Endophytic Fungi and Ecological Fitness of Chestnuts
Abstract
:1. Introduction
2. Ecological and Technical Features of Chestnut Orchards
3. The Relevance of Microorganisms in the Management of Chestnuts
4. Occurrence of Endophytic Fungi in Chestnuts and Ecological Implications
Endophyte 1 | Plant Part | Country | Reference |
---|---|---|---|
Castanea sativa | |||
Acremonium cf. curvulum | shoot (phellem) | Bellinzona, Switzerland | [28] |
Alternaria alternata | several plant parts | Eurobin and Monbulk, Australia | [37] |
shoot | Ticino, Switzerland | [38] | |
bud | Ankara, Turkey | [39] | |
bark | Vinhais, Portugal | [40] | |
Alternaria sp. | shoot | Geneve and Ticino, Switzerland | [41] |
leaf or gall | Southern Tuscany, Italy | [30] | |
bud | Ankara, Turkey | [39] | |
Apiognomonia errabunda | leaf | Cureglia and Zarei, Switzerland | [42] |
Arcopilus aureus * | bark | Vinhais, Portugal | [40] |
Arthrinium arundinis | leaf | Vejoris, Spain | [43] |
Aspergillus sp. | stem | Black Sea region, Turkey | [31] |
bud | Ankara, Turkey | [39] | |
Asterosporium sp. | shoot (phellem) | Bellinzona, Switzerland | [28] |
Aureobasidium pullulans | shoot | Ticino, Switzerland | [38,41] |
Aureobasidium sp. | bud | Ankara, Turkey | [39] |
Biscogniauxia mediterranea | bark | Valpaços and Vinhais, Portugal | [40] |
Botryosphaeria dothidea | shoot | Ticino, Switzerland | [41] |
leaf or gall | Southern Tuscany, Italy | [30] | |
Botryosphaeria sp. | several plant parts | Eurobin and Monbulk, Australia | [37] |
Botryotinia pelargonii | leaf or gall | Southern Tuscany, Italy | [30] |
Botrytis cinerea | several plant parts | Eurobin and Monbulk, Australia | [37] |
Chaetomium sp. | several plant parts | Eurobin and Monbulk, Australia | [37] |
Cladosporium cladosporioides | several plant parts | Eurobin and Monbulk, Australia | [37] |
Cladosporium sp. | fruit | Eurobin and Monbulk, Australia | [37] |
bud | Ankara, Turkey | [39] | |
Colletotrichum acutatum | shoot (phellem) | Bellinzona, Switzerland | [28] |
leaf, shoot | Monti Cimini, Italy | [44] | |
leaf | Vejoris, Spain | [43] | |
Coprinellus domesticus | bark | Oghuz, Azerbaijan | [33] |
Coryneum modonium | shoot (phellem) | Bellinzona and Murg, Switzerland | [28] |
Cryphonectria parasitica | shoot (phellem) | Bellinzona, Switzerland | [28] |
sprout | Fossemagne, France | [45] | |
bark | Valpaços and Vinhais, Portugal | [40] | |
Cytospora chrysosperma | bark | Valpaços, Portugal | [40] |
Cytospora diatyrpelloidea | bark | Valpaços and Vinhais, Portugal | [40] |
Cytospora eucalypticola | bark | Valpaços, Portugal | [40] |
Cytospora quercicola | bark | Vinhais, Portugal | [40] |
Dendrostoma castaneum * | shoot (phellem) | Bellinzona and Murg, Switzerland | [28] |
fruit | Toricella, Switzerland | [46] | |
branch | Astroni Nature Reserve, Italy | [47] | |
Diaporthe amygdali | bark | Oghuz, Azerbaijan | [33] |
Diaporthe eres | shoot | Geneve and Ticino, Switzerland | [38,41] |
Diaporthe foeniculina | branch | Astroni Nature Reserve, Italy | [48] |
Diaporthe sp. | shoot (phellem) | Bellinzona and Murg, Switzerland | [28] |
leaf or gall | Southern Tuscany, Italy | [30] | |
bud | Ankara, Turkey | [39] | |
Diplodia seriata | leaf or gall | Southern Tuscany, Italy | [30] |
Diplodina castaneae * | shoot (phellem) | Bellinzona and Murg, Switzerland | [28] |
stem, twig | Chablais and Ticino, Switzerland | [48] | |
stem | Northern Spain | [48] | |
bark, stem | Ismailly, Qabala, Sheki (Azerbaijan) | [33] | |
Epicoccum nigrum | several plant parts | Eurobin and Monbulk, Australia | [37] |
bark | Balakan, Azerbaijan | [33] | |
bud | Ankara, Turkey | [39] | |
Eutypella sp. | bark | Zagatala, Azerbaijan | [33] |
Fusarium ciliatum | leaf or gall | Southern Tuscany, Italy | [30] |
Fusarium lateritium | leaf or gall | Southern Tuscany, Italy | [30] |
Fusarium oxysporum | leaf or gall | Southern Tuscany, Italy | [30] |
Fusarium sp. | fruit | Eurobin and Monbulk, Australia | [37] |
leaf or gall | Southern Tuscany, Italy | [30] | |
leaf | Vejoris, Spain | [43] | |
bud | Ankara, Turkey | [39] | |
Gnomoniopsis castaneae * | several plant parts | Eurobin and Monbulk, Australia | [37] |
bark, flower, leaf | several locations in New Zealand | [29] | |
several plant parts | Cuneo province, Italy | [49,50] | |
flower, leaf, stem | Southern Australia | [51] | |
shoot | several locations in Northern Italy | [52] | |
fruit | several locations in Switzerland | [53] | |
buds | Aosta Valley and Piedmont, Italy | [54] | |
