Dry Matter Yield of Maize (Zea mays L.) as an Indicator of Mineral Fertilizer Efficiency
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Field
2.2. Meteorological Conditions
- -
- K > 1.5: excessive humidity for most plants,
- -
- 1 < K < 1.5: humidity sufficient for most plants,
- -
- 0.5 < K < 1.0: insufficient humidity for most plants,
- -
- K < 0.5: drought.
2.3. Soil Conditions
2.4. Observations and Measurements
2.4.1. Determination of Dry Matter Accumulation Dynamics in the Initial Maize Vegetation Period
2.4.2. Determination of Maize Dry Yield in the BBCH 63 Stage (The Beginning of Pollen)
2.4.3. Estimation of Chlorophyll Content Expressed in SPAD Units
2.4.4. Partial Factor Productivity of Fertilizer Nitrogen (N) and Phosphorus (P)
PFPFN = P/Nr, (kg dm kg N); |
PFPFP = P/Pr, (kg dm kg P), |
P—dry matter yield in an individual developmental phase of maize, |
Nr—nitrogen dose, |
Pr—phosphorus dose (pure component). |
2.5. Statistical Analysis
3. Results
3.1. Dry Matter Yields
3.2. Leaf Greenness Index (SPAD Index)
3.3. Partial Factor Productivity of Fertilizer (PFPF)
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fageria, N.K.; Moreira, A. The role of mineral nutrition on root growth of crop plants. In Advences in Agronomy; Donald, L.S., Ed.; Academic Press: Burlington, MA, USA, 2011; Volume 110, pp. 251–331. [Google Scholar]
- Nkebiwe, P.M.; Weinmann, M.; Bar-Tal, A.; Müller, T. Fertilizer placement to improve crop nutrient acquisition and yield: A review and meta-analysis. Field Crops Res. 2016, 196, 389–401. [Google Scholar] [CrossRef]
- Rehm, G.W.; Lamb, J.A. Corn Response to Fluid Fertilizers Placed Near the Seed at Planting. Soil Sci. Soc. Am. J. 2009, 73, 1427–1434. [Google Scholar] [CrossRef]
- Mallarino, A.P.; Bergmann, N.; Kaiser, D.E. Corn Responses to In-Furrow Phosphorus and Potassium Starter Fertilizer Applications. Agron. J. 2011, 103, 685–694. [Google Scholar] [CrossRef]
- Mirta, R.; Bukvic, G.; Josipovic, M. Response of Corn to Zinc Fertilization. Energy Effic. Agric. Eng. 2002, 1, 131–136. [Google Scholar]
- Szulc, P.; Barłóg, P.; Ambroży-Deręgowska, K.; Mejza, I.; Kobus-Cisowska, J. In-soil application of NP mineral fertilizer as a method of improving nitrogen yielding efficiency. Agronomy 2020, 10, 1488. [Google Scholar] [CrossRef]
- Drazic, M.; Gligorevic, K.; Pajic, M.; Zlatanovic, I.; Spalevic, V.; Sestras, P.; Skataric, G.; Dudic, B. The influence of the application technique and amount of liquid starter fertilizer on corn yield. Agriculture 2020, 10, 347. [Google Scholar] [CrossRef]
- Ma, Q.; Niknam, S.R.; Turner, D.W. Responses of osmotic adjustment and seed yield of Brassica napus and B. junacea to soil water deficit at different growth stages. Aust. J. Agric. Res. 2006, 57, 221–226. [Google Scholar] [CrossRef]
- Hajabbasi, M.A.; Schumacher, T.E. Phosphours effects on root growth and development in two maize genotypes. Plant Soil. 1994, 158, 39–46. [Google Scholar] [CrossRef]
- Szulc, P.; Barłóg, P.; Ambroży-Deręgowska, K.; Mejza, I.; Kobus-Cisowska, J.; Ligaj, M. Effect of phosphorus application technique on effectiveness indices of its use in maize cultivation. Plant Soil Environ. 2020, 66, 500–505. [Google Scholar] [CrossRef]
- Jokela, W.E. Applying Starter Fertilizer. Advanced Silage Corn Management. 2004. Available online: https://farmwest.com/node/949 (accessed on 4 July 2020).
