Impact of Legumes as a Pre-Crop on Nitrogen Nutrition and Yield in Organic Greenhouse Tomato
Abstract
:1. Introduction
2. Results
2.1. Legumes Biomass, Yield, N Accumulation and BNF
2.2. Soil Measurements
2.3. Tomato Yield Components
2.4. Tomato Tissue Analysis
3. Discussion
3.1. Legumes Aboveground Biomass, Nitrogen Fixation and N Balance
3.2. Soil Measurements
3.3. Tomato Growth and Yield
4. Materials and Methods
4.1. Plant Material, Growth Conditions, and Treatments
4.2. Growth, Mineral Analysis, and Nitrogen Fixation by Legumes
4.3. Tomato Tissue Sampling and Mineral Analysis
4.4. Soil Analysis
4.5. Tomato Production and Yield Components
4.6. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Willer, H.; Lernoud, J. The World of Organic Agriculture: Statistics and Emerging Trends 2019; Research Institute of Organic Agriculture FiBL: Frick, Switzerland; IFOAM Organics International: Bonn, Germany, 2019; pp. 1–336. [Google Scholar]
- Ponisio, L.C.; Gonigle, L.K.M.; Mace, K.C.; Palomino, J.; De Valpine, P.; Kremen, C. Diversification practices reduce organic to conventional yield gap. Proc. Royal Soc. B Biol. Sci. 2015, 282. [Google Scholar] [CrossRef] [Green Version]
- Birkhofer, K.; Smith, H.G.; Rundlöf, M. Environmental impacts of organic farming. eLS 2016, 1–7. [Google Scholar] [CrossRef]
- Seufert, V.; Ramankutty, N. Many shades of gray—The context-dependent performance of organic agriculture. Sci. Adv. 2017, 3, e1602638. [Google Scholar] [CrossRef] [Green Version]
- Röös, E.; Mie, A.; Wivstad, M.; Salomon, E.; Johansson, B.; Gunnarsson, S.; Wallenbeck, A.; Hoffmann, R.; Nilsson, U.; Sundberg, C.; et al. Risks and opportunities of increasing yields in organic farming. A review. Agron. Sustain. Dev. 2018, 38, 14. [Google Scholar] [CrossRef] [Green Version]
- Watson, C.A.; Atkinson, D.; Gosling, P.; Jackson, L.R.; Rayns, F.W. Managing soil fertility in organic farming systems. Soil Use Manag. 2002, 18, 239–247. [Google Scholar] [CrossRef] [Green Version]
- Dumas, Y.; Quijada, J.S.; Bonafous, M. Influence of nitrogen availability on growth and development of tomato plants until fruit-setting. In Optimization of Plant Nutrition; Springer: Dordrecht, The Netherlands, 1993; pp. 235–241. [Google Scholar]
- Commission Regulation (EC) 889 Commission Regulation (EC) No 889/2008 of 5 September 2008 Laying down Detailed Rules for the Implementation of Council Regulation (EC) No 834/2007 on Organic Production and Labelling of Organic Products with Regard to Organic Production, Labelling and Co. Available online: http://data.europa.eu/eli/reg/2008/889/oj (accessed on 7 January 2020).