shoot | Geneve and Ticino, Switzerland | [38,41] | |
several plant parts | Monti Cimini, Italy | [44,55] | |
leaf or gall | Southern Tuscany, Italy | [30] | |
leaf | Vejoris, Spain | [43] | |
leaf | Netherlands | [56] | |
branch | Astroni Nature Reserve, Italy | [47] | |
Hyphodermella rosae | bark | Ismailly and Shaki, Azerbaijan | [33] |
Hypoxylon fragiforme | shoot (phellem) | Bellinzona and Murg, Switzerland | [28] |
Irpex lacteus | bark | Balakan, Azerbaijan | [33] |
Jattaea sp. | bark | Zagatala, Azerbaijan | [33] |
Massarina cf. quercina | shoot (phellem) | Murg, Switzerland | [28] |
Mollisia sp. (= Cystodendron sp.) | shoot (phellem) | Bellinzona, Switzerland | [28,57] |
Monodictys castaneae | shoot (phellem) | Bellinzona, Switzerland | [28] |
Mucor fragilis | bark | Vinhais, Portugal | [40] |
Neocucurbitaria cava * | leaf or gall | Southern Tuscany, Italy | [30] |
Neopestalotiopsis sp. | bark | Asturias, Spain | [35] |
Neopestalotiopsis zimbabwana | bark | Asturias, Spain | [35] |
Nigrospora sp. | several plant parts | Eurobin and Monbulk, Australia | [37] |
Ophiovalsa cf. suffusa | shoot (lenticel) | Bellinzona, Switzerland | [28] |
Paraconiothyrium brasiliense | bark | Vinhais, Portugal | [40] |
branch | Astroni Nature Reserve, Italy | [47] | |
Penicillium glabrum | bark | Vinhais, Portugal | [40] |
Penicillium sp. | several plant parts | Eurobin and Monbulk, Australia | [37] |
stem | Black Sea region, Turkey | [31] | |
bark | Marche, Italy | [34] | |
bud | Ankara, Turkey | [39] | |
bark | Valpaços, Portugal | [40] | |
branch | Astroni Nature Reserve, Italy | [47] | |
Pestalotiopsis sp. | leaf | Vejoris, Spain | [43] |
bark | Asturias, Spain | [35] | |
bud | Ankara, Turkey | [39] | |
Pezicula cinnamomea | shoot (phellem) | Bellinzona and Murg, Switzerland | [28] |
Phaeococcus sp. | shoot (phellem) | Murg, Switzerland | [28] |
Phoma sp. | shoot (phellem) | Bellinzona, Switzerland | [28] |
several plant parts | Eurobin and Monbulk, Australia | [37] | |
bud | Ankara, Turkey | [39] | |
Pilidiella castaneicola * | shoot | Bellinzona and Murg, Switzerland | [28] |
Ramichloridium sp. | shoot (phellem) | Murg, Switzerland | [28] |
Rhizoctonia sp. | shoot (phellem) | Bellinzona, Switzerland | [28] |
Rhizopus sp. | bark | Vinhais, Portugal | [40] |
Sclerotinia pseudotuberosa | bark, bud, fruit | Viterbo province, Italy | [58] |
Sordaria rabenhorstii * | bark | Valpaços, Portugal | [40] |
Sordaria sp. | several plant parts | Eurobin and Monbulk, Australia | [37] |
leaf or gall | Southern Tuscany, Italy | [30] | |
Stemphylium vesicarium | leaf or gall | Southern Tuscany, Italy | [30] |
Trichoderma atroviride | scion | Ticino, Switzerland | [38] |
leaf | Vejoris, Spain | [43] | |
Trichoderma hamatum | shoot | Ticino, Switzerland | [38] |
Trichoderma koningiopsis | bark | Shaki, Azerbaijan | [33] |
Trichoderma sp. | stem | Black Sea region, Turkey | [31] |
bark | Qakh, Azerbaijan | [33] | |
bark | Marche, Italy | [34] | |
Trichothecium roseum | leaf or gall | Southern Tuscany, Italy | [30] |
Umbelopsis isabellina | bark | Balakan and Qabala, Azerbaijan | [33] |
bark | Vinhais, Portugal | [40] | |
Xenoacremonium falcatum | bark | Balakan and Qabala, Azerbaijan | [33] |
Xylaria sp. | branch | Astroni Nature Reserve, Italy | [47] |
Castanea crenata | |||
Alternaria sp. | leaf | Kashiwa, Japan | [59] |
Astrocystis sp. | leaf | Kashiwa, Japan | [59] |
Aureobasidium sp. | leaf | Kashiwa, Japan | [59] |
Botryosphaeria dothidea | leaf | Kashiwa, Japan | [59] |
Colletotrichum acutatum | leaf | Kashiwa, Japan | [59] |
Colletotrichum gloeosporioides | leaf | Kashiwa, Japan | [59] |
Diaporthe sp. | leaf | Kashiwa, Japan | [59] |
Discula sp. | leaf | Kashiwa, Japan | [59] |
Glomerella sp. | leaf | Kashiwa, Japan | [59] |
Gnomoniopsis castaneae * | bark, flower, leaf | several locations in New Zealand | [29] |
Induratia fengyangensis * | leaf | Kashiwa, Japan | [59] |
Nigrospora sp. | leaf | Kashiwa, Japan | [59] |
Pestalotiopsis sp. | leaf | Kashiwa, Japan | [59] |
Phyllosticta capitalensis | leaf | Kashiwa, Japan | [59] |
Xylaria sp. | leaf | Kashiwa, Japan | [59] |
Castanea dentata | |||
Acremonium implicatum * | stem | Michigan and Wisconsin, USA | [36] |
Alternaria alternata | stem | Michigan and Wisconsin, USA | [36] |
Alternaria brassicae | stem | Michigan and Wisconsin, USA | [36] |
Aspergillus tubingensis | stem | Michigan, USA | [60] |
Biscogniauxia aff. mediterranea | stem | Michigan and North Carolina, USA | [60] |