- Szulc, P.; Jagła, M.; Nowosad, K.; Bocianowski, J.; Olejarski, P. Path analysis in assessment of cause and effect dependencies of yield structure components in maize cultivars differing in genetic profiles. Fres. Envi. Bull. 2017, 26, 7309–7318. [Google Scholar]
- Skowera, B. Changes of hydrothermal conditions in the Polish area (1971–2010). Fragm. Agron. 2014, 31, 74–87. [Google Scholar]
- Scharf, P.C.; Brouder, M.S.; Hoeft, G.R. Chlorophyll meter readings can predict nitrogen need and yield response of corn in the North-Central USA. Agron. J. 2006, 98, 655–665. [Google Scholar] [CrossRef]
- Szczepaniak, W. Evaluating nitrogen use efficiency (NUE) indices on the background of mineral status of the seed crop at maturity: A case study of maize. Pol. J. Environ. Stud. 2016, 21, 2129–2138. [Google Scholar] [CrossRef]
- Gomez, K.A.; Gomez, A.A. Statistical Procedures for Agricultural Research; Wiley: New York, NY, USA, 1984. [Google Scholar]
- Szulc, P.; Mejza, I.; Ambroży-Deręgowska, K.; Nowosad, K.; Bocianowski, J. The comparison of three models applied to the analysis of three-factor trial on hybrid maize (Zea mays L.) cultivars. Biom. Lett. 2016, 53, 47–57. [Google Scholar] [CrossRef] [Green Version]
- Sowiński, P. Chilling-sensitivity of maize. Part. I. Growth, development, photosynthesis. Biul. IHiAR 2000, 214, 3–16. [Google Scholar]
- Kruczek, A.; Szulc, P. The effect of greatness of rainfalls and temperatures on accumulation of dry mass and uptake of mineral components by maize initial period of growth in dependence on kind fertilizer. Rocz. Akad. Rol. Pozn. 2006, 64, 177–186. (In Polish) [Google Scholar]
- Szulc, P.; Kruczek, A. Effect of level of rainfalls and temperatures on accumulation of dry mass and uptake of mineral components by maize initial period of growth in dependence on method of fertilization. Acta Agrophys. 2008, 11, 753–766. (In Polish) [Google Scholar]
- Szulc, P.; Waligóra, H.; Michalski, T.; Rybus-Zając, M.; Olejarski, P. Efficiency of nitrogen fertilization based on the fertilizer application method and type of maize cultivar (Zea mays L.). Plant Soil Environ. 2016, 62, 135–142. [Google Scholar] [CrossRef] [Green Version]
- Almeda, D.; Villar, R. Linking root traits to plant physiology and growth in Fraxinus angustifolia Vahl. seedlings under soil compaction conditions. Environ. Exp. Bot. 2012, 79, 49–57. [Google Scholar] [CrossRef]
- Zobel, R.W.; Kinraide, T.B.; Baligar, V.C. Fine root diameters can change in response to changes in nutrient concentrations. Plant Soil. 2007, 297, 243–254. [Google Scholar] [CrossRef]
- Borowiecki, J.; Koter, Z. Emergence and growth of maize seedlings as related to the time of preplant nitrogen application in different forms and rates. Pamiętnik Puławski 1983, 81, 91–103. (In Polish) [Google Scholar]