- Askegaard, M.; Olesen, J.E.; Rasmussen, I.A.; Kristensen, K. Nitrate leaching from organic arable crop rotations is mostly determined by autumn field management. Agric. Ecosyst. Environ. 2011, 142, 149–160. [Google Scholar] [CrossRef]
- Bustamante, S.C.; Hartz, T.K. Nitrogen management in organic processing tomato production: Nitrogen sufficiency prediction through early-season soil and plant monitoring. HortScience 2015, 50, 1055–1063. [Google Scholar] [CrossRef] [Green Version]
- Clark, M.S.; Horwath, W.R.; Shennan, C.; Scow, K.M.; Lantni, W.T.; Ferris, H. Nitrogen, weeds and water as yield-limiting factors in conventional, low-input, and organic tomato systems. Agric. Ecosyst. Environ. 1999, 73, 257–270. [Google Scholar] [CrossRef]
- Dahlin, S.; Kirchmann, H.; Kätterer, T.; Gunnarsson, S.; Bergström, L. Possibilities for improving nitrogen use from organic materials in agricultural cropping systems. AMBIO A J. Hum. Environ. 2005, 34, 288–295. [Google Scholar] [CrossRef]
- Doltra, J.; Lægdsmand, M.; Olesen, J.E. Cereal yield and quality as affected by nitrogen availability in organic and conventional arable crop rotations: A combined modeling and experimental approach. Eur. J. Agron. 2011, 34, 83–95. [Google Scholar] [CrossRef]
- Briggs, S. Nitrogen Supply and Management in Organic Farming; Report; Institute of Organic Training and Advice (IOTA): Craven Arms, Shropshire, UK, 2008; pp. 1–30. [Google Scholar]
- Vasconcelos, M.W.; Grusak, M.A.; Pinto, E.; Gomes, A.; Ferreira, H.; Balázs, B.; Centofanti, T.; Ntatsi, G.; Savvas, D.; Karkanis, A.; et al. The Biology of Legumes and Their Agronomic, Economic, and Social Impact. In The Plant Family Fabaceae; Springer: Singapore, 2020; pp. 3–25. [Google Scholar]
- Fatima, T.; Teasdale, J.R.; Bunce, J.; Mattoo, A.K. Tomato response to legume cover crop and nitrogen: Differing enhancement patterns of fruit yield, photosynthesis and gene expression. Funct. Plant Biol. 2012, 39, 246. [Google Scholar] [CrossRef] [PubMed]
- Araki, H. Tomato production with cover cops in greenhouse. In Alternative Crops and Cropping Systems; Intechopen: London, UK, 2016; p. 87. [Google Scholar]
- Galieni, A.; Stagnari, F.; Speca, S.; D’Egidio, S.; Pagnani, G.; Pisante, M. Management of crop residues to improve quality traits of tomato (Solanum lycopersicum L.) fruits. Ital. J. Agron. 2017, 12, 59–62. [Google Scholar] [CrossRef] [Green Version]
- Gatsios, A.; Ntatsi, G.; Celi, L.; Said-Pullicino, D.; Tampakaki, A.; Giannakou, I.; Savvas, D. Nitrogen nutrition optimization in organic greenhouse tomato through the use of legume plants as green manure or intercrops. Agronomy 2019, 9, 766. [Google Scholar] [CrossRef] [Green Version]
- Denton, M.D.; Phillips, L.A.; Peoples, M.B.; Pearce, D.J.; Swan, A.D.; Mele, P.M.; Brockwell, J. Legume inoculant application methods: Effects on nodulation patterns, nitrogen fixation, crop growth and yield in narrow-leaf lupin and faba bean. Plant Soil 2017, 419, 25–39. [Google Scholar] [CrossRef] [Green Version]