Botryosphaeria sp. | stem | Michigan and Wisconsin, USA | [32,36] |
Daldinia aff. childiae | stem | Michigan, USA | [60] |
Didimostylbe sp. | stem | Wisconsin, USA | [32] |
Diplodia corticola | stem | Michigan and Wisconsin, USA | [36] |
Diplodia seriata | stem | Michigan and Wisconsin, USA | [36] |
Dothiorella sp. | stem | Wisconsin, USA | [32] |
Epicoccum nigrum | stem | Wisconsin, USA | [32] |
stem | Michigan, USA | [60] | |
stem | Michigan and Wisconsin, USA | [61] | |
Fusarium sp. | stem | Massachusetts, USA | [62] |
Gnomoniopsis castaneae * | flower, leaf | Ohaupo, New Zealand | [29] |
stem | Michigan and Wisconsin, USA | [36] | |
Mucor circinelloides | stem | Michigan and Wisconsin, USA | [36] |
Mucor fragilis | stem | Michigan and Wisconsin, USA | [36] |
Nectria cinnabarina | stem | Michigan and Wisconsin, USA | [36] |
Nigrospora aff. oryzae | stem | Michigan, USA | [60] |
Paraconiothyrium sp. | stem | Wisconsin, USA | [32] |
Penicillium glabrum | stem | Michigan and Wisconsin, USA | [32,36] |
Penicillium spinulosum | stem | Michigan and Wisconsin, USA | [32,36] |
Pestalotia sp. | stem | Wisconsin, USA | [31] |
Pestalotiopsis sp. | stem | North Carolina, USA | [60] |
Pezicula cinnamomea | stem | Michigan and Wisconsin, USA | [36] |
Pezicula ericae | stem | Michigan and Wisconsin, USA | [36] |
Pezicula sporulosa | stem | North Carolina, USA | [60] |
Strasseria sp. | stem | Michigan and Wisconsin, USA | [36] |
Trichoderma atroviride | stem | Michigan and Wisconsin, USA | [32,36] |
Trichoderma aureoviride | stem | Wisconsin, USA | [32] |
Trichoderma citrinoviride | stem | Michigan and Wisconsin, USA | [36] |
Trichoderma harzianum | stem | Michigan and Wisconsin, USA | [36] |
Trichoderma sp. | stem | Massachusetts, USA | [62] |
Tubakia suttoniana * | stem | North Carolina, USA | [59] |
Umbelopsis isabellina | stem | Michigan and Wisconsin, USA | [32,36,61] |
Castanea mollissima | |||
Alternaria eichhorniae | leaf | Qing Long, China | [63] |
Alternaria sp. | leaf | Qing Long, China | [63] |
Auriculibuller fuscus * | leaf | Qing Long, China | [63] |
Cercospora canescens | twig | Qing Long, China | [63] |
Cercospora sp. | twig | Qing Long, China | [63] |
Colacogloea sp. | leaf | Qing Long, China | [63] |
Colacogloea terpenoidalis | leaf | Qing Long, China | [63] |
Gnomoniopsis castaneae * | bark, leaf | Ohaupo, New Zealand | [29] |
Kondoa sorbi | leaf | Qing Long, China | [63] |
Kondoa sp. | twig | Qing Long, China | [63] |
Papiliotrema sp. | leaf | Qing Long, China | [63] |
Phlebia acerina | - | China | [64] |
Sporobolomyces roseus | twig | Qing Long, China | [63] |
4.1. Endophytic Fungi as Plant Disease Agents
4.2. Endophytic Fungi as Mutualists
4.3. Endophytic Fungi and the Cynipid Gall Wasps
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Manos, P.S.; Zhou, Z.K.; Cannon, C.H. Systematics of Fagaceae: Phylogenetic tests of reproductive trait evolution. Int. J. Plant Sci. 2001, 162, 1361–1379. [Google Scholar] [CrossRef]
- Bounous, G. Il Castagno: Risorsa Multifunzionale in Italia e nel Mondo; Edagricole: Milano, Italy, 2014; p. 420. ISBN 9788850654151. [Google Scholar]
- Beccaro, G.; Alma, A.; Bounous, G.; Gomes-Laranjo, J. The chestnut handbook. In Crop & Forest Management; Taylor & Francis, CRC Press: Boca Raton, FL, USA, 2019; p. 378. ISBN 9780429445606. [Google Scholar]
- Beccaro, G.L.; Donno, D.; Lione, G.G.; De Biaggi, M.; Gamba, G.; Rapalino, S.; Riondato, I.; Gonthier, P.; Mellano, M.G. Castanea spp. Agrobiodiversity conservation: Genotype influence on chemical and sensorial traits of cultivars grown on the same clonal rootstock. Foods 2020, 9, 1062. [Google Scholar] [CrossRef] [PubMed]
- Pereira-Lorenzo, S.; Ballester, A.; Corredoira, E.; Vieitez, A.M.; Agnanostakis, S.; Costa, R.; Bounous, G.; Botta, R.; Beccaro, G.L.; Kubisiak, T.L. Chestnut. In Fruit Breeding; Springer: New York, NY, USA, 2012; pp. 729–769. [Google Scholar]
- Bounous, G.; Marinoni, D.T. Chestnut: Botany, horticulture, and utilization. Hort. Rev. 2005, 31, 291–347. [Google Scholar]
- Mota, M.; Marques, T.; Pinto, T.; Raimundo, F.; Borges, A.; Caço, J.; Gomes-Laranjo, J. Relating plant and soil water content to encourage smart watering in chestnut trees. Agric. Water Manag. 2018, 203, 30–36. [Google Scholar] [CrossRef]
- Warmund, M.R. Nutrient status and fruiting response of young Chinese chestnut trees following application of nitrogen. J. Am. Pomol. Soc. 2018, 72, 12–20. [Google Scholar]