- Niehues, B.J.; Lamond, R.E.; Godsey, C.B.; Olsen, C.J. Starter nitrogen fertilizer management for continuous no-till corn production contribution no. 04-099-J, K-state research and extension. Agron. J. 2004, 96, 1412–1418. [Google Scholar] [CrossRef]
- Subedi, K.D.; Ma, B.L. Nitrogen uptake and partitioning in stay-green and leafy maize hybrids. Crop Sci. 2005, 45, 740–747. [Google Scholar] [CrossRef]
- Kruczek, A. The effect of method fertilization on the maize yield and Energy value of raw material, in dependence on varieties and term of sowing. Rocz. Akad. Rol. Pozn. 2005, 64, 87–96. (In Polish) [Google Scholar]
- Młodzińska, E. Survey of plant pigments: Molecular and environmental determinants of plant colors. Acta Biol. Crac. Ser. Bot. 2009, 51, 7–16. [Google Scholar]
- Szulc, P.; Waligóra, H. Response of maize hybrid (Zea mays L.), stay-green type to fertilization with nitrogen, sulphur and magnesium. Part. II. Plant development and uptake of mineral components. Acta Sci. Pol. Agric. 2010, 9, 41–54. [Google Scholar]
- Gaj, R.; Szulc, P.; Siatkowski, I.; Waligóra, H. Assessment of the effect of the mineral fertilization system on the nutritional status of maize plants and grain yield prediction. Agriculture 2020, 10, 404. [Google Scholar] [CrossRef]
- Scharf, P.C.; William, J.; Wiebold, J.; Lory, J.A. Corn yield response to nitrogen fertilizer timing and deficiency level. Agron. J. 2002, 94, 435–441. [Google Scholar] [CrossRef]
- Hassman, K.G.; Dobermann, A.; Walters, D.T.; Yang, H. Meeting cereal demand while protecting natural resources and improving environmental quality. Annu. Rev. Environ. Resour. 2003, 28, 315–358. [Google Scholar] [CrossRef] [Green Version]
- Peng, Y.; Niu, J.; Peng, Z.; Hang, F.; Li, C. Shoot growth potential driver N uptake in maize plants and correlates with root growth in the soil. Field Crops Res. 2010, 115, 85–93. [Google Scholar] [CrossRef]
- Niu, J.; Chen, F.J.; Mi, G.H.; Li, C.J.; Zhang, F.S. Transpiration and nitrogen uptake and flow in two maize (Zea mays L.) Inbred Lines as Affected by nitrogen Supply. Ann. Bot. 2007, 99, 153–160. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kruczek, A.; Szulc, P. Effect of fertilization method on the uptake and accumulation of mineral components in the initial period of maize development. Int. Agrophys. 2006, 20, 11–22. [Google Scholar]
- Mandić, V.; Dordević, S.; Bikelić, Z.; Krnjaja, V.; Pantelić, V.; Simić, A.; Dragićević, V. Agronomic responses of soybean genotypes to starter nitrogen fertilizer rate. Agronomy 2020, 10, 535. [Google Scholar] [CrossRef] [Green Version]
Treatment Type | Years | ||
---|---|---|---|
2016 | 2017 | 2018 | |
1. Deep plowing (30 cm) -treatment performer in the autumn the previous year | 9.XI | 26.X | 20.XI |
2. Harrow smoothing | 1.IV | 31.III | 1.IV |
3. Fertilizer sowing according to the experimental design | 5.IV | 20.IV | 20.IV |
4. Sowing fodder maize | 28.IV cultivar P7905 (FAO 220) | 25.IV cultivar P7905 (FAO 220) | 24.IV cultivar P7905 (FAO 220) |