- Karavidas, I.; Ntatsi, G.; Ntanasi, T.; Vlachos, I.; Tampakaki, A.; Iannetta, P.P.M.; Savvas, D. Comparative assessment of different crop rotation schemes for organic common bean production. Agronomy 2020, 10, 1269. [Google Scholar] [CrossRef]
- Berry, P.M.; Stockdale, E.A.; Sylvester-Bradley, R.; Philipps, L.; Smith, K.A.; Lord, E.I.; Watson, C.A.; Fortune, S. N, P and K budgets for crop rotations on nine organic farms in the UK. Soil Use Manag. 2003, 19, 112–118. [Google Scholar] [CrossRef]
- Unkovich, M.; Herridge, D.; Peoples, M.; Cadisch, G.; Boddey, B.; Giller, K.; Alves, B.; Chalk, P. Biological nitrogen fixation. In Measuring Plant-Associated Nitrogen Fixation in Agricultural Systems; Australian Centre for International Agricultural Research (ACIAR): Canberra, ACT, Australia, 2008; pp. 9–20. ISBN 1921531266. [Google Scholar]
- Barker, A.V. Science and Technology of Organic Farming; CRC Press: Boca Raton, FL, USA, 2016; ISBN 1439882134. [Google Scholar]
- Herridge, D.F.; Peoples, M.B.; Boddey, R.M. Global inputs of biological nitrogen fixation in agricultural systems. Plant Soil 2008, 311, 1–18. [Google Scholar] [CrossRef]
- Peoples, M.B.; Brockwell, J.; Herridge, D.F.; Rochester, I.J.; Alves, B.J.R.; Urquiaga, S.; Boddey, R.M.; Dakora, F.D.; Bhattarai, S.; Maskey, S.L.; et al. The contributions of nitrogen-fixing crop legumes to the productivity of agricultural systems. Symbiosis 2009, 48, 1–17. [Google Scholar] [CrossRef]
- Zahran, H.H. Rhizobium-legume symbiosis and nitrogen fixation under severe conditions and in an arid climate. Microbiol. Mol. Biol. Rev. 1999, 63, 968–989. [Google Scholar] [CrossRef] [Green Version]
- Stagnari, F.; Maggio, A.; Galieni, A.; Pisante, M. Multiple benefits of legumes for agriculture sustainability: An overview. Chem. Biol. Technol. Agric. 2017, 4, 2. [Google Scholar] [CrossRef] [Green Version]
- Ntatsi, G.; Karkanis, A.; Yfantopoulos, D.; Olle, M.; Travlos, I.; Thanopoulos, R.; Bilalis, D.; Bebeli, P.; Savvas, D. Impact of variety and farming practices on growth, yield, weed flora and symbiotic nitrogen fixation in faba bean cultivated for fresh seed production. Acta Agric. Scand. Sect. B Soil Plant Sci. 2018, 68, 619–630. [Google Scholar] [CrossRef]
- Thönnissen, C.; Midmore, D.J.; Ladha, J.K.; Holmer, R.J.; Schmidhalter, U. Tomato crop response to short-duration legume green manures in tropical vegetable systems. Agron. J. 2000, 92, 245–253. [Google Scholar] [CrossRef]
- Jensen, E.S.; Peoples, M.B.; Hauggaard-Nielsen, H. Faba bean in cropping systems. Field Crop. Res. 2010, 115, 203–216. [Google Scholar] [CrossRef] [Green Version]
- Oliveira, M.; Castro, C.; Coutinho, J.; Trindade, H. N supply and pre-cropping benefits to triticale from three legumes in rainfed and irrigated Mediterranean crop rotations. Field Crop. Res. 2019, 237, 32–42. [Google Scholar] [CrossRef]