- Mellano, M.G.; Beccaro, G.L.; Donno, D.; Torello Marinoni, D.; Boccacci, P.; Canterino, S.; Cerutti, A.K.; Bounous, G. Castanea spp. Biodiversity conservation: Collection and characterization of the genetic diversity of an endangered species. Gen. Res. Crop Evol. 2012, 59, 1727–1741. [Google Scholar] [CrossRef]
- Aryal, P.; Meiners, S.J.; Carlsward, B.S. Ectomycorrhizae determine chestnut seedling growth and drought response. Agrofor. Syst. 2020. [Google Scholar] [CrossRef]
- Baptista, P.; Martins, A.; Pais, M.S.; Tavares, R.M.; Lino-Neto, T. Involvement of reactive oxygen species during early stages of ectomycorrhiza establishment between Castanea sativa and Pisolithus tinctorius. Mycorrhiza 2007, 17, 185–193. [Google Scholar] [CrossRef] [Green Version]
- Baptista, P.; Martins, A.; Tavares, R.M.; Lino-Neto, T. Diversity and fruiting pattern of macrofungi associated with chestnut (Castanea sativa) in the Trás-os-Montes region (Northeast Portugal). Fungal Ecol. 2010, 3, 9–19. [Google Scholar] [CrossRef] [Green Version]
- Reis, F.; Pereira, E.; Tavares, M.; Baptista, P.; Lino-Neto, T. Fungal community in chestnut orchards with different Hypholoma fasciculare above-ground abundance: Potential implications for sustainable production. Rev. Ciências Agr. 2016, 40, 124–132. [Google Scholar] [CrossRef]
- Twieg, B.D.; Durall, D.M.; Simard, S.W. Ectomycorrhizal fungal succession in mixed temperate forests. New Phytol. 2007, 176, 437–447. [Google Scholar] [CrossRef]
- Itoo, Z.; Reshi, Z. Influence of ectomycorrhizal inoculation on Pinus wallichiana and Cedrus deodara seedlings under nursery conditions. Front. Biol. 2014, 9, 82–88. [Google Scholar] [CrossRef]
- Martins, A.; Marques, G.; Borges, O.; Portela, E.; Lousada, J.; Raimundo, F.; Madeira, M. Management of chestnut plantations for a multifunctional land use under Mediterranean conditions: Effects on productivity and sustainability. Agrofor. Syst. 2011, 81, 175–189. [Google Scholar] [CrossRef]
- Stephenson, S.L.; Ali, M.B.H.B.; Rollins, A.W.; Furches, M.S.; Atherton, K.R. Ectomycorrhizal fungi associated with American chestnut at a site in Tennessee, USA. Castanea 2017, 82, 2–7. [Google Scholar] [CrossRef]
- Álvarez-Lafuente, A.; Benito-Matías, L.F.; Peñuelas-Rubira, J.L.; Suz, L.M. Multi-cropping edible truffles and sweet chestnuts: Production of high-quality Castanea sativa seedlings inoculated with Tuber aestivum, its ecotype T. uncinatum, T. brumale, and T. macrosporum. Mycorrhiza 2018, 28, 29–38. [Google Scholar] [CrossRef] [PubMed]
- Palmer, J.M.; Lindner, D.L.; Volk, T.J. Ectomycorrhizal characterization of an American chestnut (Castanea dentata) dominated community in Western Wisconsin. Mycorrhiza 2008, 19, 27–36. [Google Scholar] [CrossRef] [PubMed]
- Santolamazza-Carbone, S.; Iglesias-Bernabé, L.; Sinde-Stompel, E.; Gallego, P.P. Ectomycorrhizal fungal community structure in a young orchard of grafted and ungrafted hybrid chestnut saplings. Mycorrhiza 2021. [Google Scholar] [CrossRef] [PubMed]
- Gauthier, M.-M.; Zellers, K.E.; Löf, M.; Jacobs, D.F. Inter- and intra-specific competitiveness of plantation-grown American chestnut (Castanea dentata). For. Ecol. Manag. 2013, 291, 289–299. [Google Scholar] [CrossRef]
- Fernández-Lorenzo, J.L.; Crecente, S. In vivo serial micrografting of Castanea sativa in short cycles. Acta Hortic. 2010, 866, 291–296. [Google Scholar] [CrossRef]
- Coughlin, E.M.; Shefferson, R.P.; Clark, S.L.; Wurzburger, N. Plant–soil feedbacks and the introduction of Castanea (chestnut) hybrids to eastern North American forests. Restor. Ecol. 2020. [Google Scholar] [CrossRef]
- Bauman, J.M.; Francino, S.; Santas, A. Interactions between ectomycorrhizal fungi and chestnut blight (Cryphonectria parasitica) on American chestnut (Castanea dentata) used in coal mine restoration. AIMS Microbiol. 2018, 4, 104–122. [Google Scholar] [CrossRef]
- Blom, J.M.; Vannini, A.; Vettraino, A.M.; Hale, M.D.; Godbold, D.L. Ectomycorrhizal community structure in a healthy and a Phytophthora-infected chestnut (Castanea sativa Mill.) stand in central Italy. Mycorrhiza 2009, 20, 25–38. [Google Scholar] [CrossRef] [PubMed]
- Brundrett, M. Diversity and classification of mycorrhizal associations. Biol. Rev. 2004, 79, 473–495. [Google Scholar] [CrossRef]
- Hyde, K.D.; Soytong, K. The fungal endophyte dilemma. Fungal Div. 2008, 33, 163–173. [Google Scholar]
- Bissegger, M.; Sieber, T.N. Assemblages of endophytic fungi in coppice shoots of Castanea sativa. Mycologia 1994, 86, 648–655. [Google Scholar] [CrossRef]