5. Herbicide application 1-Maister Power (1.5 L ha−1) 2-Lumax 537.5 SE (3.5 L ha−1), 3-Lumax 537.5 SE (3.5 L ha−1), | 28.V 1 | 28.IV 2 | 25.IV 3 |
6. Supplementary nitrogen fertilization | 23.V | 1.VI | 14.V |
Years | Temperature (°C) | |||||||
---|---|---|---|---|---|---|---|---|
IV | V | VI | VII | VIII | IX | X | Average/Sum | |
2016 | 9.6 | 16.3 | 19.9 | 20.3 | 19 | 17.3 | 8.4 | 15.8 |
2017 | 7.3 | 13.7 | 17.4 | 18.0 | 18.9 | 13.3 | 10.6 | 14.2 |
2018 | 12.9 | 16.9 | 18.5 | 20.2 | 21.3 | 15.8 | 10.9 | 16.6 |
Years | Rainfall (mm) | |||||||
2016 | 47.3 | 47.3 | 123.8 | 132.8 | 50.3 | 4.6 | 105 | 511.1 |
2017 | 40.6 | 56.8 | 68.2 | 168.0 | 82.0 | 45.6 | 91.8 | 553.0 |
2018 | 36.2 | 17.4 | 25.6 | 70.5 | 11.6 | 44.2 | 24.8 | 230.3 |
Years | Hydrothermal Coefficient of Water Protection (K) According to Selyaninov | |||||||
2016 | 1.64 | 0.93 | 2.07 | 2.11 | 0.85 | 0.08 | 4.03 | 1.67 |
2017 | 1.85 | 1.33 | 1.30 | 3.01 | 1.39 | 1.14 | 2.79 | 1.82 |
2018 | 0.93 | 0.33 | 0.46 | 1.12 | 0.17 | 0.93 | 0.73 | 0.67 |
Specification | Years | |||
---|---|---|---|---|
2016 | 2017 | 2018 | ||
P (mg P kg−1 dm of soil) | 104.0 | 73.0 | 49.0 | |
K (mg K kg−1 dm of soil) | 97.0 | 108.0 | 116.0 | |
Mg (mg Mg kg−1 dm of soil) | 44.0 | 53.0 | 53.0 | |
NH4NO3 (mg kg−1 dm of soil); 0.0–0.3 m | 9.6 | 11.6 | 10.4 | |
NH4NO3 (mg kg−1 dm of soil); 0.3–0.6 m | 15.9 | 19.9 | 17.7 | |
C, org. % | 1.07 | 1.03 | 0.99 | |
pH (1 mol dm−3 KCl) | 4.6 | 5.6 | 5.1 |
Years and Factors | The Levels | BBCH 17/18 [kg dm ha−1] | BBCH 18/19 [kg dm ha−1] |
---|---|---|---|
Y | 2016 | 134.21 b (3.52) | 551.25 b (11.98) |
2017 | 149.02 b (3.22) | 483.34 b (10.31) | |
2018 | 274.61 a (5.54) | 748.45 a (8.51) | |
A | 0 cm (broadcast) | 152.66 b (7.43) | 534.09 b (20.13) |
5 cm (in rows) | 198.64 a (10.37) | 621.98 a (17.81) | |
10 cm (in rows) | 198.43 a (11.42) | 616.23 a (20.36) | |
15 cm (in rows) | 194.04 a (10,41) | 605.08 a (20.22) | |
B | ammonium nitrate | 181.00 b (7.41) | 580.15 b (14.54) |
urea | 190.89 a (7.19) | 608.55 a (13.89) | |
C | before sowing | 185.79 a (7.26) | 592.11 a (15.25) |
top dressing in the BBCH 15/16 stage | 186.10 a (7.38) | 596.58 a (13.27) |
Years (Y) | Depths of Fertilization (A) | BBCH 17/18 (kg dm ha−1) | BBCH 18/19 (kg dm ha−1) |
---|---|---|---|
2016 | 0 cm (broadcast) | 115.22 d (6.03) | 494.41 a (24.59) |
5 cm (in rows) | 143.07 cd (5.43) | 569.83 a (22.56) | |
10 cm (in rows) | 132.70 cd (8.20) | 564.76 a (25.55) | |
15 cm (in rows) | 145.86 cd (6.03) | 575.99 a (18.80) | |
2017 | 0 cm (broadcast) | 124.43 cd (2.98) | 417.46 a (19.09) |
5 cm (in rows) | 163.98 c (7.73) | 542.74 a (23.46) | |
10 cm (in rows) | 161.59 c (4.64) | 506.74 a (13.63) | |
15 cm (in rows) | 146.07 cd (4.23) | 466.41 a (11.86) | |
2018 | 0 cm (broadcast) | 218.34 b (6.25) | 690.40 a (15.42) |
5 cm (in rows) | 288.89 a (9.63) | 753.38 a (13.06) | |
10 cm (in rows) | 301.00 a (7.51) | 777.20 a (18.79) | |
