Non-Cannabinoid Metabolites of Cannabis sativa L. with Therapeutic Potential
Abstract
:1. Introduction
Main Chemical Classes | Number of Compounds | Reference | |
---|---|---|---|
1 | Terpenes | 120 | [11] |
2 | Cannabinoids | 66 | [11] |
3 | Hydrocarbons | 50 | [11] |
4 | Sugars and related compounds | 34 | [11] |
5 | Nitrogenous compounds | 27 | [11] |
6 | Non-cannabinoid phenols | 25 | [11] |
7 | Fatty acids | 22 | [11] |
8 | Simple acids | 21 | [11] |
9 | Flavonoids | 21 | [11] |
2. Non-Cannabinoid Compounds
2.1. Terpenes and Their Derivatives, Terpenoids
2.2. Phenolic Compounds in Cannabis sativa
2.3. Flavonoids
Therapeutic Window/Benefits of Flavonoids | Patent Number |
---|---|
Flavonoid derivatives targeting kinases, sirtuins and oncogenic agents for the treatment of cancers. | [40,41] |
Agent containing flavonoid derivatives for treating cancer and inflammation. | [42] |
Therapeutic agents containing cannabis flavonoid derivative for ocular disorders. | [43] |
Therapeutic agents containing cannabis flavonoid derivatives for the prevention and treatment of neurodegenerative disorders. | [44] |
Pi 4-kinase inhibitor as a therapeutic for viral hepatitis, cancer, malaria. autoimmune disorders and inflammation, and a radiosensitizer and immunosuppressant. | [45] |
Therapeutic antiviral agents containing cannabis cannabinoid derivatives. | [46] |
2.4. Fatty Acids of Cannabis Seeds
2.5. Alkaloids in Cannabis
2.6. Lignanamides and Phenolic Acids
2.7. Amino Acids
2.8. Stilbenes and Stilbenoids
3. Conclusions and Future Prospects
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, H. An archaeological and historical account of cannabis in China. Econ. Bot. 1973, 28, 437–448. [Google Scholar] [CrossRef]
- Jin, D.; Dai, K.; Xie, Z.; Chen, J. Secondary metabolites profiled in Cannabis inflorescences, leaves, stem barks, and roots for medicinal purposes. Sci. Rep. 2020, 10. [Google Scholar] [CrossRef] [PubMed]
- Tsang, S.W.; Guan, Y.; Wang, J.; Bian, Z.; Zhang, H. Inhibition of pancreatic oxidative damage by stilbene derivative dihydro-resveratrol: Implication for treatment of acute pancreatitis. Sci. Rep. 2016, 6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaur, R.; Matta, T.; Kaur, H. Plant derived alkaloids. Haya Saudi J. Life Sci. 2017, 2, 158–189. [Google Scholar]
- Ross, S.A.; ElSohly, M.A. Constituents of Cannabis sativa L. XXVIII a review of the natural constituents: 1980–1994. Zagazig J. Pharm. Sci. 1995, 4, 1–10. [Google Scholar]
- Turner, C.E.; ElSohly, M.A.; Boeren, E.G. Constituents of Cannabis sativa L. XVII: A review of the natural constituents. J. Nat. Prod. 1980, 43, 169–243. [Google Scholar] [CrossRef]
- Hampson, A.J.; Grimaldi, M.; Axelrod, J.; Wink, D. Cannabidiol and (-) 9-tetrahydrocannabinol are neuroprotective antioxidants. Proc. Natl. Acad. Sci. USA 1988, 95, 8268–8273. [Google Scholar] [CrossRef] [Green Version]
- Hampson, A.J.; Grimaldi, M.; Lolic, M.; Wink, D.; Rosenthal, R.; Axelrod, J. Neuroprotective antioxidants from marijuana. Ann. N. Y. Acad. Sci. 2000, 899, 274–282. [Google Scholar] [CrossRef]