- Wadia, K.D.R.; Klinac, D.; McNeil, D.L.; Osmonalieva, A.; Stewart, A.; Knowles, R.D. Occurrence of Phomopsis castanea as an endophyte in chestnut trees. N. Z. Plant Prot. 2000, 53, 133–137. [Google Scholar] [CrossRef] [Green Version]
- Fernandez-Conradi, P.; Fort, T.; Castagneyrol, B.; Jactel, H.; Robin, C. Fungal endophyte communities differ between chestnut galls and surrounding foliar tissues. Fungal Ecol. 2019, 42, 100876. [Google Scholar] [CrossRef]
- Akilli, S.; Katircioðlu, Y.Z.; Maden, S. Chestnut blight cankers in black sea region of Turkey. Acta Hortic. 2009, 815, 247–252. [Google Scholar] [CrossRef]
- Double, M.L.; Kolp, M.R.; Jarosz, A.M.; Davelos Baines, A.; Fulbright, D.W.; MacDonald, W.L. Fungi associated with hypovirulent cankers of differing ages on American chestnut. Acta Hortic. 2013, 1043, 57–65. [Google Scholar] [CrossRef]
- Aghayeva, D.N.; Rigling, D.; Meyer, J.B.; Mustafabeyli, E. Diversity of fungi occurring in the bark of Castanea sativa in Azerbaijan. Acta Hortic. 2017, 1220, 79–86. [Google Scholar] [CrossRef]
- Murolo, S.; Concas, J.; Romanazzi, G. Use of biocontrol agents as potential tools in the management of chestnut blight. Biol. Contr. 2019, 132, 102–109. [Google Scholar] [CrossRef]
- González, A.J.; Estefanía, T. Strains of Neopestalotiopsis sp. are in vitro antagonists of Cryphonectria parasitica. Biol. Contr. 2020, 143, 104187. [Google Scholar] [CrossRef]
- Kolp, M.; Double, M.L.; Fulbright, D.W.; MacDonald, W.L.; Jarosz, A.M. Spatial and temporal dynamics of the fungal community of chestnut blight cankers on American chestnut (Castanea dentata) in Michigan and Wisconsin. Fungal Ecol. 2020, 45, 100925. [Google Scholar] [CrossRef]
- Washington, W.S.; Hood, V.; Stewart-Wade, S. Phomopsis castanea, a seed-borne endophyte in chestnut trees. Austr. J. Bot. 1999, 47, 77–84. [Google Scholar] [CrossRef]
- Pasche, S.; Crovadore, J.; Pelleteret, P.; Jermini, M.; Mauch-Mani, B.; Oszako, T.; Lefort, F. Biological control of the latent pathogen Gnomoniopsis smithogylvyi in European chestnut grafting scions using Bacillus amyloliquefaciens and Trichoderma atroviride. Dendrobiology 2016, 75, 113–122. [Google Scholar] [CrossRef] [Green Version]
- Akilli Şimşek, S.; Akyüz, B.; Katircioğlu, Y.Z.; Serdar, Ü.; Maden, S. Effectiveness and efficacy of superficial disinfectants to prevent mechanical transmission of Cryphonectria parasitica from chestnut scion woods. Europ. J. Plant Pathol. 2020, 159, 131–138. [Google Scholar] [CrossRef]
- Coelho, V.; Nunes, L.; Gouveia, E. Short and long term efficacy and prevalence of Cryphonectria parasitica hypovirulent strains released as biocontrol agents of chestnut blight. Eur. J. Plant Pathol. 2021. [Google Scholar] [CrossRef]
- Pasche, S.; Calmin, G.; Auderset, G.; Crovadore, J.; Pelleteret, P.; Mauch-Mani, B.; Barja, F.; Paul, B.; Jermini, M.; Lefort, F. Gnomoniopsis smithogilvyi causes chestnut canker symptoms in Castanea sativa shoots in Switzerland. Fungal Genet. Biol. 2016, 87, 9–21. [Google Scholar] [CrossRef]
- Haemmerli, U.A.; Brändle, U.E.; Petrini, O.; McDermott, J.M. Differentiation of isolates of Discula umbrinella (teleomorph: Apiognomonia errabunda) from beech, chestnut, and oak using randomly amplified polymorphic DNA markers. Mol. Plant-Microbe Interact. 1992, 5, 479–483. [Google Scholar] [CrossRef]
- Muñoz-Adalia, E.J.; Rodríguez, D.; Casado, M.; Diez, J.; Fernández, M. Fungal community of necrotic and healthy galls in chestnut trees colonized by Dryocosmus kuriphilus (Hymenoptera, cynipidae). I-Forest 2019, 12, 411–417. [Google Scholar]
- Vannini, A.; Morales-Rodriguez, C.; Aleandri, M.; Bruni, N.; Dalla Valle, M.; Mazzetto, T.; Martignoni, D.; Vettraino, A. Emerging new crown symptoms on Castanea sativa (Mill.): Attempting to model interactions among pests and fungal pathogens. Fungal Biol. 2018, 122, 911–917. [Google Scholar] [CrossRef] [PubMed]
- Guérin, L.; Robin, C. Seasonal effect on infection and development of lesions caused by Cryphonectria parasitica in Castanea sativa. Forest Pathol. 2003, 33, 223–235. [Google Scholar] [CrossRef]
- Sieber, T.N.; Jermini, M.; Conedera, M. Effects of the harvest method on the infestation of chestnuts (Castanea sativa) by insects and moulds. J. Phytopathol. 2007, 155, 497–504. [Google Scholar] [CrossRef]
- Becchimanzi, A.; Nicoletti, R. Antagonistic relationships between Gnomoniopsis castaneae and endophytic fungi of chestnut (Castanea sativa). Antagonistic. Manuscript in preparation.
