Contributions of Reduced Susceptibility Alleles in Breeding Apple Cultivars with Durable Resistance to Fire Blight
Abstract
:1. Clonally Propagated Apple Orchards Are Vulnerable to Fire Blight Epidemics
2. Phenotyping Resistance/Susceptibility to Fire Blight
2.1. Challenges Associated with Phenotyping Resistance/Susceptibility to Fire Blight
2.2. Phenotyping for Selection Versus Identification of Resistance Sources
3. Variation for Resistance/Susceptibility among Malus Cultivars and Species
3.1. Most Commercial Apple Cultivars Are Susceptible to Fire Blight
3.2. Wild Malus Species as Sources of Resistance to Fire Blight
4. Quantitative Phenotypic Variation for Resistance/Susceptibility to Fire Blight within and among Offspring in Families
5. Moderate Heritability Estimates Indicate Breeders Could Increase Resistance via Selection
6. Multiple Additive and/or Epistatic QTLs Associated with Resistance/Susceptibility to Fire Blight Have Been Identified throughout the Apple Genome
6.1. Most Fire Blight QTLs Have Been Detected in Wild Malus Germplasm with Poor Fruit Quality
6.2. Fire Blight QTLs Detected in Populations Derived from Apple Cultivars
7. Short-Term Strategies for Breeding Apple Cultivars with Reduced Susceptibility to Fire Blight
7.1. Published Phenotypic and Fire Blight QTL Allele Information to Inform Parental Selection
7.2. Phenotypic Seedling Selection to Develop Populations with Low Susceptibility to Fire Blight
8. DNA-Informed Breeding for Resistance to Fire Blight, a Long-Term Strategy
8.1. Few Trait-Predictive DNA Tests for Fire Blight QTLs Are Available
8.2. Chromosome 6 Fire Blight QTL Should Be Targeted for DNA Test Development
8.3. Selection Against Susceptibility
8.4. Non-Additive Interactions at and among Fire Blight QTLs
8.5. DNA-Informed Breeding to Achieve Durable Resistance
9. Conclusions: Durable Resistance to Fire Blight Could Be Efficiently Achieved through Breeding
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Van der Zwet, T.; Halbrendt, O.N.; Zeller, W. Fire blight: History, Biology and Management; APS Press: Saint Paul, MN, USA, 2012. [Google Scholar]
- Norelli, J.L.; Jones, A.L.; Aldwinckle, H.S. Fire blight management in the Twenty-first Century: Using new technologies that enhance host resistance in apple. Plant Dis. 2003, 87, 756–765. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peil, A.; Bus, V.M.G.; Geider, K.; Richter, K.; Flachowsky, H.; Hanke, M.V. Improvement of fire blight resistance in apple and pear. Int. J. Plant Breed. 2009, 3, 1–27. [Google Scholar]
- Cargill, C. Agriculture: The Cornerstone of Washington’s Economy. Washington Policy Center. Available online: https://www.washingtonpolicy.org/publications/detail/agriculture-the-cornerstone-of-washingtons-economy (accessed on 9 July 2017).
- DuPont, S.T.; Washington State University, Tree Fruit Research and Extension Center, Wenatchee, WA, USA. Personal communication, 2019.