- Birben, E.; Sahiner, U.M.; Sackesen, C.; Erzurum, S.; Kalayci, O. Oxidative stress and antioxidant defense. World Allergy Organ. J. 2012, 5, 9–19. [Google Scholar] [CrossRef] [Green Version]
- Krishnaiah, D.; Sarbatly, R.; Nithyanandam, R. A review of the antioxidant potential of medicinal plant species. Food Bioprod. Process. 2011, 89, 217–233. [Google Scholar] [CrossRef]
- Grotenhermen, F.; Russo, E. Cannabis and Cannabinoids: Pharmacology, Toxicology, and Therapeutic Potential, 1st ed.; Routledge: Oxfordshire, UK, 2002. [Google Scholar]
- Booth, J.K.; Page, J.E.; Bohlmann, J. Terpene synthases from Cannabis sativa. PLoS ONE 2017, 12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Radwan, M.M.; Elsohly, M.A.; Slade, D.; Ahmed, S.A.; Wilson, L.; El-Alfy, A.T.; Khan, I.A.; Ross, S.A. Non-cannabinoid constituents from a high potency Cannabis sativa variety. Phytochemistry 2008, 69, 2627–2633. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Al-Taweel, A.; Perveen, S. Terpenes and Terpenoids; IntechOpen: London, UK, 2018; Chapter 1. [Google Scholar]
- Fischedick, J.T.; Hazekamp, A.; Erkelens, T.; Choi, Y.H.; Verpoorte, R. Metabolic fingerprinting of Cannabis sativa L., cannabinoids and terpenoids for chemotaxonomic and drug standardization purposes. Phytochemistry 2010, 71. [Google Scholar] [CrossRef] [PubMed]
- Elzinga, S.; Fischedick, J.; Podkolinski, R.; Raber, J.C. Cannabinoids and terpenes as chemotaxonomic markers in cannabis. Nat. Prod. Chem. Res. 2015, 3, 81. [Google Scholar] [CrossRef] [Green Version]
- Jacobs, M. The Difference between Cannabinoids and Terpenes (Analytical Cannabis). 27 July 2020. Available online: https://www.analyticalcannabis.com/articles/the-difference-between-cannabinoids-and-terpenes-311502 (accessed on 28 July 2020).
- Booth, J.K.; Bohlmann, J. Terpenes in Cannabis sativa—From plant genome to humans. Plant Sci. 2019, 284, 67–72. [Google Scholar] [CrossRef]
- Rao, V.S.; Menezes, A.M.; Viana, G.S. Effect of myrcene on nociception in mice. J. Pharm. Pharmacol. 1990, 42, 877–878. [Google Scholar] [CrossRef]
- Johnson, J.; Theisen, E. What Are Terpenes? 6 March 2020. Available online: https://www.medicalnewstoday.com/articles/what-are-terpenes (accessed on 28 July 2020).
- McPartland, J.M.; Russo, E.B. Non-Phytocannabinoid Constituents of Cannabis and Herbal Synergy. In Handbook of Cannabis; Pertwee, R.G., Ed.; Oxford University Press: Oxford, UK, 2014. [Google Scholar]
- Ambrosch, S.; Duliban, C.; Heger, H.; Moser, E.; Laistler, E.; Windischberger, C.; Heuberger, E. Effects of 1,8-Cineole and (-)-Linalool on functional brain activation in a working memory task. Flavour Fragr. J. 2018, 33, 235–244. [Google Scholar] [CrossRef]
- Vieira-Brock, P.L.; Vaughan, B.M.; Vollmer, D.L. Comparison of antimicrobial activities of natural essential oils and synthetic fragrances against selected environmental pathogens. Biochim. Open 2017, 5, 8–13. [Google Scholar] [CrossRef]
- Choi, H. Chemical constituents of essential oils possessing anti-influenza A/WS/33 virus activity. Osong Publ. Health Res. Perspect. 2018, 9, 348–353. [Google Scholar] [CrossRef]