15 cm (in rows) | 290.20 a (6.33) | 772.83 a (11.59) | |
Years (Y) | Dates of Nitrogen Application (C) | BBCH 17/18 (kg dm ha−1) | BBCH 18/19 (kg dm ha−1) |
2016 | before sowing | 134.25 a (5.38) | 548.37 b (16.47) |
top dressing in the BBCH 15/16 stage | 134.17 a (4.62) | 554.13 b (17.65) | |
2017 | before sowing | 145.79 a (4.12) | 466.69 c (14.40) |
top dressing in the BBCH 15/16 stage | 152.25 a (4.95) | 499.98 c (14.37) | |
2018 | before sowing | 277.31 a (6.88) | 761.27 a (12.88) |
top dressing in the BBCH 15/16 stage | 271.90 a (8.77) | 735.63 a (10.85) |
Years and Factors | The Levels | Straw Yield (kg dm ha−1) | Ears Yield (kg dm ha−1) | Straw + Ears Yield (kg dm ha−1) |
---|---|---|---|---|
Y | 2016 | 7090.90 b (177.92) | 11,493.24 a (155.55) | 18,599.77 b (249.24) |
2017 | 12,709.03 a (289.41) | 12,056.05 a (191.35) | 24,765.09 a (361.51) | |
2018 | 11,317.28 a (232.46) | 8932.31 b (271.57) | 20,265.21 b (365.35) | |
A | 0 cm (broadcast) | 9877.40 a (458.04) | 10,014.85 b (327.01) | 19,933.92 b (552.90) |
5 cm (in rows) | 10,645.63 a (441.62) | 11,247.70 a (300.84) | 21,893.33 a (554.15) | |
10 cm (in rows) | 10,552.21 a (416.04) | 11,192.19 a (260.44) | 21,744.41 a (478.86) | |
15 cm (in rows) | 10,414.38 a (450.67) | 10,854.06 ab (334.44) | 21,268.43 ab (516.26) | |
B | ammonium nitrate | 10,431.53 a (284.62) | 10,994.54 a (214.20) | 21,436.48 a (348.43) |
urea | 10,313.28 a (337.61) | 10,659.86 a (227.88) | 20,983.56 a (405.63) | |
C | before sowing | 10,313.42 a (305.69) | 10,991.61 a (212.54) | 21,315.44 a (354.77) |
top dressing in the BBCH 15/16 stage | 10,431.39 a (318.65) | 10,662.79 a (229.47) | 21,104.60 a (401.16) |
Years and Factors | The Levels | BBCH 17/18 | BBCH 18/19 | BBCH 63 |
---|---|---|---|---|
Y | 2016 | 553.77 b (9.99) | 636.27 b (7.49) | 821.95 a (3.90) |
2017 | 680.52 a (7.21) | 792.09 a (3.69) | 817.06 a (5.57) | |
2018 | 515.50 b (6.67) | 677.47 b (4.54) | 760.25 b (4.67) | |
A | 0 cm (broadcast) | 540.50 b (16.35) | 655.81 b (13.30) | 784.40 b (7.02) |
5 cm (in rows) | 578.17 a (13.72) | 712.98 a (10.74) | 816.48 a (5.42) | |
10 cm (in rows) | 610.38 a (10.51) | 719.94 a (9.87) | 805.37 ab (6.57) | |
15 cm (in rows) | 604.00 a (12.00) | 719.04 a (8.87) | 792.78 ab (7.34) | |
B | ammonium nitrate | 577.47 a (10.56) | 699.86 a (8.16) | 798.76 a (4.68) |
urea | 589.05 a (8.90) | 704.02 a (8.06) | 800.75 a (4.97) | |
C | before sowing | 591.17 a (7.95) | 702.57 a (7.60) | 800.00 a (4.73) |
top dressing in the BBCH 15/16 stage | 575.35 b (11.27) | 701.31 a (8.58) | 799.51 a (4.72) |
Years and Factors | The Levels | PFPFP BBCH 17/18 (kg dm·kg−1 P) | PFPFP BBCH 18/19 (kg dm·kg−1 P) | PFPFN BBCH 17/18 (kg dm·kg−1 N) | PFPFN BBCH 18/19 (kg dm·kg−1 N) |
---|---|---|---|---|---|
Y | 2016 | 4.36 b (0.11) | 17.90 b (0.39) | 1.34 b (0.04) | 5.51 b (0.12) |
2017 | 4.84 b (0.10) | 15.69 b (0.33) | 1.49 b (0.03) | 4.83 c (0.10) | |
2018 | 8.92 a (0.18) | 24.30 a (0.28) | 2.75 a (0.06) | 7.48 a (0.09) | |