- Peil, A.; Emeriewen, O.F.; Khan, A.; Kostick, S.; Malnoy, M. Status of fire blight resistance breeding in Malus. J. Plant Pathol. 2020. [Google Scholar] [CrossRef]
- Kellerhals, M.; Schütz, S.; Patocchi, A. Breeding for host resistance to fire blight. J. Plant Pathol. 2017, 99, 37–43. [Google Scholar]
- Teh, S.; Kostick, S.A.; Evans, K.M. Genetics and breeding of apple scions. In The Apple Genome; Korban, S.S., Ed.; Springer-Nature Publ.: New York, NY, USA, 2021. (In press) [Google Scholar]
- Brown, S. Apple. In Fruit Breeding, Handbook of Plant Breeding; Badenes, M.L., Byrne, D.H., Eds.; Springer-Verlag: Berlin/Heidelberg, Germany, 2012; pp. 329–367. [Google Scholar]
- Emeriewen, O.F.; Wöhner, T.; Flachowsky, H.; Peil, A. Malus hosts—Erwinia amylovora interactions: Strain pathogenicity and resistance mechanisms. Front. Plant Sci. 2019, 10, 551. [Google Scholar] [CrossRef]
- Lee, S.A.; Ngugi, H.K.; Halbrendt, N.O.; Keefe, O.G.; Lehman, B.; Travis, J.W.; Sinn, J.P.; McNellis, T.W. Virulence characteristics accounting for fire blight disease severity in apple trees and seedlings. Phytopathology 2010, 100, 539–550. [Google Scholar] [CrossRef]
- Calenge, F.; Drouet, D.; Denancé, C.; van de Weg, W.E.; Brisset, M.N.; Paulin, J.P.; Durel, C.E. Identification of major QTL together with several minor additive or epistatic QTLs for resistance to fire blight in apple in two related progenies. Theor. Appl. Genet. 2005, 111, 128–135. [Google Scholar] [CrossRef]
- Durel, C.E.; Denancé, C.; Brisset, M.N. Two distinct major QTL for resistance to fire blight co-localize on linkage group 12 in apple genotypes ‘Evereste’ and Malus floribunda clone 821. Genome 2009, 52, 139–147. [Google Scholar] [CrossRef]
- Khan, M.A.; Duffy, B.; Gessler, C.; Patocchi, A. QTL mapping of fire blight resistance in apple. Mol. Breed. 2006, 17, 299–306. [Google Scholar] [CrossRef] [Green Version]
- Korban, S.S.; Ries, S.M.; Klopmeyer, M.J.; Morrisey, J.F.; Hattermann, D.R. Genotypic responses of scab-resistant apple cultivars/selections to two strains of Erwinia amylovora and the inheritance of resistance to fire blight. Ann. Appl. Biol. 1988, 113, 101–105. [Google Scholar] [CrossRef]
- van de Weg, E.; Di Guardo, M.; Jänsch, M.; Juglard, S.D.; Costa, F.; Baumgartner, I.; Broggini, G.A.L.; Kellerhals, M.; Troggio, M.; Laurens, F.; et al. Epistatic fire blight resistance QTL alleles in the apple cultivar ‘Enterprise’ and selection X-6398 discovered and characterized through pedigree-informed analysis. Mol. Breed. 2018, 38, 1–18. [Google Scholar] [CrossRef]
- Hampson, C.R.; Sholberg, P.L. Estimating combining ability for fire blight resistance in apple progenies. Acta Hortic. 2008, 793, 337–343. [Google Scholar] [CrossRef]
- Harshman, J.M.; Evans, K.M.; Allen, H.; Potts, R.; Flamenco, J.; Aldwinckle, H.S.; Wisniewski, M.E.; Norelli, J.L. Fire blight resistance in wild accessions of Malus sieversii. Plant Dis. 2017, 101, 1738–1745. [Google Scholar] [CrossRef] [PubMed]
- Peil, A.; Libreros, G.T.; Richter, K.; Trognitz, C.; Trognitz, B.; Hanke, M.V.; Flachowsky, H. Strong evidence for a fire blight resistance gene of Malus robusta located on linkage group 3. Plant Breed. 2007, 126, 470–475. [Google Scholar] [CrossRef]