- Held, S.; Schieberle, P.; Somoza, V. Characterization of α-Terpineol as an anti-inflammatory component of orange juice by in vitro studies using oral buccal cells. J. Agric. Food Chem. 2007, 55, 8040–8046. [Google Scholar] [CrossRef]
- Quintans-Júnior, L.J.; Oliveira, M.G.; Santana, M.F.; Santana, M.T.; Guimarães, A.G.; Siqueira, J.S.; Almeida, R.N. α-Terpineol reduces nociceptive behavior in mice. Pharm. Biol. 2011, 49, 583–586. [Google Scholar] [CrossRef]
- Sousa, D.P.; Quintans, L.; Almeida, R.N. Evolution of the anticonvulsant activity of α-terpineol. Pharm. Biol. 2007, 45, 69–70. [Google Scholar] [CrossRef] [Green Version]
- Souza, R.; Cardoso, M.; Menezes, C.; Silva, J.; De Sousa, D.; Batista, J. Gastroprotective activity of α-terpineol in two experimental models of gastric ulcer in rats. DARU J. Fac. Pharm. Tehran. Univ. Med. Sci. 2011, 19, 277–281. [Google Scholar]
- Valente, J.; Zuzarte, M.; Gonçalves, M.J.; Lopes, M.C.; Cavaleiro, C.; Salgueiro, L.; Cruz, M.T. Antifungal, antioxidant and anti-inflammatory activities of Oenanthe crocata L. essential oil. Food Chem. Toxic. Intern. J. Publ. Br. Indus. Biol. Res. Assoc. 2013, 62, 349–354. [Google Scholar] [CrossRef] [PubMed]
- Cavaleiro, C.; Salgueiro, L.; Gonçalves, M.J.; Hrimpeng, K.; Pinto, J.; Pinto, E. Antifungal activity of the essential oil of Angelica major against Candida, Cryptococcus, Aspergillus and dermatophyte species. J. Nat. Med. 2015, 69, 241–248. [Google Scholar] [CrossRef] [PubMed]
- Golfakhrabadi, F.; Khanavi, M.; Ostad, S.N.; Saeidnia, S.; Vatandoost, H.; Abai, M.R.; Hafizi, M.; Yousefbeyk, F.; Rad, Y.R.; Baghenegadian, A.; et al. Biological activities and composition of ferulago carduchorum essential Oil. J. Arthropod. Borne Dis. 2014, 9, 104–115. [Google Scholar]
- Kim, M.J.; Yang, K.W.; Kim, S.S.; Park, S.M.; Park, K.J.; Kim, K.S.; Choi, Y.H.; Cho, K.K.; Hyun, C.G. Chemical composition and anti-inflammation activity of essential oils from Citrus unshiu flower. Nat. Prod. Comm. 2014, 9, 727–730. [Google Scholar] [CrossRef] [Green Version]
- Loizzo, M.R.; Saab, A.M.; Tundis, R.; Statti, G.A.; Menichini, F.; Lampronti, I.; Gambari, R.; Cinatl, J.; Doerr, H.W. Phytochemical analysis and in vitro antiviral activities of the essential oils of seven Lebanon species. Chem. Biodiver. 2008, 5, 461–470. [Google Scholar] [CrossRef]
- Izzo, L.; Castaldo, L.; Narváez, A.; Graziani, G.; Gaspari, A.; Rodríguez-Carrasco, Y.; Ritieni, A. Analysis of phenolic compounds in commercial Cannabis sativa L. Inflorescences using UHPLC-Q-Orbitrap HRMS. Molecules 2020, 25, 631. [Google Scholar] [CrossRef] [Green Version]
- Bertoia, M.L.; Rimm, E.B.; Mukamal, K.J.; Hu, F.B.; Willett, W.C.; Cassidy, A. Dietary flavonoid intake and weight maintenance: Three prospective cohorts of 124,086 US men and women followed for up to 24 years. BMJ 2016, 352, 1–53. [Google Scholar] [CrossRef] [Green Version]
- Richter, N. What are Flavonoids? (Comprehensive Guide). 10 March 2020. Available online: https://wayofleaf.com/education/what-are-flavonoids (accessed on 28 July 2020).