- Meyer, J.B.; Trapiello, E.; Senn-Irlet, B.; Sieber, T.N.; Cornejo, C.; Aghayeva, D.; González, A.J.; Prospero, S. Phylogenetic and phenotypic characterisation of Sirococcus castaneae comb. nov. (synonym Diplodina castaneae), a fungal endophyte of European chestnut. Fungal Biol. 2017, 121, 625–637. [Google Scholar] [CrossRef] [PubMed]
- Gentile, S.; Valentino, D.; Visentin, I.; Tamietti, G. An epidemic of Gnomonia pascoe on nuts of Castanea sativa in the Cuneo area. Acta Hortic. 2009, 866, 363–368. [Google Scholar] [CrossRef]
- Visentin, I.; Gentile, S.; Valentino, D.; Gonthier, P.; Cardinale, F. Gnomoniopsis castanea sp. nov. (Gnomoniaceae, Diaporthales) as the causal agent of nut rot in sweet chestnut. J. Plant Pathol. 2012, 94, 411–419. [Google Scholar]
- Shuttleworth, L.A.; Guest, D.I.; Liew, E.C.Y. Fungal planet description sheet 108–Gnomoniopsis smithogilvyi L.A. Shuttleworth, E.C.Y. Liew & D.I. Guest, sp. nov. Persoonia 2012, 28, 142–143. [Google Scholar]
- Maresi, G.; Oliveira Longa, C.M.; Turchetti, T. Brown rot on nuts of Castanea sativa Mill: An emerging disease and its causal agent. iForest Biogeosci. For. 2013, 6, 294–301. [Google Scholar] [CrossRef]
- Dennert, F.G.; Broggini, G.A.; Gessler, C.; Storari, M. Gnomoniopsis castanea is the main agent of chestnut nut rot in Switzerland. Phytopathol. Mediter. 2015, 54, 199–211. [Google Scholar]
- Lione, G.; Giordano, L.; Ferracini, C.; Alma, A.; Gonthier, P. Testing ecological interactions between Gnomoniopsis castaneae and Dryocosmus kuriphilus. Acta Oecol. 2016, 77, 10–17. [Google Scholar] [CrossRef]
- Vannini, A.; Vettraino, A.; Martignoni, D.; Morales-Rodriguez, C.; Contarini, M.; Caccia, R.; Paparatti, B.; Speranza, S. Does Gnomoniopsis castanea contribute to the natural biological control of chestnut gall wasp? Fungal Biol. 2017, 121, 44–52. [Google Scholar] [CrossRef] [PubMed]
- Lione, G.; Danti, R.; Fernandez-Conradi, P.; Ferreira-Cardoso, J.V.; Lefort, F.; Marques, G.; Meyer, J.B.; Prospero, S.; Radocz, L.; Robin, C.; et al. The emerging pathogen of chestnut Gnomoniopsis castaneae: The challenge posed by a versatile fungus. Eur. J. Plant Pathol. 2019, 153, 671–685. [Google Scholar] [CrossRef]
- Grünig, C.R.; Queloz, V.; Duò, A.; Sieber, T.N. Phylogeny of Phaeomollisia piceae gen. sp. nov.: A dark, septate, conifer-needle endophyte and its relationships to Phialocephala and Acephala. Mycol. Res. 2009, 113, 207–221. [Google Scholar] [CrossRef] [PubMed]
- Vettraino, A.M.; Paolacci, A.; Vannini, A. Endophytism of Sclerotinia pseudotuberosa: PCR assay for specific detection in chestnut tissues. Mycol. Res. 2005, 109, 96–102. [Google Scholar] [CrossRef]
- Matsumura, E.; Fukuda, K. A comparison of fungal endophytic community diversity in tree leaves of rural and urban temperate forests of Kanto district, eastern Japan. Fungal Biol. 2013, 117, 191–201. [Google Scholar] [CrossRef] [PubMed]
- Potter, B. Biocontrol Potential of Endophytes of Healthy Castanea dentata Tissue for Application Against Cryphonectria parasitica. Master’s Thesis, Univ. Wisconsin, La Crosse, WI, USA, 2017. [Google Scholar]
- Kolp, M.; Fulbright, D.W.; Jarosz, A.M. Inhibition of virulent and hypovirulent Cryphonectria parasitica growth in dual culture by fungi commonly isolated from chestnut blight cankers. Fungal Biol. 2018, 122, 935–942. [Google Scholar] [CrossRef]
- Tattar, T.A.; Berman, P.M.; González, E.Y.; Mount, M.S.; Dolloff, A.L. Biocontrol of the chestnut blight fungus Cryphonectria parasitica. Arboricult. J. 1996, 20, 449–469. [Google Scholar] [CrossRef]
- Ren, F.; Dong, W.; Shi, S.; Dou, G.; Yan, D.H. Chinese chestnut yellow crinkle disease influence microbiota composition of chestnut trees. Microbial Pathogen. 2020, 152, 104606. [Google Scholar] [CrossRef]
- Jia, X.; Zhu, X.; Luo, C.; Ye, Y.; Lu, D. Research of the B2 of endophytic fungi from Castanea millissima and its inhibition of fungi characteristics. J. Xinyang Normal Univ. Nat. Sci. 2011, 24, 209–214. [Google Scholar]
- Milgroom, M.G.; Cortesi, P. Biological control of chestnut blight with hypovirulence: A critical analysis. Ann. Rev. Phytopathol. 2004, 42, 311–338. [Google Scholar] [CrossRef] [Green Version]
- Turchetti, T.; Maresi, G. Biological control and management of chestnut diseases. In Integrated Management of Diseases Caused by Fungi, Phytoplasma and Bacteria; Springer: Dordrecht, The Netherlands, 2008; pp. 85–118. [Google Scholar]
- Anagnostakis, S.L. Chestnut breeding in the United States for disease and insect resistance. Plant Dis. 2012, 96, 1392–1403. [Google Scholar] [CrossRef] [PubMed]
- EFSA Panel on Plant Health (PLH). Scientific opinion on the pest categorisation of Cryphonectria parasitica (Murrill) Barr. EFSA J. 2014, 12, 3859. [Google Scholar] [CrossRef]
