant Ecol. Divers. 2017, 10, 283–292. [Google Scholar] [CrossRef]
- Zhang, Q.; Buyantuev, A.; Li, F.Y.; Jiang, L.; Niu, J.; Ding, Y.; Kang, S.; Ma, W. Functional dominance rather than taxonomic diversity and functional diversity mainly affects community aboveground biomass in the Inner Mongolia grassland. Ecol. Evol. 2017, 7, 1605–1615. [Google Scholar] [CrossRef]
- Junker, R.R.; Larue-Kontić, A.-A.C. Elevation predicts the functional composition of alpine plant communities based on vegetative traits, but not based on floral traits. Alp. Bot. 2018, 128, 13–22. [Google Scholar] [CrossRef] [Green Version]
- Rosbakh, S.; Römermann, C.; Poschlod, P. Specific leaf area correlates with temperature: New evidence of trait variation at the population, species and community levels. Alp. Bot. 2015, 125, 79–86. [Google Scholar] [CrossRef]
- Spasojevic, M.J.; Suding, K.N. Inferring community assembly mechanisms from functional diversity patterns: The importance of multiple assembly processes. J. Ecol. 2012, 100, 652–661. [Google Scholar] [CrossRef]
- Kraft, N.J.B.; Godoy, O.; Levine, J.M. Plant functional traits and the multidimensional nature of species coexistence. Proc. Natl. Acad. Sci. USA 2015, 112, 797–802. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Campetella, G.; Chelli, S.; Wellstein, C.; Farris, E.; Calvia, G.; Simonetti, E.; Borsukiewicz, L.; Vanderplank, S.; Marignani, M. Contrasting patterns in leaf traits of Mediterranean shrub communities along an elevation gradient: Measurements matter. Plant Ecol. 2019, 220, 765–776. [Google Scholar] [CrossRef]
- Carmona, C.P.; Rota, C.; Azcárate, F.M.; Peco, B. More for less: Sampling strategies of plant functional traits across local environmental gradients. Funct. Ecol. 2014, 29, 579–588. [Google Scholar] [CrossRef]
- Fridley, J.D.; Grime, J.P.; Bilton, M. Genetic identity of interspecific neighbours mediates plant responses to competition and environmental variation in a species-rich grassland. J. Ecol. 2007, 95, 908–915. [Google Scholar] [CrossRef]
- Le Bagousse-Pinguet, Y.; De Bello, F.; Vandewalle, M.; Leps, J.; Sykes, M.T. Species richness of limestone grasslands increases with trait overlap: Evidence from within- and between-species functional diversity partitioning. J. Ecol. 2013, 102, 466–474. [Google Scholar] [CrossRef]
- Dainese, M.; Scotton, M.; Clementel, F.; Pecile, A.; Leps, J. Do climate, resource availability, and grazing pressure filter floristic composition and functioning in Alpine pastures? Community Ecol. 2012, 13, 45–54. [Google Scholar] [CrossRef]
- Gross, N.; Börger, L.; Soriano-Morales, S.I.; Le Bagousse-Pinguet, Y.; Quero, J.L.; García-Gómez, M.; Valencia-Gómez, E.; Maestre, F.T. Uncovering multiscale effects of aridity and biotic interactions on the functional structure of Mediterranean shrublands. J. Ecol. 2013, 101, 637–649. [Google Scholar] [CrossRef]
- Wright, I.J.; Reich, P.B.; Westoby, M.; Ackerly, D.; Baruch, Z.; Bongers, F.; Cavender-Bares, J.; Chapin, T.; Cornelissen, J.H.C.; Diemer, M.; et al. The worldwide leaf economics spectrum. Nature 2004, 428, 821–827. [Google Scholar] [CrossRef] [PubMed]
- Poorter, H.; Niinemets, Ü.; Poorter, L.; Wright, I.J.; Villar, R. Causes and consequences of variation in leaf mass per area (LMA): A meta-analysis. New Phytol. 2009, 182, 565–588. [Google Scholar] [CrossRef]
- Moles, A.T.; Westoby, M. Seed size and plant strategy across the whole life cycle. Oikos 2006, 113, 91–105. [Google Scholar] [CrossRef]
- Adler, P.B.; Fajardo, A.; Kleinhesselink, A.R.; Kraft, N.J.B. Trait-based tests of coexistence mechanisms. Ecol. Lett. 2013, 16, 1294–1306. [Google Scholar] [CrossRef]
- Kraft, N.J.B.; Adler, P.B.; Godoy, O.; James, E.C.; Fuller, S.; Levine, J.M. Community assembly, coexistence and the environmental filtering metaphor. Funct. Ecol. 2015, 29, 592–599. [Google Scholar] [CrossRef]