- Barrett, M.L.; Gordon, D.; Evans, F.J. Isolation from Cannabis sativa L. Of cannflavin—A novel inhibitor of prostaglandin production. Biochem. Pharm. 1985, 34, 2019–2024. [Google Scholar] [CrossRef] [PubMed]
- Werz, O.; Seegers, J.; Schaible, A.M.; Weinigel, C.; Barz, D.; Koeberle, A.; Appendino, G. Cannflavins from hemp sprouts, a novel cannabinoid-free hemp food product, target microsomal prostaglandin E2 synthase-1 and 5-lipoxygenase. Pharma Nutr. 2014, 2, 53–60. [Google Scholar] [CrossRef]
- Ngwa, W.; Kumar, R.; Thompson, D.; Lyerly, W.; Moore, R.; Reid, T.; Toyang, N. Potential of flavonoid-inspired phytomedicines against COVID-19. Molecules 2020, 25, 2707. [Google Scholar] [CrossRef] [PubMed]
- Lowe, H.I.; Toyang, N.J. Washington, DC: U.S. Patent and Trademark Office. U.S. Patent No. US20180098961A1, 3 September 2019. [Google Scholar]
- Lowe, H.I.; Toyang, N.J. Washington, DC: U.S. Patent and Trademark Office. U.S. Patent No. WO2017091837A2, 1 June 2017. [Google Scholar]
- Lowe, H.I.; Toyang, N.J.; Bryant, J. Washington, DC: U.S. Patent and Trademark Office. U.S. Patent No. US20170360744A1, 8 September 2020. [Google Scholar]
- Lowe, H.I.; Toyang, N.J. Washington, DC: U.S. Patent and Trademark Office. U.S. Patent No. US10278950B2, 7 May 2019. [Google Scholar]
- Lowe, H.I.; Toyang, N.J. Washington, DC: U.S. Patent and Trademark Office. U.S. Patent No. US20190083452A1, 25 August 2020. [Google Scholar]
- Lowe, H.I.; Toyang, N.J. Washington, DC: U.S. Patent and Trademark Office. U.S. Patent No. WO2018022868A1, 1 February 2018. [Google Scholar]
- Lowe, H.I.; Toyang, N.J. Washington, DC: U.S. Patent and Trademark Office. U.S. Patent No. US20180214389A1, 2 August 2018. [Google Scholar]
- Mölleken, H.; Theimer, R.R. Survey of minor fatty acids in Cannabis sativa L. fruits of various origins. J. Int. Hemp Assoc. 1997, 4, 13–17. Available online: http://www.internationalhempassociation.org/jiha/jiha4107.html (accessed on 15 November 2020).
- Ross, S.A.; ElSohly, H.N.; ElKashoury, E.A.; ElSohly, M.A. Fatty acids of Cannabis seeds. Phytochem. Anal. 1996, 7, 279–283. [Google Scholar] [CrossRef]
- Hazekamp, A.; Fischedick, J.; Llano-Diez, M.; Lubbe, A.; Ruhaak, L. Chemistry of Cannabis. In Comprehensive Natural Products Chemistry II, 2nd ed.; Elsevier Ltd.: Oxford, UK, 2010. [Google Scholar] [CrossRef]
- Cooke, J. Does Cannabis Have Nutritional Benefits? Available online: https://thesunlightexperiment.com/blog/cannabis-nutritional-benefits (accessed on 28 July 2020).
- Pontassuglia, L.; Dongo, D. Hemp, the Italian Superfood–Hemp. Available online: https://www.greatitalianfoodtrade.it/en/markets/hemp-the-italian-superfood (accessed on 28 July 2020).