- Rigling, D.; Prospero, S. Cryphonectria parasitica, the causal agent of chestnut blight: Invasion history, population biology and disease control. Mol. Plant Pathol. 2018, 19, 7–20. [Google Scholar] [CrossRef] [Green Version]
- Nicoletti, R. Endophytic fungi of citrus plants. Agriculture 2019, 9, 247. [Google Scholar] [CrossRef] [Green Version]
- Nicoletti, R.; Di Vaio, C.; Cirillo, C. Endophytic fungi of olive tree. Microorganisms 2020, 8, 1321. [Google Scholar] [CrossRef]
- Salvatore, M.M.; Andolfi, A.; Nicoletti, R. The thin line between pathogenicity and endophytism: The case of Lasiodiplodia theobromae. Agriculture 2020, 10, 488. [Google Scholar] [CrossRef]
- Rubio, S.; Barnes, A.; Webb, K.; Hodgetts, J. A real-time PCR assay for improved rapid, specific detection of Cryphonectria parasitica. Ann. Appl. Biol. 2017, 171, 52–61. [Google Scholar] [CrossRef]
- Chandelier, A.; Massot, M.; Fabreguettes, O.; Gischer, F.; Teng, F.; Robin, C. Early detection of Cryphonectria parasitica by real-time PCR. Eur. J. Plant Pathol. 2019, 153, 29–46. [Google Scholar] [CrossRef]
- Mausse-Sitoe, S.N.; Rodas, C.A.; Wingfield, M.J.; Chen, S.; Roux, J. Endophytic Cryphonectriaceae on native Myrtales: Possible origin of Chrysoporthe canker on plantation-grown Eucalyptus. Fungal Biol. 2016, 120, 827–835. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Granados, G.M.; McTaggart, A.R.; Rodas, C.A.; Roux, J.; Wingfield, M.J. Species of Cryphonectriaceae occupy an endophytic niche in the Melastomataceae and are putative latent pathogens of Eucalyptus. Eur. J. Plant Pathol. 2020, 156, 273–283. [Google Scholar] [CrossRef]
- Zhang, H.; Xie, J.; Fu, Y.; Cheng, J.; Qu, Z.; Zhao, Z.; Cheng, S.; Chen, T.; Li, B.; Wang, Q.; et al. A 2-kb mycovirus converts a pathogenic fungus into a beneficial endophyte for Brassica protection and yield enhancement. Mol. Plant 2020, 13, 1420–1433. [Google Scholar] [CrossRef]
- Zhou, L.; Li, X.; Kotta-Loizou, I.; Dong, K.; Li, S.; Ni, D.; Wang, G.; Xu, W. A mycovirus modulates the endophytic and pathogenic traits of a plant associated fungus. ISME J. 2021. [Google Scholar] [CrossRef]
- Stauber, L.; Prospero, S.; Croll, D. Comparative genomics analyses of lifestyle transitions at the origin of an invasive fungal pathogen in the genus Cryphonectria. Msphere 2020, 5, e00737-20. [Google Scholar] [CrossRef] [PubMed]
- Adamčíková, K.; Juhásová, G.; Kobza, M.; Ondrušková, E. Diversity of microfungi on branches of Castanea sativa in Slovakia. Pol. Bot. J. 2013, 58, 741–746. [Google Scholar] [CrossRef]
- Jaklitsch, W.M.; Voglmayr, H. European species of Dendrostoma (Diaporthales). MycoKeys 2019, 59, 1. [Google Scholar] [CrossRef]
- Jiang, N.; Fan, X.-L.; Crous, P.W.; Tian, C.-M. Species of Dendrostoma (Erythrogloeaceae, Diaporthales) associated with chestnut and oak canker diseases in China. MycoKeys 2019, 48, 67–96. [Google Scholar] [CrossRef] [PubMed]
- Sung, J.M.; Han, S.S. Identification of canker-causing fungi associated with stems and twigs of chestnut tree. Korean J. Plant Pathol. 1986, 2, 174–184. [Google Scholar]
- Hamasaki, K.; Kawaradani, M.; Shibao, M. Control of the chestnut weevil, Curculio sikkimensis (Heller), and the black rot fungus, Botryosphaeria dothidea (Mougeot) Cesati & De Notaris, using hot water treatment. Ann. Rep. Kansai Plant Prot. Soc. 2016, 58, 51–55. [Google Scholar]
- Nishimura, T. Study on fruit rot of Japanese chestnut. Bull. Hosei Univ. Graduate School. Graduate School Sci. Engin. 2015, 60, 13. [Google Scholar] [CrossRef]
- Ivić, D.; Novak, A. Gljive povezane s truleži plodova pitomog kestena, s prvim nalazom Gnomoniopsis smithogilvyi u Hrvatskoj. Pomologia Croatica: Glasilo Hrvatskog Agronomskog Društva 2018, 22, 13–22. [Google Scholar] [CrossRef] [Green Version]
- Gong, S.; Zhang, X.; Jiang, S.; Chen, C.; Ma, H.; Nie, Y. A new species of Ophiognomonia from Northern China inhabiting the lesions of chestnut leaves infected with Diaporthe eres. Mycol. Prog. 2017, 16, 83–91. [Google Scholar] [CrossRef]
- Gaffuri, F.; Longa, C.M.O.; Turchetti, T.; Danti, R.; Maresi, G. ‘Pink rot’: Infection of Castanea sativa fruits by Colletotrichum acutatum. Forest Pathol. 2017, 47, e12307. [Google Scholar] [CrossRef]
- Donis González, I.R.; Fulbright, D.W.; Ryser, E.T.; Guyer, D. Shell mold and kernel decay of fresh chestnuts in Michigan. Acta Hortic. 2009, 866, 353–362. [Google Scholar] [CrossRef]
- Yurkewich, J.I.; Castaño, C.; Colinas, C. Chestnut red stain: Identification of the fungi associated with the costly discolouration of Castanea sativa. Forest Pathol. 2017, 47, e12335. [Google Scholar] [CrossRef]
- Spegazzini, C. Nova addenda ad Mycologiam Venetam. Michelia 1879, 1, 453–487. [Google Scholar]