A | 0 cm (broadcast) | 4.96 b (0.24) | 17.34 b (0.65) | 1.53 b (0.07) | 5.34 b (0.20) |
5 cm (in rows) | 6.45 a (0.34) | 20.19 a (0.58) | 1.99 a (0.10) | 6.22 a (0.18) | |
10 cm (in rows) | 6.44 a (0.37) | 20.01 a (0.66) | 1.98 a (0.11) | 6.16 a (0.20) | |
15 cm (in rows) | 6.30 a (0.34) | 19.65 a (0.66) | 1.94 a (0.10) | 6.05 a (0.20) | |
B | ammonium nitrate | 5.88 b (0.24) | 18.84 b (0.47) | 1.81 b (0.07) | 5.80 b (0.15) |
urea | 6.20 a (0.23) | 19.76 a (0.45) | 1.91 a (0.07) | 6.09 a (0.14) | |
C | before sowing | 6.03 a (0.24) | 19.22 a (0.49) | 1.86 a (0.07) | 5.92 a (0.15) |
top dressing in the BBCH 15/16 stage | 6.04 a (0.24) | 19.37 a (0.43) | 1.86 a (0.07) | 5.97 a (0.13) |
Years (Y) | Depths of Fertilization (A) | PFPFP BBCH 17/18 (kg dm·kg−1 P) | PFPFP BBCH 18/19 (kg dm·kg−1 P) | PFPFN BBCH 17/18 (kg dm·kg−1 N) | PFPFN BBCH 18/19 (kg dm·kg−1 N) |
---|---|---|---|---|---|
2016 | 0 cm (broadcast) | 3.74 d (0.196) | 16.05 a (0.798) | 1.15 d (0.060) | 4.94 a (0.246) |
5 cm (in rows) | 4.65 cd (0.176) | 18.50 a (0.732) | 1.43 cd (0.054) | 5.70 a (0.226) | |
10 cm (in rows) | 4.31 cd (0.266) | 18.34 a (0.829) | 1.33 cd (0.082) | 5.65 a (0.255) | |
15 cm (in rows) | 4.74 cd (0.196) | 18.70 a (0.610) | 1.46 cd (0.060) | 5.76 a (0.188) | |
2017 | 0 cm (broadcast) | 4.04 cd (0.097) | 13.55 a (0.587) | 1.24 cd (0.030) | 4.17 a (0.181) |
5 cm (in rows) | 5.32 c (0.251) | 17.62 a (0.762) | 1.64 c (0.077) | 5.43 a (0.235) | |
10 cm (in rows) | 5.25 c (0.151) | 16.45 a (0.442) | 1.62 c (0.046) | 5.07 a (0.136) | |
15 cm (in rows) | 4.74 cd (0.137) | 15.14 a (0.385) | 1.46 cd (0.042) | 4.66 a (0.119) | |
2018 | 0 cm (broadcast) | 7.09 b (0.203) | 22.42 a (0.501) | 2.18 b (0.063) | 6.90 a (0.154) |
5 cm (in rows) | 9.38 a (0.313) | 24.46 a (0.424) | 2.89 a (0.096) | 7.53 a (0.131) | |
10 cm (in rows) | 9.77 a (0.244) | 25.23a (0.610) | 3.01a (0.075) | 7.77a (0.188) | |
15 cm (in rows) | 9.42 a (0.205) | 25.09a (0.376) | 2.90a (0.063) | 7.73a (0.116) | |
Years (Y) | Dates of Nitrogen Application (C) | PFPFP BBCH 17/18 (kg dm·kg−1 P) | PFPFP BBCH 18/19 (kg dm·kg−1 P) | PFPFN BBCH 17/18 (kg dm·kg−1 N) | PFPFN BBCH 18/19 (kg dm·kg−1 N) |
2016 | before sowing | 4.36 a (0.175) | 17.80 b (0.535) | 1.34 a (0.054) | 5.48 b (0.165) |
top dressing in the BBCH 15/16 stage | 4.36 a (0.150) | 17.99 b (0.573) | 1.34 a (0.046) | 5.54 b (0.177) | |
2017 | before sowing | 4.73 a (0.134) | 15.15 c (0.468) | 1.46 a (0.041) | 4.67 c (0.144) |
top dressing in the BBCH 15/16 stage | 4.94 a (0.161) | 16.23 c (0.466) | 1.52 a (0.050) | 5.00 c (0.144) | |
2018 | before sowing | 9.00 a (0.223) | 24.72 a (0.418) | 2.77 a (0.069) | 7.61 a (0.129) |
top dressing in the BBCH 15/16 stage | 8.83 a (0.285) | 23.88 a (0.352) | 2.72 a (0.088) | 7.36 a (0.109) |
Years and Factors | The Levels | PFPFP Straw Yield (kg dm·kg−1 P) | PFPFP Ears Yield (kg dm·kg−1 P) | PFPFP Straw + Ears Yield (kg dm·kg−1 P) |