- Kennedy, G.W. The Asserted Presence of Nicotine in Cannabis. In Proceedings of the American Pharmaceutical Association at the Annual Meeting; The Association: Philadelphia, PA, USA, 1886; Volume 34, pp. 119–121. [Google Scholar]
- Siebold, L.; Bradbury, T. Note on the alleged presence of Nicotine in Indian hemp. Pharm. J. Trans. 1881, 12, 326–327. [Google Scholar]
- Hay, M. A new alkaloid in Cannabis indica. Pharm. J. Trans. 1883, 13, 996–997. [Google Scholar]
- Merck, E. Merck's 1896 Index: An Encyclopedia for the Physician and the Pharmacist: Stating the Names and Synonyms, Source of Origin, Chemical Nature and Formulas, Physical Form, Appearance, and Properties, Melting and Boiling Points, Solubilities, Gravities and Percentage Strengths, Physiological Effects, Therapeutic Uses, Modes of Administration and Application, Regular and Maximum Dosage, Incompatibles, Antidotes: Special Cautions, Hints on Keeping and Handling, Methods of Testing, Market Values, etc., etc. of the Chemicals and Drugs Used in Medicine, in Chemistry, and in the Arts; Merck & Co.: New York, NY, USA, 1895. [Google Scholar]
- Roberts, M.F. Alkaloids: Biochemistry, Ecology, and Medicinal Applications; Wink, M., Ed.; Springer: Boston, MA, USA, 1998; ISBN 9781475729054. OCLC 851770197. [Google Scholar]
- Gowda, L.; Venkategowda, A. Isolation & characterization of antimicrobial alklaoids from Plumeria albaflowers against food borne pathogens. Am. J. Life Sci. 2014, 2, 1–6. [Google Scholar]
- Yan, X.; Zhou, Y.; Tang, J.; Ji, M.; Lou, H.; Fan, P. Diketopiperazine indole alkaloids from hemp seed. Phytochem. Lett. 2016, 18, 77–82. [Google Scholar] [CrossRef]
- Mechoulam, R.; Hanuš, L. A historical overview of chemical research on cannabinoids. Chem. Phys. Lipids 2000, 108, 1–13. [Google Scholar] [CrossRef]
- Klein, F.K.; Rapoport, H.; Elliott, H.W. Cannabis alkaloids. Nature 1971, 232, 258–259. [Google Scholar] [CrossRef] [PubMed]
- Lotter, H.L.; Abraham, D.J.; Turner, C.E.; Knapp, J.E.; Schiff, P.L.; Slatkin, D.J., Jr. Cannabisativine. A new alkaloid from Cannabis sati6a L. Root. Tetrahedron Lett. 1975, 33, 2815–2818. [Google Scholar] [CrossRef]
- Wink, M. Potential of DNA intercalating alkaloids and other plant secondary metabolites against SARS-CoV-2 causing COVID-19. Diversity 2020, 12, 175. [Google Scholar] [CrossRef]
- Kuethe, J.T.; Comins, D.L. Asymmetric total synthesis of (+)-cannabisativine (I). Chem. Inform. 2004, 35. [Google Scholar] [CrossRef]
- Flores-Sánchez, I.J.; Verpoorte, R. Secondary metabolism in cannabis. Phytochem. Rev. 2008, 7, 615–639. [Google Scholar] [CrossRef]
- Yan, X.; Tang, J.; Passos, C.; Nurisso, A.; Simões-Pires, C.; Ji, M.; Lou, H.; Fan, P. Characterization of lignanamides from hemp (Cannabis sativa L.) seed and their antioxidant and acetylcholinesterase inhibitory activities. J. Agric. Food Chem. 2015, 63. [Google Scholar] [CrossRef]
- Kubala, J. Essential Amino Acids: Definition, Benefits and Food Sources. 12 June 2018. Available online: https://www.healthline.com/nutrition/essential-amino-acids (accessed on 28 July 2020).
- Audu, B.S.; Ofojekwu, P.C.; Ujah, A.; Ajima, M.N.O. Phytochemical, proximate composition, amino acid profile and characterization of Marijuana (Cannabis sativa L.). J. Phytopharm. 2014, 3, 35–43, Scientific Figure on ResearchGate. Available online: https://www.researchgate.net/figure/Amino-acid-composition-of-the-leaf-stem-and-seeds-of-Cannabis-sativa-obtained-from_tbl3_273692476 (accessed on 26 July 2020).