- Lasky, J.R.; Uriarte, M.; Boukili, V.K.; Chazdon, R.L. Trait-mediated assembly processes predict successional changes in community diversity of tropical forests. Proc. Natl. Acad. Sci. USA 2014, 111, 5616–5621. [Google Scholar] [CrossRef] [Green Version]
- Kimball, S.; Gremer, J.R.; Angert, A.L.; Huxman, T.E.; Venable, D.L. Fitness and physiology in a variable environment. Oecologia 2011, 169, 319–329. [Google Scholar] [CrossRef] [PubMed]
- Laughlin, D.C.; Messier, J. Fitness of multidimensional phenotypes in dynamic adaptive landscapes. Trends Ecol. Evol. 2015, 30, 487–496. [Google Scholar] [CrossRef]
- Violle, C.; Navas, M.-L.; Vile, D.; Kazakou, E.; Fortunel, C.; Hummel, I.; Garnier, E. Let the concept of trait be functional! Oikos 2007, 116, 882–892. [Google Scholar] [CrossRef]
- Cornwell, W.K.; Ackerly, D.D. Community assembly and shifts in plant trait distributions across an environmental gradient in coastal California. Ecol. Monogr. 2009, 79, 109–126. [Google Scholar] [CrossRef] [Green Version]
- Auger, S.; Shipley, B. Inter-specific and intra-specific trait variation along short environmental gradients in an old-growth temperate forest. J. Veg. Sci. 2013, 24, 419–428. [Google Scholar] [CrossRef]
- Siefert, A.; Violle, C.; Chalmandrier, L.; Albert, C.H.; Taudiere, A.; Fajardo, A.; Aarssen, L.W.; Baraloto, C.; Carlucci, M.B.; Cianciaruso, M.V.; et al. A global meta-analysis of the relative extent of intraspecific trait variation in plant communities. Ecol. Lett. 2015, 18, 1406–1419. [Google Scholar] [CrossRef] [Green Version]
- Pakeman, R.J.; Quested, H.M. Sampling plant functional traits: What proportion of the species need to be measured? Appl. Veg. Sci. 2007, 10, 91–96. [Google Scholar] [CrossRef]
- Pérez-Harguindeguy, N.; Díaz, S.; Garnier, E.; Lavorel, S.; Poorter, H.; Jaureguiberry, P.; Bret-Harte, M.S.; Cornwell, W.K.; Craine, J.M.; Gurvich, D.E.; et al. Corrigendum to: New handbook for standardised measurement of plant functional traits worldwide. Aust. J. Bot. 2016, 64, 715–716. [Google Scholar] [CrossRef] [Green Version]
- Vanderwalle, M.; De Bello, F.; Berg, M.P.; Bolger, T.; Dolédec, S.; Dubs, F.; Feld, C.K.; Harrington, R.; Harrison, P.A.; Lavorel, S.; et al. Functional traits as indicators of biodiversity response to land use changes across ecosystems and organisms. Biodivers. Conserv. 2010, 19, 2921–2947. [Google Scholar] [CrossRef] [Green Version]
- Huston, M.A. Hidden treatments in ecological experiments: Re-evaluating the ecosystem function of biodiversity. Oecologia 1997, 110, 449–460. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Jiang, L.; Zhang, Y. Relationships between functional diversity and aboveground biomass production in the Northern Tibetan alpine grasslands. Sci. Rep. 2016, 6, srep34105. [Google Scholar] [CrossRef] [Green Version]
- Li, W.; Epstein, H.E.; Wen, Z.; Zhao, J.; Jin, J.; Jing, G.; Cheng, J.; Du, G. Community-weighted mean traits but not functional diversity determine the changes in soil properties during wetland drying on the Tibetan Plateau. Solid Earth 2017, 8, 137–147. [Google Scholar] [CrossRef] [Green Version]
- Bland, J.M.; Altman, D.G. Statistics notes: Transformations, means, and confidence intervals. BMJ 1996, 312, 1079. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Bello, F. The quest for trait convergence and divergence in community assembly: Are null-models the magic wand? Glob. Ecol. Biogeogr. 2011, 21, 312–317. [Google Scholar] [CrossRef]
- Muscarella, R.; Uriarte, M. Do community-weighted mean functional traits reflect optimal strategies? Proc. R. Soc. B Boil. Sci. 2016, 283, 20152434. [Google Scholar] [CrossRef]
- R Core Team. R. A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2018; Available online: https://www.R-project.org (accessed on 1 August 2020).