- Ruisi, P.; Amato, G.; Badagliacca, G.; Frenda, A.S.; Giambalvo, D.; Di Miceli, G. Agro-ecological benefits of faba bean for rainfed mediterranean cropping systems. Ital. J. Agron. 2017, 12, 233–245. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Zeng, Z.; Tian, D.; Wang, J.; Fu, Z.; Zhang, F.; Zhang, R.; Chen, W.; Luo, Y.; Niu, S. Global patterns and controlling factors of soil nitrification rate. Glob. Chang. Biol. 2020, 26, 4147–4157. [Google Scholar] [CrossRef]
- Barnard, R.; Leadley, P.W.; Hungate, B.A. Global change, nitrification, and denitrification: A review. Glob. Biogeochem. Cycles 2005, 19, 1–13. [Google Scholar] [CrossRef]
- Pandey, A.; Li, F.; Askegaard, M.; Rasmussen, I.A.; Olesen, J.E. Nitrogen balances in organic and conventional arable crop rotations and their relations to nitrogen yield and nitrate leaching losses. Agric. Ecosyst. Environ. 2018, 265, 350–362. [Google Scholar] [CrossRef]
- Thorup-Kristensen, K.; Magid, J.; Jensen, L.S. Catch crops and green manures as biological tools in nitrogen management in temperate zones. Adv. Agron. 2003, 79, 227–302. [Google Scholar]
- Sullivan, D.M.; Andrews, N. Estimating Plant-Available Nitrogen Release from Cover Crops; Oregon State University: Corvallis, OR, USA, 2012. [Google Scholar]
- Lenzi, A.; Antichi, D.; Bigongiali, F.; Mazzoncini, M.; Migliorini, P.; Tesi, R. Effect of different cover crops on organic tomato production. Renew. Agric. Food Syst. 2009, 24, 92–101. [Google Scholar] [CrossRef]
- Sainju, U.M.; Dris, R.; Singh, B. Mineral nutrition of tomato. Food Agric. Environ. 2003, 1, 176–184. [Google Scholar]
- Van Eysinga, J.R. Fertilization of Tomatoes with Nitrogen; Pudoc: Wageningen, The Netherlands, 1971. [Google Scholar]
- Bénard, C.; Gautier, H.; Bourgaud, F.; Grasselly, D.; Navez, B.; Caris-Veyrat, C.; Weiss, M.; Génard, M. Effects of low nitrogen supply on tomato (Solanum lycopersicum) fruit yield and quality with special emphasis on sugars, acids, ascorbate, carotenoids, and phenolic compounds. J. Agric. Food Chem. 2009, 57, 4112–4123. [Google Scholar] [CrossRef]
- Ren, T.; Christie, P.; Wang, J.; Chen, Q.; Zhang, F. Root zone soil nitrogen management to maintain high tomato yields and minimum nitrogen losses to the environment. Sci. Hortic. 2010, 125, 25–33. [Google Scholar] [CrossRef] [Green Version]
- Zotarelli, L.; Dukes, M.D.; Scholberg, J.M.S.; Muñoz-Carpena, R.; Icerman, J. Tomato nitrogen accumulation and fertilizer use efficiency on a sandy soil, as affected by nitrogen rate and irrigation scheduling. Agric. Water Manag. 2009, 96, 1247–1258. [Google Scholar] [CrossRef]
- Baldwin, K.R. Soil fertility on organic farms. Center for Environmental Farming Systems; North Carolina Cooperative Extension: Raleigh, NC, USA, 2006. [Google Scholar]
- Nair, A.; Delate, K. Composting, crop rotation, and cover crop practices in organic vegetable production. In Organic Farming for Sustainable Agriculture; Springer: Berlin/Heidelberg, Germany, 2016; pp. 231–257. [Google Scholar]
- Papadopoulos, A.P. Growing Greenhouse Tomatoes in Soil and in Soilless Media; Communications Branch, Agriculture Canada: Ottawa, ON, Canada, 1991; ISBN 0662188594. [Google Scholar]