---|---|---|---|---|
Y | 2016 | 230.22 b (5.78) | 373.16 ab (5.05) | 603.89 b (8.09) |
2017 | 412.63 a (9.40) | 391.43 a (6.21) | 804.06 a (11.74) | |
2018 | 367.44 a (7.55) | 290.01 b (8.82) | 657.96 b (11.86) | |
A | 0 cm (broadcast) | 320.69 a (14.87) | 325.16 b (10.62) | 647.21 b (17.95) |
5 cm (in rows) | 345.64 a (14.34) | 365.19 a (9.77) | 710.82 a (17.99) | |
10 cm (in rows) | 342.60 a (13.51) | 363.38 ab (8.46) | 705.99 ab (15.58) | |
15 cm (in rows) | 338.13 a (14.63) | 352.40 ab (10.86) | 690.53 ab (16.76) | |
B | ammonium nitrate | 338.69 a (9.24) | 356.97 a (6.45) | 695.99 a (11.31) |
urea | 334.85 a (10.96) | 346.10 a (7.40) | 681.28 a (13.17) | |
C | before sowing | 334.85 a (9.93) | 356.87 a (6.90) | 692.06 a (11.52) |
top dressing in the BBCH 15/16 stage | 338.68 a (10.35) | 346.19 a (7.45) | 685.21 a (13.02) |
Years and Factors | The Levels | PFPFN Straw Yield (kg dm·kg−1 N) | PFPFN Ears Yield (kg dm·kg−1 N) | PFPFN Straw + Ears Yield (kg dm·kg−1 N) |
---|---|---|---|---|
Y | 2016 | 70.91 b (1.78) | 114.93 ab (1.56) | 186.00 b (2.49) |
2017 | 127.09 a (2.89) | 120.56 a (1.91) | 247.65 a (3.62) | |
2018 | 113.17 a (2.32) | 89.32 b (2.72) | 202.65 b (3.65) | |
A | 0 cm (broadcast) | 98.77 a (4.58) | 100.15 b (3.27) | 199.34 b (5.53) |
5 cm (in rows) | 106.46 a (4.42) | 112.48 a (3.01) | 218.93 a (5.54) | |
10 cm (in rows) | 105.52 a (4.16) | 111.92 ab (2.60) | 217.44 ab (4.80) | |
15 cm (in rows) | 104.14 a (4.51) | 108.54 ab (3.34) | 212.68 ab (5.16) | |
B | ammonium nitrate | 104.32 a (2.85) | 109.95 a (2.14) | 214.36 a (3.48) |
urea | 103.13 a (3.38) | 106.60 a (2.28) | 209.84 a (4.06) | |
C | before sowing | 103.13 a (3.06) | 109.92 a (2.13) | 213.15 a (3.55) |
top dressing in the BBCH 15/16 stage | 104.31 a (3.19) | 106.63 a (2.29) | 211.05 a (4.01) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Szulc, P.; Ambroży-Deręgowska, K.; Waligóra, H.; Mejza, I.; Grześ, S.; Zielewicz, W.; Wróbel, B. Dry Matter Yield of Maize (Zea mays L.) as an Indicator of Mineral Fertilizer Efficiency. Plants 2021, 10, 535. https://doi.org/10.3390/plants10030535
Szulc P, Ambroży-Deręgowska K, Waligóra H, Mejza I, Grześ S, Zielewicz W, Wróbel B. Dry Matter Yield of Maize (Zea mays L.) as an Indicator of Mineral Fertilizer Efficiency. Plants. 2021; 10(3):535. https://doi.org/10.3390/plants10030535
Chicago/Turabian StyleSzulc, Piotr, Katarzyna Ambroży-Deręgowska, Hubert Waligóra, Iwona Mejza, Stanisław Grześ, Waldemar Zielewicz, and Barbara Wróbel. 2021. "Dry Matter Yield of Maize (Zea mays L.) as an Indicator of Mineral Fertilizer Efficiency" Plants 10, no. 3: 535. https://doi.org/10.3390/plants10030535
APA StyleSzulc, P., Ambroży-Deręgowska, K., Waligóra, H., Mejza, I., Grześ, S., Zielewicz, W., & Wróbel, B. (2021). Dry Matter Yield of Maize (Zea mays L.) as an Indicator of Mineral Fertilizer Efficiency. Plants, 10(3), 535. https://doi.org/10.3390/plants10030535