- Laliberté, E.; Legendre, P.; Shipley, B. FD: Measuring Functional Diversity from Multiple Traits, and Other Tools for Functional Ecology. R Package Version. 1.0-12. 2014. Available online: http://CRAN.R-project.org/package=FD (accessed on 1 August 2020).
- Taudiere, A.; Violle, C. cati: An R package using functional traits to detect and quantify multi-level community assembly processes. Ecography 2016, 39, 699–708. [Google Scholar] [CrossRef]
(A) | |||||||||||||||
Fixed CWM | Specific CWM | Intraspecific CWM | |||||||||||||
SS | DF | MS | F | p | SS | DF | MS | F | p | SS | DF | MS | F | p | |
Belt | 302.300 | 3 | 100.767 | 6.713 | <0.001 | 443.900 | 3 | 147.967 | 8.831 | <0.001 | 32.620 | 3 | 10.873 | 9.766 | <0.0001 |
Residuals | 615.400 | 41 | 15.010 | 687.000 | 41 | 16.756 | 45.650 | 41 | 1.113 | ||||||
Post hoc (HSD) tests | Post hoc (HSD) tests | Post hoc (HSD) tests | |||||||||||||
Belt pairwise comparisons | p | Belt pairwise comparisons | p | Belt pairwise comparisons | p | ||||||||||
1 vs. 2 | 0.767 | 1 vs. 2 | 0.920 | 1 vs. 2 | 0.693 | ||||||||||
1 vs. 3 | 0.226 | 1 vs. 3 | 0.290 | 1 vs. 3 | 0.998 | ||||||||||
1 vs. 4 | 0.190 | 1 vs. 4 | 0.033 | 1 vs. 4 | 0.005 | ||||||||||
2 vs. 3 | 0.022 | 2 vs. 3 | 0.072 | 2 vs. 3 | 0.550 | ||||||||||
2 vs. 4 | 0.741 | 2 vs. 4 | 0.131 | 2 vs. 4 | <0.0001 | ||||||||||
3 vs. 4 | <0.001 | 3 vs. 4 | <0.0001 | 3 vs. 4 | 0.004 | ||||||||||
(B) | |||||||||||||||
Turnover | Intraspecific variability | Covariation | Total | ||||||||||||
Belt | 302.300 | 32.620 | 108.980 | 443.900 | |||||||||||
Residuals | 615.400 | 45.650 | 25.950 | 687.000 | |||||||||||
Total | 917.700 | 78.270 | 134.930 | 1130.900 | |||||||||||
(C) | |||||||||||||||
Turnover | Intraspecific variability | Covariation | Total | ||||||||||||
Belt | 0.267 | 0.029 | 0.096 | 0.393 | |||||||||||
Residuals | 0.544 | 0.040 | 0.023 | 0.607 | |||||||||||
Total | 0.811 | 0.069 | 0.119 | 1.000 |
(A) | |||||||||||||||
Fixed CM | Specific CM | Intraspecific CM | |||||||||||||
SS | DF | MS | F | p | SS | DF | MS | F | p | SS | DF | MS | F | p | |
Belt | 499.300 | 3 | 166.433 | 22.770 | <0.0001 | 631.600 | 3 | 210.533 | 28.220 | <0.0001 | 14.580 | 3 | 4.860 | 35.130 | <0.0001 |
Residuals | 299.700 | 41 | 7.310 | 305.900 | 41 | 7.461 | 15.670 | 41 | 0.382 | ||||||
Post hoc (HSD) tests | Post hoc (HSD) tests | Post hoc (HSD) tests | |||||||||||||
Belt pairwise comparisons | p | Belt pairwise comparisons | p | Belt pairwise comparisons | p | ||||||||||
1 vs. 2 | 0.601 | 1 vs 2 | 0.781 | 1 vs 2 | 0.163 | ||||||||||
1 vs. 3 | 0.009 | 1 vs 3 | 0.010 | 1 vs 3 | 0.996 | ||||||||||