- Gianquinto, G.; Muñoz, P.; Pardossi, A.; Ramazzotti, S.; Savvas, D. Soil Fertility and Plant Nutrition. Good Agricultural Practices for Greenhouse Vegetable Crops. Principles for Mediterranean Climate Areas; FAO: Rome, Italy, 2013; ISBN 9789251076491. [Google Scholar]
- Reckling, M.; Bergkvist, G.; Watson, C.A.; Stoddard, F.L.; Zander, P.M.; Walker, R.L.; Pristeri, A.; Toncea, I.; Bachinger, J. Trade-offs between economic and environmental impacts of introducing legumes into cropping systems. Front. Plant Sci. 2016, 7, 669. [Google Scholar] [CrossRef]
- Berry, P.M.; Sylvester-Bradley, R.; Philipps, L.; Hatch, D.J.; Cuttle, S.P.; Rayns, F.W.; Gosling, P. Is the productivity of organic farms restricted by the supply of available nitrogen? Soil Use Manag. 2002, 18, 248–255. [Google Scholar] [CrossRef]
- Jensen, E.S.; Ambus, P. Prospects for manipulating crop residues to control nitrogen mineralisation-immobilisation in soil. Kungl. Skogs.-o Lantbr.-akad. Tidskr 2000, 139, 8–25. [Google Scholar]
- Tampakaki, A.P.; Fotiadis, C.T.; Ntatsi, G.; Savvas, D. Phylogenetic multilocus sequence analysis of indigenous slow-growing rhizobia nodulating cowpea (Vigna unguiculata L.) in Greece. Syst. Appl. Microbiol. 2017, 40, 179–189. [Google Scholar] [CrossRef]
- Efstathiadou, E.; Savvas, D.; Tampakaki, A.P. Genetic diversity and phylogeny of indigenous rhizobia nodulating faba bean (Vicia faba L.) in Greece. Syst. Appl. Microbiol. 2020, 43, 126149. [Google Scholar] [CrossRef]
- Unkovich, M.J.; Herridge, D.; Peoples, M.; Cadish, G.; Boddey, R.; Giller, K.; Alves, B.; Chalk, P. N natural abundance method. In Measuring Plant Associated Nitrogen Fixation in Agricultural Systems; Australian Centre for International Agricultural Research (ACIAR): Canberra, ACT, Australia, 2008; pp. 131–162. ISBN 978-1-921531-26-2. [Google Scholar]
- Ntatsi, G.; Karkanis, A.; Yfantopoulos, D.; Pappa, V.; Konosonoka, I.H.; Travlos, I.; Bilalis, D.; Bebeli, P.; Savvas, D. Evaluation of the field performance, nitrogen fixation efficiency and competitive ability of pea landraces grown under organic and conventional farming systems. Arch. Agron. Soil Sci. 2019, 65, 294–307. [Google Scholar] [CrossRef]
- Bedard-Haughn, A.; van Groenigen, J.W.W.; van Kessel, C. Tracing 15N landscapes: Potential uses and precautions. J. Hydrol. 2003, 272, 175–190. [Google Scholar] [CrossRef]
- Collino, D.J.; Salvagiotti, F.; Perticari, A.; Piccinetti, C.; Ovando, G.; Urquiaga, S.; Racca, R.W. Biological nitrogen fixation in soybean in Argentina: Relationships with crop, soil, and meteorological factors. Plant Soil 2015, 392, 239–252. [Google Scholar] [CrossRef]
- Miller, R.O.; Gavlak, R.; Horneck, D. Soil, Plant and Water Reference Methods for the Western Region, 4th ed.; WREP-125: Fort Collins, CO, USA, 2013. [Google Scholar]
- Keeney, D.R.; Nelson, D.W. Nitrogen—Inorganic Forms. Methods Soil Anal. 1983, 9, 643–698. [Google Scholar]