- Jang, H.; Park, S.; Nam, J. The Effects of Heat Treatment on the Nutritional Composition and Antioxidant Properties of Hempseed (Cannabis sativa L.). J. Korean Soc. Food Sci. Nutr. 2018, 47, 885–894. [Google Scholar] [CrossRef]
- Wang, X.; Tang, C.; Yang, X.; Gao, W. Characterization, amino acid composition and in vitro digestibility of hemp (Cannabis sativa L.) proteins. Food Chem. 2008, 107, 11–18. [Google Scholar] [CrossRef]
- Osburn, L. Hemp seed: The most nutritionally complete food source in the world. Hemp. Line J. 1992, 1, 14–15. [Google Scholar]
- Orsini, F.; Verotta, L. Stilbenes and bibenzyls with potential anticancer or chemopreventive activity. In Advances in Nutrition and Cancer 2. Advances in Experimental Medicine and Biology; Zappia, V., Della Ragione, F., Barbarisi, A., Russo, G.L., Iacovo, R.D., Eds.; Springer: Boston, MA, USA, 1999; Volume 472. [Google Scholar] [CrossRef]
- Baur, J.; Sinclair, D. Therapeutic potential of resveratrol: The in vivo evidence. Nat. Rev. Drug Discov. 2006, 5, 493–506. [Google Scholar] [CrossRef] [PubMed]
- Montané, X.; Kowalczyk, O.; Reig-Vano, B.; Bajek, A.; Roszkowski, K.; Tomczyk, R.; Tylkowski, B. Current perspectives of the applications of polyphenols and flavonoids in cancer therapy. Molecules 2020, 25, 3342. [Google Scholar] [CrossRef] [PubMed]
- El-Feraly, F. Isolation, characterization, and synthesis of 3,5,4’–Trihydroxybibenzyl from cannabis sativa. J. Nat. Prod. 2004, 47. [Google Scholar] [CrossRef]
- Giménez-Bastida, J.A.; Ávila-Gálvez, M.Á.; Espín, J.C.; González-Sarrías, A. Conjugated physiological resveratrol metabolites induce senescence in breast cancer cells: Role of p53/p21 and p16/Rb pathways, and ABC transporters. Mol. Nutr. Food Res. 2019, 63. [Google Scholar] [CrossRef]
- Pollastro, F.; Minassi, A.; Fresu, L. Cannabis phenolics and their bioactivities. Curr. Med. Chem. 2018, 24. [Google Scholar] [CrossRef]
- Sànchez-Duffhues, G.; Calzado, M.A.; de Vinuesa, A.G.; Caballero, F.J.; Ech-Chahad, A.; Appendino, G.; Krohn, K.; Fiebich, B.L.; Muñoz, E. Denbinobin, a naturally occurring 1,4-phenanthrenequinone, inhibits HIV-1 replication through an NF-kB-dependent pathway. Biochem. Pharmacol. 2008, 76, 1240–1250. [Google Scholar] [CrossRef]
- Gonçalves, J.; Rosado, T.; Soares, S.; Simão, A.; Caramelo, D.; Luís, Â.; Duarte, A. Cannabis and its secondary metabolites: Their use as therapeutic drugs, toxicological aspects, and analytical determination. Medicines 2019, 6, 31. [Google Scholar] [CrossRef] [Green Version]
- Andre, C.; Hausman, J.F.; Guerriero, G. Cannabis sativa: The plant of the thousand and one molecules. Front. Plant Sci. 2016, 7. [Google Scholar] [CrossRef] [Green Version]
Monoterpenoids | Sesquiterpenoids | |||
---|---|---|---|---|
α-Pinene | Eucalyptol | Borneol | (-)-β-Elemene | Viridiflorol |
Camphene | Ocimene | Terpinen-4-ol | β-Caryophyllene | (-)-Guaiol |
Sabinene | γ-Terpinene | -Terpineol | Aromadendrene | (+)-Cedrol |
(-)-β-Pinene | Sabinene Hydrate | (+)-Dihydrocarvone | Trans-β-Farnesene | β-Eudesmol |
β-Myrcene | Terpinolene | Nerol | α-Humulene | α-Bisabolol |
α-Phellandrene | Frenchone | Pulegone | Valencene | |
Δ 3-Carene | Linalool | Carvone | Ledene | |
α-Terpinene | Frenchol | Geraniol | Trans-Nerolidol | |
p-Cymene | (-)-Isopulegol | Geranyl Acetate | Caryophyllene Oxide | |
Limonene | Camphor | Globulol |
Terpene | Biological Property | References |