1 vs. 4 | <0.001 | 1 vs 4 | <0.0001 | 1 vs 4 | <0.0001 | ||||||||||
2 vs. 3 | <0.001 | 2 vs 3 | <0.001 | 2 vs 3 | 0.204 | ||||||||||
2 vs. 4 | 0.032 | 2 vs 4 | 0.001 | 2 vs 4 | <0.0001 | ||||||||||
3 vs. 4 | <0.0001 | 3 vs 4 | <0.0001 | 3 vs 4 | <0.0001 | ||||||||||
(B) | |||||||||||||||
Turnover | Intraspecific variability | Covariation | Total | ||||||||||||
Belt | 499.300 | 14.580 | 117.720 | 631.600 | |||||||||||
Residuals | 299.700 | 15.670 | −9.470 | 305.900 | |||||||||||
Total | 799.000 | 30.250 | 108.250 | 937.500 | |||||||||||
(C) | |||||||||||||||
Turnover | Intraspecific variability | Covariation | Total | ||||||||||||
Belt | 0.533 | 0.016 | 0.126 | 0.674 | |||||||||||
Residuals | 0.320 | 0.017 | −0.010 | 0.326 | |||||||||||
Total | 0.852 | 0.032 | 0.115 | 1.000 |
(A) | |||||||||||||||
Fixed CWM | Specific CWM | Intraspecific CWM | |||||||||||||
SS | DF | MS | F | p | SS | DF | MS | F | p | SS | DF | MS | F | p | |
Belt | 7.990 | 3 | 2.663 | 3.458 | 0.025 | 5.760 | 3 | 1.920 | 2.335 | 0.088 | 11.650 | 3 | 3.883 | 43.390 | <0.0001 |
Residuals | 31.580 | 41 | 0.770 | 33.730 | 41 | 0.823 | 3.670 | 41 | 0.090 | ||||||
Post hoc (HSD) tests | Post hoc (HSD) tests | Post hoc (HSD) tests | |||||||||||||
Belt pairwise comparisons | p | Belt pairwise comparisons | p | Belt pairwise comparisons | p | ||||||||||
1 vs. 2 | 0.95 | 1 vs. 2 | 0.999 | 1 vs. 2 | 0.204 | ||||||||||
1 vs. 3 | 0.335 | 1 vs. 3 | 0.682 | 1 vs. 3 | <0.0001 | ||||||||||
1 vs. 4 | 0.68 | 1 vs. 4 | 0.184 | 1 vs. 4 | 0.252 | ||||||||||
2 vs. 3 | 0.111 | 2 vs. 3 | 0.571 | 2 vs. 3 | <0.0001 | ||||||||||
2 vs. 4 | 0.945 | 2 vs. 4 | 0.118 | 2 vs. 4 | <0.0001 | ||||||||||
3 vs. 4 | 0.017 | 3 vs. 4 | 0.792 | 3 vs. 4 | <0.0001 | ||||||||||
(B) | |||||||||||||||
Turnover | Intraspecific variability | Covariation | Total | ||||||||||||
Belt | 7.990 | 11.650 | −13.880 | 5.760 | |||||||||||
Residuals | 31.580 | 3.670 | −1.520 | 33.730 | |||||||||||
Total | 39.570 | 15.320 | −15.400 | 39.490 | |||||||||||
(C) | |||||||||||||||
Turnover | Intraspecific variability | Covariation | Total | ||||||||||||
Belt | 0.202 | 0.295 | −0.351 | 0.146 | |||||||||||
Residuals | 0.800 | 0.093 | −0.038 | 0.854 | |||||||||||
Total | 1.000 | 0.388 | −0.390 | 1.000 |
(A) | |||||||||||||||
Fixed CM | Specific CM | Intraspecific CM | |||||||||||||
SS | DF | MS | F | p | SS | DF | MS | F | p | SS | DF | MS | F | p | |
Belt | 22.120 | 3 | 7.373 | 15.200 | <0.0001 | 41.030 | 3 | 13.677 | 26.890 | <0.0001 | 13.979 | 3 | 4.660 | 170.000 | <0.0001 |
Residuals | 19.890 | 41 | 0.485 | 20.850 | 41 | 0.509 | 1.124 | 41 | 0.027 | ||||||