- Dar, M.A.; Rai, M.K. Gnomoniopsis smithogilvyi a canker causing pathogen on Castanea sativa: First report. Mycosphere 2015, 6, 327–336. [Google Scholar] [CrossRef]
- Meyer, J.B.; Gallien, L.; Prospero, S. Interaction between two invasive organisms on the European chestnut: Does the chestnut blight fungus benefit from the presence of the gall wasp? FEMS Microbiol. Ecol. 2015, 91, fiv122. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saikkonen, K.; Saari, S.; Helander, M. Defensive mutualism between plants and endophytic fungi? Fungal Divers. 2010, 41, 101–113. [Google Scholar] [CrossRef]
- Nicoletti, R.; Fiorentino, A.; Scognamiglio, M. Endophytism of Penicillium species in woody plants. Open Mycol. J. 2014, 8, 1–26. [Google Scholar] [CrossRef] [Green Version]
- Fatima, N.; Muhammad, S.A.; Khan, I.; Qazi, M.A.; Shahzadi, I.; Mumtaz, A.; Hashmi, M.A.; Khan, A.K.; Ismail, T. Chaetomium endophytes: A repository of pharmacologically active metabolites. Acta Physiol. Plant. 2016, 38, 136. [Google Scholar] [CrossRef]
- Deshmukh, S.K.; Prakash, V.; Ranjan, N. Recent advances in the discovery of bioactive metabolites from Pestalotiopsis. Phytochem. Rev. 2017, 16, 883–920. [Google Scholar] [CrossRef]
- El-hawary, S.S.; Moawad, A.S.; Bahr, H.S.; Abdelmohsen, U.R.; Mohammed, R. Natural product diversity from the endophytic fungi of the genus Aspergillus. RSC Advan. 2020, 10, 22058–22079. [Google Scholar] [CrossRef]
- Bailey, B.A.; Melnick, R.L. The endophytic Trichoderma. In Trichoderma: Biology and Applications; Mukherjee, P.K., Horwitz, B.A., Singh, U.S., Mukherjee, M., Schmoll, M., Eds.; CABI Publishing: Boston, MA, USA, 2013; pp. 152–172. [Google Scholar]
- Rajani, P.; Rajasekaran, C.; Vasanthakumari, M.M.; Olsson, S.B.; Ravikanth, G.; Shaanker, R.U. Inhibition of plant pathogenic fungi by endophytic Trichoderma spp. through mycoparasitism and volatile organic compounds. Microbiol. Res. 2021, 242, 126595. [Google Scholar] [CrossRef]
- Akilli, S.; Katircioğlu, Y.Z.; Maden, S. Biological control of chestnut canker, caused by Cryphonectria parasitica, by antagonistic organisms and hypovirulent isolates. Turkish J. Agric. For. 2011, 35, 515–523. [Google Scholar]
- Cooper, W.R.; Rieske, L.K. Gall structure affects ecological associations of Dryocosmus kuriphilus (Hymenoptera: Cynipidae). Environ. Entomol. 2010, 39, 787–797. [Google Scholar] [CrossRef] [PubMed]
- Zimowska, B.; Okoń, S.; Becchimanzi, A.; Krol, E.D.; Nicoletti, R. Phylogenetic characterization of Botryosphaeria strains associated with Asphondylia galls on species of Lamiaceae. Diversity 2020, 12, 41. [Google Scholar] [CrossRef] [Green Version]
- Morales-Rodriguez, C.; Sferrazza, I.; Aleandri, M.; Dalla Valle, M.; Mazzetto, T.; Speranza, S.; Contarini, M.; Vannini, A. Fungal community associated with adults of the chestnut gall wasp Dryocosmus kuriphilus after emergence from galls: Taxonomy and functional ecology. Fungal Biol. 2019, 123, 905–912. [Google Scholar] [CrossRef]
- Reazin, C.; Baird, R.; Clark, S.; Jumpponen, A. Chestnuts bred for blight resistance depart nursery with distinct fungal rhizobiomes. Mycorrhiza 2019, 29, 313–324. [Google Scholar] [CrossRef]
- Nguyen, N.H.; Song, Z.; Bater, S.; Branco, S.; Tedersoo, L.; Menke, J.; Schilling, J.S.; Kennedy, P.G. FUNGuild: An open annotation tool for parsing fungal community datasets by ecological guild. Fungal Ecol. 2016, 20, 241–248. [Google Scholar] [CrossRef]
- Nunziata, A.; Ruggieri, V.; Petriccione, M.; De Masi, L. Single nucleotide polymorphisms as practical molecular tools to support European chestnut agrobiodiversity management. Int. J. Mol. Sci. 2020, 21, 4805. [Google Scholar] [CrossRef] [PubMed]
- Vinale, F.; Ruocco, M.; Manganiello, G.; Guerrieri, E.; Bernardo, U.; Mazzei, P.; Piccolo, A.; Sannino, F.; Caira, S.; Woo, S.L.; et al. Metabolites produced by Gnomoniopsis castanea [sic] associated with necrosis of chestnut galls. Chem. Biol. Technol. Agric. 2014, 6, 294–301. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nicoletti, R.; Beccaro, G.L.; Sekara, A.; Cirillo, C.; Di Vaio, C. Endophytic Fungi and Ecological Fitness of Chestnuts. Plants 2021, 10, 542. https://doi.org/10.3390/plants10030542
Nicoletti R, Beccaro GL, Sekara A, Cirillo C, Di Vaio C. Endophytic Fungi and Ecological Fitness of Chestnuts. Plants. 2021; 10(3):542. https://doi.org/10.3390/plants10030542
Chicago/Turabian StyleNicoletti, Rosario, Gabriele Loris Beccaro, Agnieszka Sekara, Chiara Cirillo, and Claudio Di Vaio. 2021. "Endophytic Fungi and Ecological Fitness of Chestnuts" Plants 10, no. 3: 542. https://doi.org/10.3390/plants10030542
APA StyleNicoletti, R., Beccaro, G. L., Sekara, A., Cirillo, C., & Di Vaio, C. (2021). Endophytic Fungi and Ecological Fitness of Chestnuts. Plants, 10(3), 542. https://doi.org/10.3390/plants10030542