- Le Roux, P.M.; Khan, M.A.; Broggini, G.A.L.; Duffy, B.; Gessler, C.; Patocchi, A. Mapping of quantitative trait loci for fire blight resistance in apple cultivars ‘Florina’ and ‘Nova Easygro’. Genome 2010, 53, 710–722. [Google Scholar] [CrossRef] [PubMed]
- Emeriewen, O.; Richter, K.; Kilian, A.; Zini, E.; Hanke, M.V.; Malnoy, M.; Peil, A. Identification of a major quantitative trait locus for resistance to fire blight in the wild apple species Malus fusca. Mol. Breed. 2014, 34, 407–419. [Google Scholar] [CrossRef]
- Kostick, S.A.; Norelli, J.L.; Evans, K.M. Novel metrics to classify fire blight resistance of 94 apple cultivars. Plant Pathol. 2019, 68, 985–996. [Google Scholar] [CrossRef]
- Norelli, J.L.; Aldwinckle, H.S.; Beer, S.V. Differential host × pathogen interactions among cultivars and strains of Erwinia amylovora. Phytopathology 1984, 74, 136–139. [Google Scholar] [CrossRef]
- Khan, A.; Desnoues, E.; Clark, M. Bacterial strain affects cultivar response to fire blight in apples. Fruit Q. 2018, 26, 15–20. [Google Scholar]
- Aldwinckle, H.S.; Gustafson, H.L.; Forsline, P.L. Evaluation of the core subset of the USDA apple germplasm collection for resistance to fire blight. Acta Hortic. 1999, 489, 269–272. [Google Scholar] [CrossRef]
- Le Lezek, M.; Paulin, J.P.; Lecomte, P. Shoot and blossom susceptibility to fireblight of apple cultivars. Acta Hortic. 1987, 217, 311–315. [Google Scholar] [CrossRef] [Green Version]
- Mohan, S.K.; Fallahi, E.; Bijman, V.P. Evaluation of apple varieties for susceptibility to Erwinia amylovora by artificial inoculation under field conditions. Acta Hortic. 2002, 590, 373–375. [Google Scholar] [CrossRef]
- Forsline, P.L.; Aldwinckle, H.S. Natural occurrence of fire blight in USDA apple germplasm collection after 10 years of observation. Acta Hortic. 2002, 590, 351–357. [Google Scholar] [CrossRef]
- Khan, A.; Chao, T. Wild apple species as a source of fire blight resistance for sustainable productivity of apple orchards. Fruit Q. 2017, 25, 13–18. [Google Scholar]
- Luby, J.J.; Alspach, P.A.; Bus, V.G.M.; Orguzie, N.C. Field resistance to fire blight in a diverse apple (Malus sp.) germplasm collection. J. Am. Soc. Hortic. Sci. 2002, 127, 245–253. [Google Scholar] [CrossRef] [Green Version]
- Fischer, C.; Richter, K. Results of fire blight resistance in the Pillnitz apple breeding programme. Acta Hortic. 1999, 489, 279–285. [Google Scholar] [CrossRef]
- Lespinasse, Y.; Paulin, J.P. Apple breeding programme for fire blight resistance: Strategy used and first results. Acta Hortic. 1990, 273, 285–295. [Google Scholar] [CrossRef]
- Kostick, S.A.; Norelli, J.L.; The, S.; Evans, K.M. Quantitative variation and heritability estimates of fire blight resistance in a pedigree-connected apple germplasm set. J. Plant Pathol. 2020. [Google Scholar] [CrossRef]
- Bernardo, R. Breeding for Quantitative Traits in Plants, 2nd ed.; Stemma Press: Woodbury, MN, USA, 2010. [Google Scholar]
- Kumar, S.; Bolz, R.K.; Alspach, P.A.; Bus, V.G.M. Development of a recurrent apple breeding program in New Zealand: A synthesis of results, and a proposed revised breeding strategy. Euphytica 2010, 173, 207–222. [Google Scholar] [CrossRef]