Post hoc (HSD) tests | Post hoc (HSD) tests | Post hoc (HSD) tests | |||||||||||||
Belt pairwise comparisons | p | Belt pairwise comparisons | p | Belt pairwise comparisons | p | ||||||||||
1 vs. 2 | <0.001 | 1 vs. 2 | <0.001 | 1 vs. 2 | 1.000 | ||||||||||
1 vs. 3 | 0.247 | 1 vs. 3 | 0.068 | 1 vs. 3 | <0.0001 | ||||||||||
1 vs. 4 | 0.378 | 1 vs. 4 | 0.004 | 1 vs. 4 | <0.0001 | ||||||||||
2 vs. 3 | 0.069 | 2 vs. 3 | <0.0001 | 2 vs. 3 | <0.0001 | ||||||||||
2 vs. 4 | <0.0001 | 2 vs. 4 | <0.0001 | 2 vs. 4 | <0.0001 | ||||||||||
3 vs. 4 | 0.002 | 3 vs. 4 | 0.756 | 3 vs. 4 | <0.0001 | ||||||||||
(B) | |||||||||||||||
Turnover | Intraspecific variability | Covariation | Total | ||||||||||||
Belt | 22.120 | 13.979 | 4.931 | 41.030 | |||||||||||
Residuals | 19.890 | 1.124 | −0.164 | 20.850 | |||||||||||
Total | 42.010 | 15.103 | 4.767 | 61.880 | |||||||||||
(C) | |||||||||||||||
Turnover | Intraspecific variability | Covariation | Total | ||||||||||||
Belt | 0.357 | 0.226 | 0.080 | 0.663 | |||||||||||
Residuals | 0.321 | 0.018 | −0.003 | 0.337 | |||||||||||
Total | 0.679 | 0.244 | 0.077 | 1.000 |
(A) | |||||||||||||||
Fixed CWM | Specific CWM | Intraspecific CWM | |||||||||||||
SS | DF | MS | F | p | SS | DF | MS | F | p | SS | DF | MS | F | p | |
Belt | 7.503 | 3 | 2.501 | 5.278 | 0.004 | 7.363 | 3 | 2.454 | 4.974 | 0.005 | 2.598 | 3 | 0.866 | 33.410 | <0.0001 |
Residuals | 19.429 | 41 | 0.474 | 20.229 | 41 | 0.493 | 1.063 | 41 | 0.026 | ||||||
Post hoc (HSD) tests | Post hoc (HSD) tests | Post hoc (HSD) tests | |||||||||||||
Belt pairwise comparisons | p | Belt pairwise comparisons | p | Belt pairwise comparisons | p | ||||||||||
1 vs. 2 | 1.000 | 1 vs. 2 | 0.167 | 1 vs. 2 | <0.0001 | ||||||||||
1 vs. 3 | 0.488 | 1 vs. 3 | 0.271 | 1 vs. 3 | 0.244 | ||||||||||
1 vs. 4 | 0.158 | 1 vs. 4 | 0.825 | 1 vs. 4 | <0.0001 | ||||||||||
2 vs. 3 | 0.467 | 2 vs. 3 | 0.988 | 2 vs. 3 | <0.0001 | ||||||||||
2 vs. 4 | 0.136 | 2 vs. 4 | 0.012 | 2 vs. 4 | <0.001 | ||||||||||
3 vs. 4 | 0.002 | 3 vs. 4 | 0.023 | 3 vs. 4 | 0.005 | ||||||||||
(B) | |||||||||||||||
Turnover | Intraspecific variability | Covariation | Total | ||||||||||||
Belt | 7.503 | 2.598 | −2.738 | 7.363 | |||||||||||
Residuals | 19.429 | 1.063 | −0.263 | 20.229 | |||||||||||
Total | 26.932 | 3.661 | −3.001 | 27.592 | |||||||||||
(C) | |||||||||||||||
Turnover | Intraspecific variability | Covariation | Total | ||||||||||||
Belt | 0.272 | 0.094 | −0.099 | 0.267 | |||||||||||
Residuals | 0.704 | 0.039 | −0.010 | 0.733 | |||||||||||
Total | 0.976 | 0.133 | −0.109 | 1.000 |
(A) | |||||||||||||||