- Olsen, S.R. Estimation of Available Phosphorus in Soils by Extraction with Sodium Bicarbonate; US Department of Agriculture: Washington, DC, USA, 1954; p. 939. [Google Scholar]
- Murphy, J.; Riley, J.P. A modified single solution method for the determination of phosphate in natural waters. Anal. Chim. Acta 1962, 27, 31–36. [Google Scholar] [CrossRef]
Treatment | BHP (g m−2) | BIS (g m−2) | BTP (g m−2) | HI (%) |
---|---|---|---|---|
Fresh biomass | ||||
Cowpea | 450 b | 885 c | 1335 c | 33.7 b |
Common bean | 1660 a | 2048 b | 3708 b | 44.8 a |
Faba bean | - | 7015 a | 7015 a | - |
Significance | *** | *** | *** | * |
Dry biomass | ||||
Cowpea | 43 b | 79 c | 122 c | 35.2 |
Common bean | 108 a | 203 b | 311 b | 34.7 |
Faba bean | - | 681 a | 681 a | - |
Significance | *** | *** | *** | ns |
Treatment | Tissue N (%) | Total N Content (g m−2) | NHI % | Ndfa % | BNF (g m−2) | |||
---|---|---|---|---|---|---|---|---|
Residues | Pods | Residues | Pods | Total | ||||
Cowpea | 2.67 b | 3.97 a | 2.11 b | 1.71 b | 3.82 c | 44.8 | 39.6 b | 1.51 b |
Common bean | 2.64 b | 3.41 b | 5.36 a | 3.68 a | 9.04 b | 43.4 | 18.2 c | 1.65 b |
Faba bean | 3.93 a | - | - | - | 26.42 a | - | 57.0 a | 15.0 a |
Significance | *** | * | *** | *** | *** | ns | *** | *** |
Treatment | C % | N % | P mg kg−1 | K mg kg−1 |
---|---|---|---|---|
Prior to starting the experiment | ||||
FYM + Cowpea residues | 2.48 | 0.265 | 86.6 | 811 |
FYM + Common bean residues | 2.33 | 0.273 | 91.3 | 832 |
FYM + Faba bean green manure | 2.41 | 0.270 | 86.3 | 811 |
CO + Faba bean green manure | 2.36 | 0.260 | 92.1 | 784 |
Significance of differences | ns | ns | ns | ns |
After tomato planting | ||||
FYM + Cowpea residues | 2.70 | 0.275 | 113 | 1038 |
FYM + Common bean residues | 2.63 | 0.281 | 116 | 1086 |
FYM + Faba bean green manure | 2.57 | 0.283 | 122 | 1196 |
CO + Faba bean green manure | 2.59 | 0.278 | 111 | 1141 |
Significance of differences | ns | ns | ns | ns |
At tomato crop termination | ||||
FYM + Cowpea residues | 2.64 | 0.264 | 109 | 825 |
FYM + Common bean residues | 2.55 | 0.271 | 110 | 853 |
FYM + Faba bean green manure | 2.62 | 0.271 | 116 | 976 |
CO + Faba bean green manure | 2.59 | 0.269 | 105 | 880 |
Significance of differences | ns | ns | ns | ns |
Treatment | kg m−2 | Fruit Number per Plant | Mean Fruit Weight |
---|---|---|---|
FYM + Cowpea residues | 14.5 b | 28.3 b | 241 |
FYM + Common bean residues | 11.4 c | 22.8 c | 235 |
FYM + Faba bean green manure | 15.8 a | 30.4 a | 244 |
CO + Faba bean green manure | 13.9 b | 27.1 b | 240 |
Significance of differences | *** | *** | ns |
Treatment | N mg g−1 | P mg g−1 | K mg g−1 |
---|---|---|---|
FYM + Cowpea residues | 27.4 b | 3.21 | 71 |
FYM + Common bean residues | 25.2 c | 3.25 | 72 |
FYM + Faba bean green manure | 29.8 a | 3.27 | 78 |
CO + Faba bean green manure | 27.6 b | 3.04 | 79 |
Significance of differences | ** | ns | ns |
Establishment | Start of Harvesting | Crop Termination | |
---|---|---|---|