- Desnoues, E.; Norelli, J.L.; Aldwinckle, H.S.; Wisniewski, M.E.; Evans, K.M.; Malnoy, M.; Khan, A.M. Identification of novel strain-specific and environment-dependent minor QTLs linked to fire blight resistance in apples. Plant Mol. Biol. Rep. 2018, 36, 247–256. [Google Scholar] [CrossRef]
- Emeriewen, O.F.; Peil, A.; Richter, K.; Zini, E.; Hanke, M.V.; Malnoy, M. Fire blight resistance of Malus × arnoldiana is controlled by a quantitative trait locus located at the distal end of linkage group 12. Eur. J. Plant Pathol. 2017, 148, 1011–1018. [Google Scholar] [CrossRef]
- Gardiner, S.E.; Norelli, J.L.; de Silva, N.; Fazio, G.; Peil, A.; Malnoy, M.; Horner, M.; Bowatte, D.; Carlisle, C.; Wiedow, C.; et al. Putative resistance gene markers associated with quantitative trait loci for fire blight resistance in Malus ‘Robusta 5′ accessions. BMC Genet. 2012, 13, 25. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.A.; Zhao, Y.; Korban, S.S. Identification of genetic loci associated with fire blight resistance in Malus through combined use of QTL and association mapping. Physiol. Plant. 2013, 148, 344–353. [Google Scholar] [CrossRef]
- Peil, A.; Hanke, M.V.; Flachowsky, H.; Libreros, G.T.; Horner, M.; Bus, V.; Richter, K.; Celton, J.M.; Gardiner, S. Confirmation of the fire blight QTL of Malus × robusta 5 on linkage group 3. Acta Hortic. 2008, 793, 297–304. [Google Scholar] [CrossRef]
- Peil, A.; Flachowsky, H.; Hanke, M.V.; Richter, K.; Rode, J. Inoculation of Malus × robusta 5 progeny with a strain breaking resistance to fire blight reveals a minor QTL on LG5. Acta Hortic. 2011, 989, 357–362. [Google Scholar] [CrossRef]
- Peil, A.; Hübert, C.; Wensing, A.; Horner, M.; Emeriewen, O.F.; Richter, K.; Wöhner, T.; Chagné, D.; Torrejon, O.C.; Saeed, M.; et al. Mapping of fire blight resistance in Malus × robusta 5 flowers following artificial inoculation. BMC Plant Biol. 2019, 19, 532. [Google Scholar] [CrossRef]
- Kostick, S.A.; Teh, S.; Norelli, J.L.; Vanderzande, S.; Peace, C.; Evans, K.M. Fire blight QTL analysis in a multi-family population identifies a reduced-susceptibility allele in ‘Honeycrisp’. Hortic. Res. 2021, 8, 28. [Google Scholar] [CrossRef] [PubMed]
- Fahrentrapp, J.; Broggini, G.A.L.; Kellerhals, M.; Peil, A.; Richter, K.; Zini, E.; Gessler, C. A candidate gene for fire blight resistance in Malus × robusta 5 is coding for a CC-NBS-LRR. Tree Genet. Genomes 2013, 9, 237–251. [Google Scholar] [CrossRef]
- Broggini, G.A.; Wöhner, T.; Fahrentrapp, J.; Kost, T.D.; Flachowsky, H.; Peil, A.; Hanke, M.V.; Richter, K.; Patocchi, A.; Gessler, C. Engineering fire blight resistance into the apple cultivar ‘Gala’ using the FB_MR5 CC-NBS-LRR resistance gene of Malus × robusta 5. Plant Biotechnol. J. 2014, 12, 728–733. [Google Scholar] [CrossRef] [PubMed]