---|---|---|
Myrcene | Potent analgesic | [19] |
Antioxidant; neuroprotective; anti-inflammatory | [20] | |
Anticonvulsant | [21] | |
1,8-cineole | Increases cerebral blood flow and enhances cortical activity | [22] |
Limonene | inhibits many species of bacteria and fungi—repellant | [23] |
Anti-inflammatory; antioxidant; antiviral; antidiabetic; anticancer | [20] | |
Antidepressant; anticonvulsant | [21] | |
α-Pinene | Antimicrobial; repellant | [23] |
Bronchodilator; anti-inflammatory, | ||
Memory improvement/enhancement; acetylcholinesterase inhibitor | [21] | |
Linalool (Lavender scent) | Anxiolytic; anti-inflammatory; antimicrobial; anticancer; neuroprotective; antidepressant | [20] |
Anti-influenza | [24] | |
Sedative; induces apoptosis in cancer cells | [21] | |
α-terpineol | Antimicrobial; repellant | [23] |
Anti-inflammatory | [25] | |
Analgesic | [26] | |
Nociception inhibition | [26] | |
Anticonvulsant | [27] | |
Antimicrobial | [21] | |
Gastroprotective | [28] | |
Borneol | Antimicrobial; repellant | [23] |
β- caryophyllene | Anti-inflammatory Analgesic | [20] |
Antispasmic in gut muscles | [21] | |
Humulene | Antiallergy; anticancer | [20] |
Ocimene | Antifungal; antibacterial; antioxidant; antiviral; anti-inflammatory | [29,30,31,32,33] |
Flavonols | Phenolic Amides | Flavones | Phenolic Acids |
---|---|---|---|
Catechin | N-trans-caffeoyltyramine | Cannflavin A | Hydroxycinnamic acids |
Epicatechin | Flavonoids | Cannflavin B | Chlorogenic acid |
Flavanone | Flavonol | Luteolin-7-O-glucoside | Caffeic acid |
Naringenin | Rutin | Apigenin-7-O-glucoside | p-Coumaric acid |
Lignanamides | Quercetin-3-glucoside | Luteolin | Ferulic acid |
Cannabisin A | Kaempferol-3-O-glucoside | Apigenin | |
Cannabisin B | Quercetin | ||
Cannabisin C | Kaempferol |
Flavonoid | Biological Property | |
---|---|---|
Flavonols (e.g., quercetin and kaempferol) | Antioxidant; cardioprotective | [36] |
Flavanones | Antioxidant; anticancer; anti-inflammatory | [36] |
Isoflavonoids | Phytoestrogenic (mimic the hormone estrogen); hormone balance and metabolism | [36] |
Anthocyanins (responsible for a plant’s unique colour) | Antioxidant and anti-inflammatory | [36] |
Vitamins | Minerals | Macronutrients |
---|---|---|
C | Calcium | Fat |
Thiamine | Iron | Carbohydrate |
Riboflavin | Magnesium | Fiber |
Niacin | Phosphorus | Protein |
B-6 | Potassium | kJ:2313 |
Folate | Sodium | |
A | Zinc | |
E |
Spiroindans | Eight Dihydrostilbenes/Bibenzyls | Phenanthrenes and Derivates |
---|---|---|
|
|
|
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lowe, H.; Steele, B.; Bryant, J.; Toyang, N.; Ngwa, W. Non-Cannabinoid Metabolites of Cannabis sativa L. with Therapeutic Potential. Plants 2021, 10, 400. https://doi.org/10.3390/plants10020400
Lowe H, Steele B, Bryant J, Toyang N, Ngwa W. Non-Cannabinoid Metabolites of Cannabis sativa L. with Therapeutic Potential. Plants. 2021; 10(2):400. https://doi.org/10.3390/plants10020400
Chicago/Turabian StyleLowe, Henry, Blair Steele, Joseph Bryant, Ngeh Toyang, and Wilfred Ngwa. 2021. "Non-Cannabinoid Metabolites of Cannabis sativa L. with Therapeutic Potential" Plants 10, no. 2: 400. https://doi.org/10.3390/plants10020400
APA StyleLowe, H., Steele, B., Bryant, J., Toyang, N., & Ngwa, W. (2021). Non-Cannabinoid Metabolites of Cannabis sativa L. with Therapeutic Potential. Plants, 10(2), 400. https://doi.org/10.3390/plants10020400