Cowpea | 09/12/2018 | 11/22/2018 | 01/31/2019 |
Common bean | 09/12/2018 | 11/02/2018 | 01/31/2019 |
Faba bean | 09/25/2018 | - | 01/31/2019 |
Tomato | 02/20/2019 | 05/21/2019 | 07/15/2019 |
Month | Tmean | Tmax | Tmin | RHmean | RHmax | RHmin |
---|---|---|---|---|---|---|
June 2018 | 25.5 | 33.1 | 20.1 | 62.3 | 84.6 | 33.9 |
July 2018 | 26.7 | 34.4 | 21.1 | 59.5 | 80.1 | 30.2 |
August 2018 | 28.8 | 38.3 | 22.9 | 61.2 | 82.9 | 32.0 |
September 2018 | 24.7 | 33.4 | 20.6 | 65.4 | 84.9 | 39.6 |
October 2018 | 22.4 | 31.6 | 18.0 | 65.2 | 83.6 | 37.5 |
November 2018 | 17.4 | 26.9 | 12.6 | 77.4 | 98.8 | 50.5 |
December 2018 | 12.9 | 24.2 | 8.1 | 84.9 | 100 | 54.8 |
January 2019 | 10.2 | 22.6 | 5.5 | 85.1 | 99.1 | 58.5 |
February 2019 | 15.9 | 27.9 | 8.1 | 65.5 | 86.0 | 27.9 |
March 2019 | 16.5 | 28.5 | 9.9 | 70.4 | 88.7 | 37.6 |
April 2019 | 18.4 | 27.5 | 12.6 | 79.2 | 99.5 | 44.9 |
May 2019 | 19.6 | 30.7 | 13.0 | 76.6 | 96.0 | 40.3 |
June 2019 | 25.1 | 34.5 | 17.9 | 74.1 | 96.7 | 41.4 |
July 2019 | 26.3 | 35.1 | 21.4 | 72.3 | 95.5 | 42.8 |
No | Treatment Short Name | Treatment Description |
---|---|---|
Legume Crop | ||
1. | CP | Cowpea (Vigna unguiculata (L.) Walp.) inoculated with Bradyrhizobium sp. VULI11 and PGPR 1 and cultivated for fresh pod production |
2. | CB | Common bean (Phaseolus vulgaris L.) inoculated with Rhizobium sp. PVKA6 and PGPR 1 and cultivated for fresh pod production |
3. | FB | Faba bean (Vicia faba L.) inoculated with rhizobia (Rhizobium sp. VFLE1) and PGPR 1 and incorporated to the soil as green manure |
4. | FB | Faba bean (Vicia faba L.) inoculated with rhizobia (Rhizobium sp. VFLE1) and PGPR 1 and incorporated to the soil as green manure |
Tomato Crop | ||
1. | FYM + CP | Farmyard manure (FYM) & cowpea crop residues |
2. | FYM + CB | FYM & common bean crop residues |
3. | FYM + FB | FYM & faba bean green manure |
4. | CO + FB | composted olive-mill waste & faba bean green manure |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gatsios, A.; Ntatsi, G.; Celi, L.; Said-Pullicino, D.; Tampakaki, A.; Savvas, D. Impact of Legumes as a Pre-Crop on Nitrogen Nutrition and Yield in Organic Greenhouse Tomato. Plants 2021, 10, 468. https://doi.org/10.3390/plants10030468
Gatsios A, Ntatsi G, Celi L, Said-Pullicino D, Tampakaki A, Savvas D. Impact of Legumes as a Pre-Crop on Nitrogen Nutrition and Yield in Organic Greenhouse Tomato. Plants. 2021; 10(3):468. https://doi.org/10.3390/plants10030468
Chicago/Turabian StyleGatsios, Anastasios, Georgia Ntatsi, Luisella Celi, Daniel Said-Pullicino, Anastasia Tampakaki, and Dimitrios Savvas. 2021. "Impact of Legumes as a Pre-Crop on Nitrogen Nutrition and Yield in Organic Greenhouse Tomato" Plants 10, no. 3: 468. https://doi.org/10.3390/plants10030468
APA StyleGatsios, A., Ntatsi, G., Celi, L., Said-Pullicino, D., Tampakaki, A., & Savvas, D. (2021). Impact of Legumes as a Pre-Crop on Nitrogen Nutrition and Yield in Organic Greenhouse Tomato. Plants, 10(3), 468. https://doi.org/10.3390/plants10030468