- Emeriewen, O.F.; Richter, K.; Piazza, S.; Micheletti, D.; Broggini, G.A.L.; Berner, T.; Keilwagen, J.; Hanke, M.V.; Malnoy, M.; Peil, A. Towards map-based cloning of FB_Mfu10: Identification of a receptor-like kinase candidate gene underlying the Malus fusca fire blight resistance locus on linkage group 10. Mol. Breed. 2018, 38, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Parravicini, G.; Gessler, C.; Denancé, C.; Zuber, L.P.; Vergne, E.; Brisset, M.N.; Patocchi, A.; Durel, C.E.; Broggini, G.A.L. Identification of serine/threonine kinase and nucleotide-binding site-leucine-rich repeate (NBS-LRR) genes in the fire blight resistance quantitative trait locus of apple cultivar ‘Evereste’. Mol. Plant Pathol. 2011, 12, 493–505. [Google Scholar] [CrossRef] [Green Version]
- Daccord, N.; Celton, J.M.; Linsmith, G.; Becker, C.; Choisne, N.; Schijlen, E.; van de Geest, H.; Bianco, L.; Micheletti, D.; Velasco, R.; et al. High-quality de novo assembly of the apple genome and methylome dynamics of early fruit development. Nat. Genet. 2017, 49, 1099–1106. [Google Scholar] [CrossRef] [PubMed]
- Wöhner, T.W.; Flachowsky, H.; Richter, K.; Libreros, G.T.; Trognitz, F.; Hanke, M.V.; Peil, A. QTL mapping of fire blight resistance in Malus × robusta 5 after inoculation with different strains of Erwinia amylovora. Mol. Breed. 2014, 34, 217–230. [Google Scholar] [CrossRef]
- Mundt, C.C. Probability of mutation to multiple virulence and durability of resistance gene pyramids: Further comments. Phytopathology 1990, 81, 240–242. [Google Scholar] [CrossRef]
- Flachowsky, H.; Peil, A.; Sopanen, T.; Elo, A.; Hanke, M.V. Overexpression of BpMADS4 from silver birch (Betula pendula Roth.) induces early-flowering in apple (Malus × domestica Borkh). Plant Breed. 2007, 126, 137–145. [Google Scholar] [CrossRef]
- Flachowsky, H.; Hanke, M.V.; Peil, A.; Strauss, S.H.; Fladung, M. A review of transgenic approaches to accelerate breeding of woody plants. Plant Breed. 2009, 128, 217–226. [Google Scholar] [CrossRef]
- Flachowsky, H.; Le Roux, P.M.; Peil, A.; Patocchi, A.; Richter, K.; Hanke, M.V. Application of a high-speed breeding technology to apple (Malus × domestica) based on transgenic early flowering plants and marker-assisted selection. New Phytol. 2011, 192, 364–377. [Google Scholar] [CrossRef] [PubMed]
- Le Roux, P.M.F.; Flachowsky, H.; Hanke, M.V.; Gessler, C.; Patocchi, A. Use of a transgenic early flowering approach in apple (Malus × domestica Borkh) to introgress fire blight resistance from cultivar Evereste. Mol. Breed. 2012, 30, 857–874. [Google Scholar] [CrossRef]
- Schlathölter, I.; Jänsch, M.; Flachowsky, H.; Broggini, G.A.L.; Hanke, M.V.; Patocchi, A. Generation of advanced fire blight-resistant apple (Malus × domestica) selections of the fifth generation within 7 years of applying the early flowering approach. Planta 2018, 247, 1475–1488. [Google Scholar] [CrossRef] [Green Version]
- Weigl, K.; Wenzel, S.; Flachowsky, H.; Peil, A.; Hanke, M.V. Integration of BPMADS4 on various linkage groups improves the utilization of the rapid cycle breeding system in apple. Plant Biotechnol. J. 2015, 13, 246–258. [Google Scholar] [CrossRef]
- Luo, F.; Norelli, J.L.; Howard, N.P.; Wisniewski, M.; Flachowsky, H.; Hanke, M.V.; Peace, C. Introgressing blue mold resistance into elite apple germplasm by rapid cycle breeding and foreground and background DNA-informed selection. Tree Genet. Genomes 2020, 16, 28. [Google Scholar] [CrossRef]