Fixed CM | Specific CM | Intraspecific CM | |||||||||||||
SS | DF | MS | F | p | SS | DF | MS | F | p | SS | DF | MS | F | p | |
Belt | 13.063 | 3 | 4.354 | 23.930 | <0.0001 | 14.557 | 3 | 4.852 | 24.050 | <0.0001 | 3.213 | 3 | 1.071 | 63.060 | <0.0001 |
Residuals | 7.459 | 41 | 0.182 | 8.271 | 41 | 0.202 | 0.696 | 41 | 0.017 | ||||||
Post hoc (HSD) tests | Post hoc (HSD) tests | Post hoc (HSD) tests | |||||||||||||
Belt pairwise comparisons | p | Belt pairwise comparisons | p | Belt pairwise comparisons | p | ||||||||||
1 vs. 2 | 0.975 | 1 vs. 2 | <0.001 | 1 vs. 2 | <0.0001 | ||||||||||
1 vs. 3 | 1.000 | 1 vs. 3 | 0.430 | 1 vs. 3 | <0.0001 | ||||||||||
1 vs. 4 | <0.0001 | 1 vs. 4 | 0.010 | 1 vs. 4 | <0.0001 | ||||||||||
2 vs. 3 | 0.964 | 2 vs. 3 | 0.028 | 2 vs. 3 | <0.0001 | ||||||||||
2 vs. 4 | <0.0001 | 2 vs. 4 | <0.0001 | 2 vs. 4 | <0.0001 | ||||||||||
3 vs. 4 | <0.0001 | 3 vs. 4 | <0.0001 | 3 vs. 4 | 0.009 | ||||||||||
(B) | |||||||||||||||
Turnover | Intraspecific variability | Covariation | Total | ||||||||||||
Belt | 13.063 | 3.213 | −1.719 | 14.557 | |||||||||||
Residuals | 7.459 | 0.696 | 0.116 | 8.271 | |||||||||||
Total | 20.522 | 3.909 | −1.603 | 22.828 | |||||||||||
(C) | |||||||||||||||
Turnover | Intraspecific variability | Covariation | Total | ||||||||||||
Belt | 0.572 | 0.141 | −0.075 | 0.638 | |||||||||||
Residuals | 0.327 | 0.030 | 0.005 | 0.362 | |||||||||||
Total | 0.899 | 0.171 | −0.070 | 1.000 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Di Biase, L.; Fattorini, S.; Cutini, M.; Bricca, A. The Role of Inter- and Intraspecific Variations in Grassland Plant Functional Traits along an Elevational Gradient in a Mediterranean Mountain Area. Plants 2021, 10, 359. https://doi.org/10.3390/plants10020359
Di Biase L, Fattorini S, Cutini M, Bricca A. The Role of Inter- and Intraspecific Variations in Grassland Plant Functional Traits along an Elevational Gradient in a Mediterranean Mountain Area. Plants. 2021; 10(2):359. https://doi.org/10.3390/plants10020359
Chicago/Turabian StyleDi Biase, Letizia, Simone Fattorini, Maurizio Cutini, and Alessandro Bricca. 2021. "The Role of Inter- and Intraspecific Variations in Grassland Plant Functional Traits along an Elevational Gradient in a Mediterranean Mountain Area" Plants 10, no. 2: 359. https://doi.org/10.3390/plants10020359
APA StyleDi Biase, L., Fattorini, S., Cutini, M., & Bricca, A. (2021). The Role of Inter- and Intraspecific Variations in Grassland Plant Functional Traits along an Elevational Gradient in a Mediterranean Mountain Area. Plants, 10(2), 359. https://doi.org/10.3390/plants10020359