- Peace, C.P. DNA-informed breeding of rosaceous crops: Promises, progress and prospects. Hortic. Res. 2017, 4, 7006. [Google Scholar] [CrossRef] [Green Version]
- Evans, K.; Peace, C. Advances in marker-assisted breeding of apples. In Achieving Sustainable Cultivation of Apples; Evans, K., Ed.; Burleigh Dodds Science Publishing: Cambridge, UK, 2017; pp. 165–194. [Google Scholar]
- Khan, M.A.; Durel, C.E.; Duffy, B.; Drouet, D.; Kellerhals, M.; Gessler, C.; Patocchi, A. Development of molecular markers linked to the Fiesta linkage group 7 major QTL for fire blight resistance and their application for maker-assisted selection. Genome 2007, 50, 568–577. [Google Scholar] [CrossRef]
- Przybylkowicz, K.S.; Lewandowski, M.; Korbin, M. Molecular screening of apple (Malus domestica) cultivars and breeding clones for their resistance to fire blight. J. Fruit Ornam. Plant Res. 2009, 17, 31–43. [Google Scholar]
- Jänsch, M.; Broggini, G.A.L.; Weger, J.; Bus, V.G.M.; Gardiner, S.E.; Bassett, H.; Patocchi, A. Identification of SNPs linked to eight apple disease resistance loci. Mol. Breed. 2015, 35, 45. [Google Scholar] [CrossRef]
- Luby, J.J.; Bedford, D.S. Honeycrisp Apple; University of Minnesota: Minnesota Agricultural Experiment Station, Saint Paul, MN, USA, 1992; Minnesota Report 225. [Google Scholar]
- Brown, S.K.; Maloney, K.E. Apple Tree Named New York 1. U.S. Patent Application No. 12,653,569, 8 November 2011. [Google Scholar]
- Evans, K.M.; Barritt, B.H.; Konishi, B.S.; Brutcher, L.J.; Ross, C.F. ‘WA 38’ Apple. HortScience 2012, 48, 1177–1179. [Google Scholar] [CrossRef] [Green Version]
- van Schie, C.C.N.; Takken, F.L.W. Susceptibility genes 101: How to be a good host. Annu. Rev. Phytopathol. 2014, 52, 551–581. [Google Scholar] [CrossRef]
- Tegtmeier, R.; Pompili, V.; Singh, J.; Micheletti, D.; Silva, K.J.P.; Malnoy, M.; Khan, A. Candidate gene mapping identifies genomic variations in the fire blight susceptibility genes HIPM and DIPM across the Malus germplasm. Sci. Rep. 2020, 10, 6317. [Google Scholar] [CrossRef]
- Luo, F.; Evans, K.; Norelli, J.L.; Zhang, Z.; Peace, C. Prospects for achieving durable disease resistance with elite fruit quality in apple breeding. Tree Genet. Genomes 2020, 16, 21. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kostick, S.A.; Teh, S.L.; Evans, K.M. Contributions of Reduced Susceptibility Alleles in Breeding Apple Cultivars with Durable Resistance to Fire Blight. Plants 2021, 10, 409. https://doi.org/10.3390/plants10020409
Kostick SA, Teh SL, Evans KM. Contributions of Reduced Susceptibility Alleles in Breeding Apple Cultivars with Durable Resistance to Fire Blight. Plants. 2021; 10(2):409. https://doi.org/10.3390/plants10020409
Chicago/Turabian StyleKostick, Sarah A., Soon Li Teh, and Kate M. Evans. 2021. "Contributions of Reduced Susceptibility Alleles in Breeding Apple Cultivars with Durable Resistance to Fire Blight" Plants 10, no. 2: 409. https://doi.org/10.3390/plants10020409
APA StyleKostick, S. A., Teh, S. L., & Evans, K. M. (2021). Contributions of Reduced Susceptibility Alleles in Breeding Apple Cultivars with Durable Resistance to Fire Blight. Plants, 10(2), 409. https://doi.org/10.3390/plants10020409